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The development of data-driven approaches, such as deep learning, has led to
the emergence of systems that have achieved human-like performance in wide
variety of tasks. For robotic tasks, deep data-driven models are introduced to
create adaptive systems without the need of explicitly programming them. These
adaptive systems are needed in situations, where task and environment changes
remain unforeseen.

Convolutional neural networks (CNNs) have become the standard way to pro-
cess visual data in robotics. End-to-end neural network models that operate the
entire control task can perform various complex tasks with little feature engi-
neering. However, the adaptivity of these systems goes hand in hand with the
level of variation in the training data. Training end-to-end deep robotic systems
requires a lot of domain-, task-, and hardware-specific data, which is often costly
to provide.

In this work, we propose to tackle this issue by employing a deep neural network
with a modular architecture, consisting of separate perception, policy, and tra-
jectory parts. Each part of the system is trained fully on synthetic data or in
simulation. The data is exchanged between parts of the system as low-dimensional
representations of affordances and trajectories. The performance is then evalu-
ated in a zero-shot transfer scenario using the Franka Panda robotic arm. Results
demonstrate that a low-dimensional representation of scene affordances extracted
from an RGB image is sufficient to successfully train manipulator policies.

Keywords: robotics, representation learning, end-to-end visuomotor con-
trol, variational autoencoder, zero-shot transfer, deep learn-
ing, affordance
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Tietopohjaisten oppimismenetelmien etenkin syvdoppimisen viimeaikainen ke-
hitys on synnyttéanyt jérjestelmid, jotka ovat saavuttaneet ihmistasoisen suo-
rituskyvyn ihmisilyd vaativissa tehtédvissd. Syvaoppimiseen pohjautuvia robot-
tijarjestelmié ollaan kehitetty, jotta ympériston ja tehtdvan muutoksiin mukau-
tuvaisempia robotteja voitaisiin ottaa kayttoon.

Konvoluutioneuroverkkojen kaytté kuvatiedon késittelyssd robotiikassa on
yleistd. Neuroverkkomallit, jotka késittelevit anturitietoa ja suorittavat
padtoksenteon ja sddadon, voivat oppia monimutkaisia tehtdvid ilman késin teh-
tyd kehitystyotd. Naiden jarjestelmien kyky mukautua ympériston muutok-
siin on kuitenkin suoraan verrannollinen koulutustiedon monimuotoisuuteen.
Syvéoppimiseen pohjautuva robottijarjestelmé vaatii oppiakseen suuren mééaréan
ympéristo-, tehtdvé-, ja laitteisto-ominaista koulutustietoa, mikd joudutaan
yleensé keratd tehottomasti késin.

Téamén tyon tarkoitus on esittdd ratkaisu yllamainittuun tehottomuuteen. Esit-
telemme neuroverkkoarkkitehtuurin, joka koostuu kolmesta erillisestd kompo-
nentista. Naméa komponentit koulutetaan erikseen ja koulutus ollaan ainoas-
taan toteutettu simulaatiossa tai synteettiselld tiedolla ilman fyysisen maail-
man lisdkouluttautumista Ensimmaé&inen komponentti tuottaa RGB-kuvasta ma-
talaulotteisen affordanssiesityksen. Tamén esityksen pohjalta toinen komponent-
ti tuottaa matalaulotteisten liikerataesityksen. Kolmas komponentti luo tdmén
esityksen pohjalta taysimittaisen liikeradan teollisuusrobotille. Jérjestelmén suo-
rituskykyé arvioidaan fyysisesséd ympéristossé ilman lisdkoulutusta Franka Panda
-teollisuusrobotilla. Tulokset osoittavat, ettd kuvatieto voidaan esittdd matalau-
lotteisena affordanssiesityksend ja tité esitystd voidaan kayttdd sddtotehtavin
oppimiseen.
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Chapter 1

Introduction

In robotics research, the objective is to move us towards a world that we
have only witnessed in science fiction so far — a world where not only all the
repetitive and tedious tasks are automated by robotic systems, but also those
that require human-like intelligence. We humans could then focus on tasks
that motivate us and require skills that we are the most capable of, such as
understanding highly complex conceptual problems, and being creative and
emotionally intelligent — creating and enjoying art, and solving the most
notorious problems.

We have witnessed the introduction of systems that have achieved ade-
quate or superhuman performance in complex tasks, such as image classifi-
cation, playing Atari games, and Go [Krizhevsky et al., 2012, Mnih et al.,
2013, Silver et al., 2017]. These systems have been built to understand and
process complex semantics of the problem domains. The critical factors of
these recent successes are improved utilization of computational resources
and the recent development of data-driven approaches, especially deep learn-
ing methods.

Deep learning is a data-driven approach, where the model learns to per-
form its objective by identifying meaningful features from its training data.
Deep learning models include multiple non-linear function layers. In other
words, they are neural networks with multiple hidden layers. Each of the
layers include a large number of non-linear functions that pass their outputs
to the following layer. Here, the layers in the model process increasingly ab-
stract features from its input. This deep structure enables the model to learn
semantic features that cannot be feature engineered. Different deep neural
network structures have performed successfully in many complex tasks where
sufficient data has been available. Especially, convolutional neural networks
(CNNs), a class of deep neural networks, have become the de facto standard
way of processing visual input [Krizhevsky et al., 2012].
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1.1 Data-Driven Robot Control

In robot control, the system observes its surrounding environment, makes
a decision, and then interacts with its environment. The decision is made
based on the state of the environment and the system’s internal status. The
environment state is estimated from observed data. In visuomotor control,
the observed data is high-dimensional visual data.

Currently in industrial settings, robotic arms are mainly utilized in tasks
where repetition is high and expected changes to the task are small. Common
tasks are, for example, welding and painting. In such applications, robots’
behavior can be programmed by experts, as these working environments are
predictive, and no major changes occur in the production line. However, for
many tasks, foreseeing all the possible scenarios and programming desired
behaviors for all of these scenarios is difficult, or even impossible, and ex-
pensive. Due to the time and expenses needed for the development, many
repetitive physical tasks are still more efficiently performed by humans.

To introduce robots to more complex tasks, recent years have seen wide-
spread research and adoption of deep learning in robotics. With convolutional
neural networks, the environment state is estimated from observed visual
data. Visual data can enable a robot system to be utilized in a more com-
plex environment, as it can generally capture a wide variety of information
about the working environment. Additionally, recent works have introduced
end-to-end approaches, where a deep neural network model directly computes
the entire mapping from observations to actions. As in other task domains,
such as playing Atari games, end-to-end approaches have the potential to
produce systems that can perform their tasks robustly and more efficiently
than systems programmed by human experts — sometimes performing bet-
ter than originally expected by their creators [Ecarlat et al., 2015]. This can
be essential for tasks where human-like intelligence is required.

Despite the potential of introducing these deep data-driven models for
robotic tasks, a few issues limit their further adoption. Specifically, (i)
learning an end-to-end neural network system requires vast amounts of task-
specific training data and months of real world experience [Levine et al.,
2018|, which are simply unfeasible to provide; (ii) using task- and domain-
specific training data means that changing the task, such as transferring
it to another robot or changing the task objective, requires often entirely
new training data, which is costly to obtain [Levine et al., 2016]. In other
words, the adaptivity of a learned system goes hand in hand with the level of
variation in training data; (iii) the behavior of deep models can be difficult
to predict and interpret, as the intermediate representations learned by the
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neural network rarely provide meaningful information to humans — despite
recent successes in interpreting neural networks, it is still difficult to gain
understanding of why the model behaves the way it does.

1.2 Objectives and Contributions

The goal of this thesis is to build an end-to-end robotic system that minimizes
the need for task- and domain-specific training data and enables transferring
its learned behavior to other tasks. Additionally, one of the aims is to make
the learned behavior of the system interpretable.

We introduce a modular neural network structure, which consists of three
parts: perception, policy, and trajectory generation. Each part of the system
is a separately trained neural network. For the perception part, we introduce
an approach to learn low-dimensional affordance representations of visual ob-
servations. Affordances — an idea originated from perceptual psychology —
express semantic information of what can be done with each part of the object
in a perceived environment [Gibson, 2014]. Representing visual observations
as affordances is a common approach to model a surrounding environment for
a robot to interact with [Do et al., 2018, Hassanin et al., 2018]. Representing
affordances in low-dimension enables a policy to be more efficiently learned.
Affordances are environment invariant, and therefore, the learned system can
perform its task with the same low-dimensional affordance representation in
different environments. The research questions for this thesis are:

e How can low-dimensional affordance representations be learned?
e How can the learned representations be used in robot control?
e Can the learned system be transferred to another environment?

For learning low-dimensional affordance representations, we use a varia-
tional encoder-decoder neural network structure [Kingma and Welling, 2013].
Using variational encoder-decoders ensures neighborhood preservation and
disentanglement of the low-dimensional representation space [Higgins et al.,
2016).

The trajectory generation part learns a low-dimensional trajectory repre-
sentation. A similar variational encoder-decoder structure as for the percep-
tion part is used to learn low-dimensional trajectory representations. The
policy part learns an intermediate relationship between the low-dimensional
affordance and trajectory representations, which maximizes the system’s per-
formance for its task. Low-dimensionality of both trajectory and perception
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representations allows the policy layer to be retrained with relatively little
training data.

Our system has been entirely trained on synthetic data or in simulation,
with no real-world adaptation. Training images for the perception part are
generated using randomized textures, object shapes, distractor objects and
camera viewpoints to increase the model’s capability in adapting to new
environments [James et al., 2017, Tobin et al., 2017]. For the trajectory gen-
eration part, the training dataset includes task-suitable trajectories that are
generated with a motion planning algorithm. The policy part, trained in a
physics simulator, maps low-dimensional affordance representations to rep-
resentations of trajectories, which are then passed to the trajectory decoder.

We demonstrate that the system performs well in the task of inserting
a ball into a container both in a simulated and real environment. The real
environment experiments are conducted with a Franka Panda robotic arm,
without the need for any real world adaptation of our neural network parts.
This is referred to as a zero-shot sim-to-real transfer scenario. We also eval-
uate the system’s susceptibility to clutter in the vicinity of the cup. The re-
sults demonstrate that the robotic arm can complete the task even in heavily
cluttered environments.

Based on the research conducted for this thesis, a research paper has been
submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2019) [Hamaéldinen et al., 2019]. The source code of the
work is publicly available !.

1.3 Outline

The structure of the thesis is the following. First, Chapter 2 studies previous
data-driven approaches for physical robot control tasks. Chapter 3 intro-
duces our approach for learning low-dimensional affordance representation
and our modular neural network system for the end-to-end visuomotor task.
Chapter 4 describes the overall visuomotor control setup. Chapter 5 empiri-
cally evaluates the introduced system. Finally, the overall conclusions of the
topic are provided in Chapter 6.

! https://github.com/gamleksi/affordancegym



Chapter 2

Learning Robotic Tasks

In this work, we are interested in studying data-driven approaches that are
suitable for robot control tasks — the systems learn the desired behavior,
called a policy, with a sufficient of amount training data.

In Section 2.1, the policy learning problem is described. For robot control
tasks, information about the working environment is obtained from the sen-
sors. However, raw sensor data is often high-dimensional, making it difficult
to directly extract task-relevant information. In Section 2.2, we introduce
state representation learning (SRL) for identifying the necessary informa-
tion from the high-dimensional data. By introducing an auxiliary learning
task, a state representation space can be learned in an unsupervised manner.
This can improve the policy learning process, as acquiring state values for
training can be inefficient or even impossible. In Section 2.3, we study the
required characteristics for learning state representation in an unsupervised
manner. In Section 2.4, we study approaches to learn state representation in
an unsupervised manner for robotic control tasks.

In Section 2.5, we introduce a domain randomization and trajectory op-
timization method that can decrease the amount of task- or domain-specific
training data required in the policy learning process.

2.1 Policy Learning Problem

In policy learning for a robot control task, the robot, called an agent, finds a
policy that performs the task. The policy selects the motor commands, called
actions, based on received observations. The policy can be described as a
function a = me(0) that maps observations o to actions a, where 6 expresses
the learned parameters of the policy. These observations include data from
the environment captured by sensors.

13
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For learning the policy, we consider that the policy learning problem is
a Markov Decision Process (MDP) [Sutton and Barto, 2018]. The task is
episodic, and thus consists of a finite number of time steps, 7. At each time
step t, the policy receives a state s; and a reward r; from the environment,
and then selects an action a; based on the state s;. Figure 2.1 visualizes the
process.

The received rewards of the entire episode guide the robot to find the
policy that performs the task. The objective of the robot is to find a policy g
that maps a state s; to an action a;, which produces the maximum expected
cumulative reward of the task E,, [Z;O rt] .

In an MDP, the state s; maintains the Markovian property — the state
s¢ includes information about all the aspects of previous actions and states
that have an effect on the future. Based only on the received state s;, the
policy can select the action a; that maximizes the future expected reward.

A state space expresses the set of possible values of state s; at any t.
The definition of a state space is not unique — the necessary information
about the environment can be expressed in multiple ways. The policy can be
learned, for example, with reinforcement learning or Value Iteration [Sutton

and Barto, 2018].
—
. l Agent

state g_ewafd action
5, / a,

Frsi

s« | Environment ]""—

Figure 2.1: The agent-environment interaction process for policy learning
(Source: [Sutton and Barto, 2018))

2.2 State Representation Learning

For robotic control tasks, the robot does not usually receive the state sy,
but instead, the observation o; from the sensors. The observation is often
high-dimensional which includes information about the state s;. It can be
considered that the observation o; is an outcome of the state s; — the ob-
servation o; is a high-dimensional description of the state s; [Ghadirzadeh,
2018]. For robotic control, we are interested in finding the inverse of that
description: the objective is to find a representation mapping from the ob-
servation o; to the state s;.
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This representation mapping should represent the observation space in
a state space, called the representation space. The problem of finding this
representation mapping is referred to as the state representation learning
(SRL) problem.

Many feature engineering approaches exist for extracting the state from
the observations, but they fail in terms of flexibility — it is difficult to foresee
everything that can occur in the environment. The state representation can
also be learned in a supervised manner. However, obtaining the labeled
training data is inefficient.

For policy learning, it is not necessary that a learned state representation
space explicitly expresses the physical, human interpretable, state values of
the environment. A mapping from an abstract state representation to the
desired action can be learned, if the representation maintains the Markovian
property [Bohmer et al., 2015]. The abstract state representation can de-
crease the complexity of the policy learning problem, if the representation is
low-dimensional.

The unsupervised approaches for SRL can be divided into end-to-end
policy learning and auxiliary task learning approaches. The abstract state
representation can be learned in an unsupervised manner — a neural network
indirectly learns the representation while learning some other task.

Learning the state representation in an unsupervised manner can be more
efficient and feasible than learning the physical state values of the environ-
ment. The training data for an auxiliary task can be obtained more easily
than the physical state values of the environment.

In end-to-end policy learning approaches, the agent learns a policy that
directly maps the observations to the actions. Here, the entire system is
defined as a single neural network that, when trained with reinforcement
learning, learns the mapping by interacting with the environment. The agent
receives rewards from the environment based on its interactions. The reward
directs the agent to find a policy that maximizes the reward. The end-to-
end policy model does not learn directly the state representation but the
intermediate value vector of the neural network model can be considered as
an implicit state representation of the observation [Ghadirzadeh et al., 2017].

Based on previous examples in other domains, such as in computer vision,
introducing a single neural network achieves more robust performance than
a multi-component system [Krizhevsky et al., 2012, Szegedy et al., 2015].
End-to-end learning approaches have been successfully introduced for various
complex policy learning problems, for example, arcade games and humanoid
movements in simulation [Mnih et al., 2013, Schulman et al., 2017].

Similarly, in policy learning in robotics, one can presume to improve
performance by introducing a single deep neural network structure. However,
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the end-to-end learning process requires vast amounts of training data, which
is not applicable for robotic tasks [Levine et al., 2018].

The initial idea of learning the state representation with auxiliary tasks
is that the same state representation, can be utilized for multiple tasks. For
example, the state presentation of cup locations on a table can be used to
pour tea into the cups, and to generate an image of the cups. By introducing
an auxiliary task, the objective is to improve the learning process of the
state representation. The auxiliary task can be learned either separately or
simultaneously with the policy model.

When separately learning the state representation with the auxiliary task,
the learned state representation is transferred to the target task. This can
be beneficial when the training data for the auxiliary task can be efficiently
obtained without performing the control task [Ghadirzadeh et al., 2017].

By simultaneously learning the auxiliary task and the policy model, the
objective is to strengthen reward signals that direct the policy learning pro-
cess. The end-to-end learning process requires vast amounts of training data,
because the received reward signal from the environment is usually weak in
proportion to the complexity of the problem [Ghadirzadeh, 2018]. The agent
is required to learn both identifying state information, and choosing the ac-
tion from one-dimensional reward signal. The auxiliary task can be utilized
to direct the learning of the state representation [Finn et al., 2016, van Hoof
et al., 2016].

2.3 Abstract Representation Characteristics

In this thesis, we study SRL in an unsupervised manner, specifically, SRL ap-
proaches that introduce auxiliary tasks. By introducing an auxiliary task for
the policy learning process, the objective is to reduce the required amount of
training data and speed up the training. The state representation is learned
in an unsupervised manner. A neural network for the auxiliary task learns
indirectly the state representation of the observations. This state represen-
tation is an abstract representation of the environment’s state — it cannot
be directly interpreted by humans.

However, the abstract representation has to maintain some properties
for the policy model to learn to interpret the representation, and map the
abstract representation to the desired actions. In this section, we study these
properties. From now on, the state representation expresses the abstract
representation that is learned in an unsupervised manner, and s; expresses
the abstract state representation of the observation oy.

In policy learning, the objective is to learn to interpret the relation of the
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state representations and actions. In practice, different state-action combi-
nations are explored. The complexity of the policy search can be decreased
by introducing simpler state representations — a lower dimensional state
representation space [Bohmer et al., 2015].

A state representation space should preserve predictable structure for a
policy to learn to interpolate unseen states that have similar features as previ-
ously seen states [Bohmer et al., 2015]. This is achieved if the representation
space is disentangled and exhibits the neighborhood preservation property.

In a disentangled space, each state feature of a system, such as posi-
tion, orientation and size, is separately represented in the state represen-
tation space [Burgess et al., 2018]. Ideally, each dimension represents a
separate feature. In a neighborhood preserved state representation space,
observations that have similar features in the observation space, are located
closely [Bohmer et al., 2015]. These properties promote interpolation, which
decreases the complexity of policy learning. A policy can predict the cor-
rect action for a given state s; based on its previous experiences with similar
states [Bohmer et al., 2015].

The described state representation properties are hard to verify directly
when trained in an unsupervised manner, as the state representation values
are abstract. The properties are usually indirectly reviewed with a control
task — how efficiently a policy for the task can be learned — or by studying
the intermediate relationship between the observation and abstract spaces
[Lesort et al., 2018]. To encourage to learn the representation with the prop-
erties, previous works have included learning constraints [Finn et al., 2016,
Higgins et al., 2016].

2.4 Auxiliary Task Approaches

This section introduces SRL approaches that learn the representation in an
unsupervised manner with auxiliary tasks. These approaches are reconstruc-
tion, forward, inverse, and end-to-end approaches.

In the reconstruction approach, the state representation is learned with
an encoder-decoder neural network structure, that first encodes an observa-
tion o; to a low-dimensional representation [Finn et al., 2016, Mattner et al.,
2012]. From this low-dimensional representation, a decoder generates the
same observation o, or another high-dimensional target value. The state
representation is the encoder. In the forward learning approach, state rep-
resentation of an observation o; is simultaneously learned with a transition
function that predicts a future state s;;; from an encoded s; and an action
a; [Goroshin et al., 2015, Watter et al., 2015]. In the inverse model approach,
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St

———————

Figure 2.2: The reconstruction approach: the error is between o, and 0;. The
white components are input data, and the gray components are generated
by the model. (Source: [Lesort et al., 2017])

states s; and ;41 are used to predict an action a; [Agrawal et al., 2016]. Here,
a state representation network outputs both states s; ;1.

In the end-to-end approach, a mapping from an observation o; to a task
related target is learned. An intermediate value vector of the learned neural
network model is an implicit state representation of the observation. This
implicit state representation is transferred to the target policy.

Learning the state representation and policy for a physical task is in prin-
ciple a slow process. It requires task- and environment-specific data which is
obtained by, for example, changing objects in the environment, or letting a
robot interact with the environment. For each of the described approaches,
we describe previously proposed methods with a real physical robot. These
works have shown how prior knowledge can be included to a learning process
to improve the learning processes [Agrawal et al., 2016, Devin et al., 2018,
Finn et al., 2016, Ghadirzadeh, 2018, Watter et al., 2015]. Here, priors cover
preliminary knowledge that can be incorporated to a system to improve its
performance in a control task [Ghadirzadeh, 2018].

2.4.1 Reconstruction Approach

The reconstruction approach utilizes an encoder-decoder structure. Both
encoder 1y and decoder ¢y are neural networks that are parametrized with
0. An autoencoder is a special case of this structure, where the reconstruction
target is the same as the input. It learns to encode an observation o; to a low-
dimensional state representation s; = 1g(0;), which is then used to generate
0 = ¢y(st). An error signal is the reconstruction loss between the original
o; and generated ¢, [Bourlard and Kamp, 1988|, which is usually the mean
squared error (MSE) expressed as:

'Crecon(ob 6t) = ||Ot - étH% (21)
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Figure 2.2 shows the semantic structure of this approach.

To learn a state representation space, no other information, than a low-
dimensional representation s;, is shared between encoder and decoder layers.
For state representation learning, the dimension of the encoded space is lower
than the dimension of the observation space. Hence, the low-dimensional
representation can be considered as an information bottleneck of the autoen-
coder model. Not all necessary information can be included to s; to obtain
an accurate reconstruction of o,. To obtain a minimal error between o; and
0¢, S¢ includes information of a given o; that maximizes its difference from
the other observations — s; ignores information about features that has the
smallest variance in the observation domain.

For the purpose of policy learning, an autoencoder model can learn to
encode necessary state information about a system for a policy learning prob-
lem. However, this depends on the observation domain. An encoder-decoder
model may fails to learn state representation for a policy task, when, mean-
ingless features, such as the texture and color of the manipulated object,
for the policy task have higher variance in the observation domain than the
necessary state features. Here, the encoder learns to ignore necessary infor-
mation to the low-dimensional representation.

Prior knowledge of the task can be included to an encoder-decoder learn-
ing process to ignore unnecessary information in the low-dimensional space:
the decoding target can differ from the original observation o;. Here, the
model is an encoder-decoder model.

For instance, the target can be gray-scaled for tasks where color and tex-
ture information of objects are unnecessary [Finn et al., 2016]. Ghadirzadeh
et al. [2017] introduced a reconstruction prior for the task of throwing a ball
to hit a specific object on the table. Multiple clutter objects varied in each
observed sample. For the ball throwing policy, only information about the
target object was required. Ghadirzadeh et al. [2017] removed all clutter ob-
jects from the target image. Here, their encoder-decoder model needed to
encode information about the target object to a low-dimensional representa-
tion space. Decreasing complexity of SRL can reduce the amount of training
data needed, but modifying target samples as in [Ghadirzadeh et al., 2017]
is not a scalable approach.

Increasing the complexity of an encoder-decoder task can act as a learning
regularizer. Vincent et al. [2008] introduced a denoising autoencoder (DAE)
approach, where, during the learning phase, a DAE model reconstructs an
observation o; from corrupted version of the observation. By increasing the
noise complexity, the DAE model learns to operate more robustly, and focuses
on critical features in the observations [Vincent et al., 2008].

The learning process of an encoder-decoder model does not encourage to
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learn a state representation that preserves a neighborhood and disentangled
structure [Higgins et al., 2016]. To solve this challenge, previous works have
included prior constraints or auxiliary tasks. Finn et al. [2016] included a
prior constraint that promotes an encoder to represent only spatial features of
the observed objects. They used the spatial soft-max function as the activa-
tion function of the encoder’s last layer. The spatial features describe where
to move the end-effector. The spatial representation space is continuous and
predictable, which satisfies the desired properties described in Section 2.3.
However, the spatial representation can solely handle situations where each
learned visual feature occurs exactly once in the image [Finn et al., 2016].

Variational autoencoders (VAEs) include a Kullback-Leibler divergence
(KL-divergence) term to the loss function [Higgins et al., 2016]. The KL-
divergence encourages neighborhood preservation and disentanglement in
state representation space [Burgess et al., 2018]. Instead of producing a low-
dimensional vector, the encoder of VAE produces a low-dimensional Gaus-
sian distribution vg(0;) = N (we(or), Xe(0;)), where py and Sy are neural
networks, pg(o;) is a mean vector, and ¥y(o;) is a diagonal covariance ma-
trix. The KL-divergence term is calculated between the encoded distribution
and a normal distribution with zero mean and unit variance:

k

> (07 + 4 —n(o7) — 1), (2.2)
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where k is the number of dimensions in the representation space, y; and o2
are elements from pg(o;) and diag(Xg(o;)) respectively. The minimum of
the KL-divergence term is obtained when the representation distribution of
an observation o is (o) = N(0,1).

The KL-divergence term can be considered as a regularizer for learning
a state representation space in an unsupervised manner. In the learning
phase, a VAE model makes a trade-off between the KL-divergence and the
reconstruction loss. The KL-divergence encourages information to be packed
closer to the origin in the low-dimensional space, which decreases the model’s
capacity to represent information. When less capacity is available, the en-
coder learns to represent features in a more general and robust manner, with
the cost of increasing the reconstruction loss [Burgess et al., 2018, Higgins
et al., 2016].

The trade-off between the densely packed low-dimensional space and the
reconstruction quality can be balanced by the 8 hyperparameter introduced
by Higgins et al. [2016]. The loss function of VAE can then be expressed as

Lyae = Lyecon(0t,01) + BD (N (¥g(0r)|IN(0,1)). (2.3)
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St St41

Figure 2.3: The forward approach: the error is calculated between the pre-
dicted $;41 and the actual s;41. (Source: [Lesort et al., 2017))

By introducing a representation distribution 14(0;), the neighborhood preser-
vation can be assured [Ghadirzadeh, 2018|. During the learning process, a
representation variable s; is sampled from the encoded distribution (o).
Then, the reconstruction loss is the error between the target value and the
value generated by the sampled s;. The error is a similarity metric which is
chosen based on the data. To minimize the reconstruction loss, neighborhood
values in the learned representation space generate similar features also in
the target domain.

2.4.2 Forward Approach

A forward model consists of two parts: 1) a representation model encodes
an observation o, to a state s;, and 2) a transition model predicts ;. from
the state s; and action a; pair [Lesort et al., 2018]. The training loss is the
error between the predicted S;1; and the true s;y; state from o;y;. To fit
the model, this error is then back-propagated through a transition function
and a representation model. Figure 2.3 shows the semantic structure of this
approach.

The learned state representation of the forward model maintains the
Markovian property. Predicting s;,; from s; and a; requires the transition
model to learn the dynamics of the task environment. A state s; should
represent the system’s state in order for the next state to be predicted based
on an action a;. Additionally, learning the dynamics of the system can be
utilized to learn a policy [Watter et al., 2015].



CHAPTER 2. LEARNING ROBOTIC TASKS 22

A system prior can be included to a forward model by defining the struc-
ture of the transition model. For example, the transition model can linearly
transform s; and a; to S;1:

Se41 = fo(se,ar) = Wysy + Ugar + Vy

where 6 represents either constant or learned parameters of W, U, and
V' [Goroshin et al., 2015, van Hoof et al., 2016, Watter et al., 2015]. In-
cluding the linear dynamic prior has shown to result in more stable policy
learning results with a real robotic task [van Hoof et al., 2016].

van Hoof et al. [2016] included both the reconstruction and the forward
approach to their state representation learning method. The reconstruction
loss was obtained between 0,1 and o;y; when o, was given as an input to
their forward model. An observation o; was first encoded to s;, from which
the transition model produced a state prediction §;,1. The reconstructed
0¢+1 was computed from S, 1.

In their real robot experiment, the observed data was tactile, which has
lower dimensionality than image observations [van Hoof et al., 2016]. Their
results showed that the best performance was achieved with a VAE model
that was retrained after each policy update. Learning simultaneously both
the state representation and the policy for the task was achieved by including
old and new policy data to state representation learning, and by introducing
a prior to sample actions in policy learning.

2.4.3 Inverse Approach

An inverse model includes two different parts. Figure 2.4 shows the semantic
structure of this approach. As in the forward model, a representation model
encodes an observation o, to a state s; [Agrawal et al., 2016]. A predic-
tion model receives s; and s;,1 from the representation model, and predicts
the action a; that caused the transition from s; to s;;;. An error measure
for learning is the difference between the correct a; and the predicted a;.
This value is then back-propagated through the prediction and representa-
tion parts. Here, the inverse model structure requires the representation
model to encode sufficient information about o; to find an action a; that
caused from s; to s41.

An inverse model for physical visual control was introduced to a task,
where a robot pokes an object to another position on the table [Agrawal et al.,
2016]. In this approach, the learned inverse model also acts as the policy. At
each time step ¢, the current observation o, and image of the final position of
an object are given to the inverse model. The inverse model predicts the next
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Figure 2.4: The inverse approach: the error is computed between the pre-
dicted action a; and the actual a;. (Source: [Lesort et al., 2017])
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action a; that then moves the object closer to its final position. The outcome
of this action is observed at time ¢ + 1, which is then recursively used as the
next input together with the image of the final position. Training data for
learning the inverse model was generated by randomly poking objects on the
table.

The forward model was included to the learning process to regularize
inverse model learning. In the model, each training sample ¢ includes obser-
vations o; and 0411, and a corresponding action a;. An action a; includes the
target poke position, and the length and angle of that poke. Observations
o, and o1 are passed to the inverse decoder that produces low-dimensional
s¢ and sg11. The prediction model results in an action prediction a; with
obtained states. Additionally, the forward model produces $;;; from the
decoded s; and the action sample a;. The inverse and forward losses were
combined

E@(Ota Ay, 0t+17 9) == ‘Cinv(a't7 9) + )\‘wad(st-i-la 9)7 (24)

where 6 is network parameters of the inverse and forward model, and A\
is a regularizer hyperparameter. Agrawal et al. [2016] experimented with
a simulation task, where less training data was required when the forward
model was included. However, with enough training data, no performance
improvement was achieved by including the forward model.

2.4.4 End-to-End Learning Approach

In the end-to-end approach, we learn a model that maps an observation o; to a
task related target. An intermediate value vector of the learned model can be
considered as an implicit state representation of the observation [Ghadirzadeh
et al., 2017].

The implicit state representation can be learned, for example, with an-
other end-to-end policy task that can then consider an auxiliary task. This
auxiliary task may require fewer interactions with the environment. The
learned state representation can then be transferred to the target policy task.

The learned state representation is, however, difficult to transfer to other
task settings. The end-to-end network is of a black-box nature, which makes
it challenging to verify that the intermediate layer representations of the net-
work preserve the properties introduced in Section 2.3 — the Markovianity,
and the neighborhood preservation and disentanglement properties.

The intermediate representation can be learned by introducing a con-
strained neural network structure — the neural network structure enforces
to learn a certain intermediate representation. Devin et al. [2018] introduced
the a Deep Object-Centric Representation method that produced an inter-
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mediate priority map representation. This priority map was utilized for pol-
icy learning. Their neural network structure consists of meta-attention, the
task-specific attention and the policy part.

The meta-attention part, that consists of the pre-trained layers, produces
semantic and positional information about the recognized objects in an ob-
served image. The task-specific attention part produces the priority-map
of the semantic object information for the task. For example, for the task
to move a mug to a desired position, the priority-map would pay attention
to semantic information about the mug. The policy part receives a com-
pound of the position information map from the meta-attention part and
a priority-map from the task-specific attention part. The information com-
bination expresses where important objects for the task are located in an
image. Additionally, the current robot pose is given to the policy part.

For the meta-attention part, the first layers of AlexNet [Krizhevsky et al.,
2012] were utilized to learn more general policies with fewer training samples.
They argued that the number of pre-trained layers to be utilized is essentially
a trade-off between flexibility and generalization of policy learning. The
policy tends towards flexibility in identifying meaningful features, the less
the pre-trained layers from the classifier network are used. In contrast, using
too few of the pre-trained layers (or none at all), the policy focuses on overly
general features, such as raw pixels or histogram of gradients, which restricts
a policy to operate in a limited environment. This is essentially a challenge
in policy learning in robotics when a limited amount of training data is
available.

The task-specific attention part is trained in a supervised manner, where
the task is to predict the next robot joint pose at time ¢t + 1 from an image
and robot state pair at time ¢. A policy network, separate from the one
used for the final control task, is trained to map the output of the task-
specific attention to the desired trajectory pose. Training data included
demonstrations of a manually moved robot arm performing the same task.
The priority-map representation of the task-specific attention part can be
transferred to the final task.

2.5 Priors for Visuomotor Robot Control

The particular bottleneck in learning a robotic control task is the need for
task- and domain-specific training data. In this section, we introduce do-
main randomization and trajectory optimization methods that have shown
efficiency improvements in the learning process.
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2.5.1 Domain Randomization

The idea of domain randomization is to synthetically produce artificial train-
ing data that enables a model to learn to behave in a desirable manner in a
task domain [Tobin et al., 2017]. Figure 2.5 shows domain randomized train-
ing samples and the corresponding sample of the target task domain. The
task domain covers all the features and values that can exist when perform-
ing the task. Here, the domain randomized dataset should cover the range
of values of features that can exist in the task domain.

Figure 2.5: Domain randomized training data was generated to learn to de-
tect object poses in the test environment [Tobin et al., 2017]. (Source: [Tobin
et al., 2017])

Generating a large training dataset is faster than building an accurate
computer model of the task domain and defining precise feature value regions
to be learned. Especially, rendering high quality RGB images is inefficient.
In domain randomization, the goal is to learn a model that can achieve its
objective without disturbance from task-invariant changes in the environ-
ment [James et al., 2017]. Training samples do not need to correspond to
those in the task domain when the training data includes high variation in
the task-invariant features.
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In Tobin et al. [2017], a neural network, trained with a domain random-
ized dataset, learned to find a desired object position from an RGB image.
Features, such as textures, object materials, and lights, were randomly sam-
pled for each training image. Samples of the domain randomization dataset
are shown in Figure 2.5. James et al. [2017] introduced a domain random-
ization method for transferring an end-to-end learned policy from simulation
to the real environment.

2.5.2 Trajectory Optimization

In a trajectory optimization problem, the policy learns to generate a se-
quence of actions, which successfully performs the task from a single obser-
vation [Ghadirzadeh, 2018]. This problem is considered a feedforward control
problem. The length of an episode is one step, and after that, the policy re-
ceives a reward of the generated sequence of actions.

Previously described policy learning problems received an immediate ob-
servation feedback after each action, which is considered a feedback con-
trol problem. Learning the feedback control is suitable for more complex
tasks than learning a feedforward control. Nevertheless, the feedforward
control problem requires less data for learning than the feedback control
task [Ghadirzadeh et al., 2017]. This can be beneficial for tasks, where the
task environment is static while the trajectory is executed. In other words,
an observation at the beginning of the episode contains enough information
to perform the task.

Ghadirzadeh et al. [2017] introduced a VAE model that learned low-
dimensional representations of task specific trajectories. Training data was
generated with a planning algorithm, and the dataset included trajectories
that produced desired outcomes for the task. Here, they were able to sep-
arately train the trajectory generation model and the feedforward policy.
Their approach took advantage of their prior knowledge on successfully per-
formed trajectories for the task.

2.6 Discussion

Section 2.4 introduced previous works on end-to-end visuomotor robotics
control with different SRL approaches learned with auxiliary tasks. The
works introduced methods to achieve more suitable learning processes for
robotic control by decreasing the amount of training data required. For
example, Ghadirzadeh et al. [2017] modified the reconstruction targets of
their training data, Finn et al. [2016] constrained the state representation
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space, and Devin et al. [2018] utilized the pre-trained network layers and
transferred the task-specific learnings from the demonstration task to the
control task. However, these SRL methods all obtained task- and domain-
specific training data manually.

Domain randomization methods enable transferring a simulation-learned
model into the real environment without real-world adaptation. However,
the previously introduced works have solely studied end-to-end learning ap-
proaches. These approaches require the system to be trained from the be-
ginning, if the task is altered, for example, when a robot or an objective is
changed.

A learned state representation model can be utilized for tasks related to
the original task. For example, the state representation of tea pouring may
capture necessary information for a cup grasping task. However, this can
be verified only through the means of experimental evaluation [Lesort et al.,
2018].

The representation learning approach can indicate which information the
model represents [van Hoof et al., 2016]. Additionally, the model can learn
the representation without interacting with a robot arm [Ghadirzadeh et al.,
2017]. They modified the target domain of their encoder-decoded model,
which enforced the model to learn the spatial representation of the target
object. However, their approach required domain-specific data, as well as
manually modifying the reconstruction targets.

In Chapter 3, we introduce an affordance prior for learning a state rep-
resentation. The prior enforces the model to learn a low-dimensional state
representation of the environment affordances. We argue that the prior en-
ables the state representation to be used for new tasks. Additionally, the
domain randomization method is used for training our SRL model, which
enables the model to be utilized in a variety of domains. For efficiently
reusing a learned state representation in other tasks, we propose a modular
neural network structure that utilizes the trajectory optimization method.



Chapter 3

Affordance Learning for Robot
Control

The affordances of an object express possible interactions with the object’s
parts [Gibson, 2014]. For example, the handle of a cup represents the grasp
affordance, and the cup’s interior part represents the contain affordance.
Gibson argued that people perceive affordances in their surrounding environ-
ment. Affordances can be visually expressed by labelling affordance regions
of received images. Figure 3.1 show example images of different tools and
their corresponding affordances.

Learning an affordance state representation would enable utilizing the
same representation for a variety of tasks. Each object type has its own
general affordances. For example, cups in general have the contain and grasp
affordances. The same affordances can be utilized in multiple tasks without
retraining.

In Section 3.1, we study previous works in visual affordance learning.
Section 3.2 proposes a modular neural network system that utilizes visual
affordance prior.

3.1 Visual Affordance Learning

Visual affordance learning approaches extract affordances from visual ob-
servations. Several recent studies have introduced affordance learning as a
segmentation problem [Chuang et al., 2018, Hassanin et al., 2018, Luddecke
and Worgotter, 2017, Myers et al., 2014, 2015, Roy and Todorovic, 2016].
Here, a learning model is required to identify affordance features from an
image. From these features, the model generates a segmented affordance
image that expresses the corresponding pixel-level affordance labeling of the

29
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Figure 3.1: Samples from the UMD dataset are labeled by the affordance
segmentation method introduced in [Myers et al., 2014]. The UMD dataset
includes the shown affordance categories. (Source [Myers et al., 2014])

observed image.

Learning to generate affordance images requires a model to be trained
in a supervised manner. The objective is to generate the target affordance
image from the corresponding observation. A common dataset for this task
is the UMD dataset that includes 300000 samples of 105 different kitchen,
workshop, and garden tools [Myers et al., 2014]. These tools have seven
different affordances in total. However, the dataset only includes samples
from a single, simplistic environment with a single camera viewpoint and no
clutter objects. Figure 3.1 shows samples from the UMD dataset.

Nguyen et al. [2017] introduced the IIT-AFF dataset, that includes la-
beled affordances of images of 10 object types. The dataset includes 8 835
samples. 60% of the images are from the ImageNet dataset, which enables
utilizing layers from pre-trained deep network models. Figure 3.2 show sam-
ples from the IIT-AFF dataset, the corresponding affordances of the samples,
and generated grasping frames. They extracted the grasping frames from the
obtained affordance images, and used the frames to search trajectory.

A major bottleneck in the affordance segmentation learning is generat-
ing training data from the task environment, as affordance images usually
need to be manually labeled. To mitigate this problem, Srikantha and Gall
[2016] proposed an expectation-maximization method for learning pixel-level
affordances trained with weakly labeled image data.

Nguyen et al. [2016] proposed an encoder-decoder architecture to learn
different affordances from RGB-D images. For learning the model, they
utilized the UMD dataset. In a more recent work, Do et al. [2018] introduced
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Figure 3.2: RGB images and their corresponding affordance images from the
IIT-AFF dataset. Third column shows the grasp frames that were extracted
from the affordance images [Nguyen et al., 2017]. (Source [Nguyen et al.,
2017))

an object detector network to narrow down the image regions from which
object affordances are extracted. They utilized the IIT-AFF dataset. They
simultaneously trained the object detection and the affordance labeling tasks,
which improved the learning process.

Previous works have extracted the desired positions of the robot end-
effector from the affordance images [Do et al., 2018, Nguyen et al., 2016,
2017]. The trajectory to the desired position is planned with a path planner.

3.2 Modular Neural Network System for End-
to-End Control

Our system consists of three separately trained parts—affordance perception,
policy, and trajectory generation, similar to the approach in [Ghadirzadeh
et al., 2017]. The policy problem is described as a feedforward control prob-
lem that was defined in Section 2.5.2 — the length of an episode is one. Here,
we can express the process accordingly: the perception part encodes an RGB
image o to a low-dimensional affordance representation s. The policy part
maps the state s to a desired low-dimensional action vector a. Finally, based
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Figure 3.3: Structural overview of the system. An input image o is first
processed by the affordance encoder (blue). The policy part (green rectangle)
produces action a, which is then decoded to a robot trajectory wug.p. The
affordance image is also generated by the affordance decoder (red).

on action a, the trajectory part creates trajectory positions for each joint of
the robot ug.r.

This structure is shown in Figure 3.3. The affordance encoder consists of
convolutional and fully connected layers (blue), while the decoder has the in-
verse structure — it consists of fully connected layers followed by transposed
convolutions (red). The yellow blocks represent the policy and trajectory
generation parts. In addition to a state s, information about camera pose is
added to the input of the policy. This allows the policy to estimate the 3D
pose of the target object with respect to the camera and removes the need
for the simulation viewpoint to exactly match the real one.

The gray background emphasizes the hourglass shape of the network with
a low-dimensional information bottleneck in the middle. Both the percep-
tion and the trajectory blocks are built using variational encoder-decoder
structures that were introduced in Section 2.4.1.

The novelty of our method is representing visual affordances in a low-
dimensional representation space — no previous work has trained an affor-
dance representation that could directly be utilized in robotic control tasks.
This low-dimensional, disentangled affordance representation enables efficient
policy learning by making the representation space faster to explore.
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3.2.1 Affordance Representation Learning

The perception part represents observations in a low-dimensional affordance
representation space. The representation space follows the reconstruction
learning approach introduced in Section 2.4.1.

We include the affordance prior to the learning process. Similarly as in
[Ghadirzadeh et al., 2017], we modify the decoding target. In our method,
the decoding target is the corresponding pixel-level affordance labeling of
the observation o. The same affordance image target has been utilized in
several visual affordance learning approaches that were introduced in Section
3.1. However, their works have focused on learning to output affordance
images. To encourage the representation space to preserve neighborhood
and disentangled structure, we included the KL-divergence term as in VAE
[Higgins et al., 2016]. We refer to our structure as a variational affordance
encoder-decoder (VAED) structure.

The encoder of VAED consists of a series of convolutional layers followed
by one fully connected layer. The mean and covariance are produced by
separate fully connected layers. The latent representation, drawn from the
normal distribution with given p and o, is then passed as an input to the
decoder. The decoder has a reversed structure—a fully connected layer fol-
lowed by a series of transposed convolution layers. The decoder produces a
multi-channel probability map g with each channel corresponding to a spe-
cific affordance. A pixel value in an affordance channel k describes how likely
that affordance is to occur in each pixel. The probability output is achieved
by using the sigmoid activation function. As the reconstruction loss, we use
binary cross entropy [Brink and Pendock, 1996]:

1

Cren(i ) = (3 = 3 (= X (o lon(at) + (1 = o) tog(1 = 1) ).

k

where y is the target affordance image, M is the number of affordance chan-
nels and ¢ expresses the ith pixel index of an affordance image.

Training the affordance detection network requires corresponding labeled
affordance images. The target, together with the RGB inputs, are generated
in Blender, an open source 3D modeling and animation software !. We
use domain randomization of textures, clutter and lighting to increase the
robustness of the model.

thttps://www.blender.org/
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3.2.2 Trajectory generation

To build a trajectory generation model, we first train a variational au-
toencoder on a set of task-specific trajectories, similar to the approach in
[Ghadirzadeh et al., 2017]. Their method was presented in Section 2.5.2.
The decoder block of this autoencoder converts low-dimensional latent tra-
jectory representations of actions a to their corresponding trajectories in joint
space ug.r. This model can therefore be used as a task-specific trajectory gen-
erator — it converts each latent action a to a trajectory that is useful for
accomplishing the given task. To achieve this, we rely on the observation
that trajectories, useful for a specific task, often exhibit structural similar-
ities. For example, trajectories useful for pouring tea into a cup consist of
motions to a point above the target location followed by a wrist rotation.
We generate such trajectories using Movelt!, an open source motion plan-
ning software [Coleman et al., 2014]. The encoder and the decoder of the
trajectory VAE consist of three fully connected layers each. We use mean
squared error (MSE) as the reconstruction loss.

3.2.3 Policy layer

The policy part maps the affordance information s to an action vector a.
The policy part includes three fully connected layers. In addition to the
affordance information s, camera parameters are included as input to the
policy network. This allows the policy to account for the relative position of
the camera with respect to the identified affordances. The policy part can
be trained either in a supervised manner or by using reinforcement learning.

We utilize supervised learning to train the policy. This is a more conve-
nient learning approach for feedforward control problems than reinforcement
learning. The feedforward control problems do not require sequential deci-
sion making. Additionally, the supervised learning approach is more sample
efficient in learning the policy than by the trial and error method used in
reinforcement learning.



Chapter 4

Visuomotor Control Application

The software architecture of our system can be divided into three processes:
(i) the agent process, (ii) the control process, (iii) the backend process. Fig-
ure 4.1 shows the overview of the architecture. The agent process produces
the trajectory commands based on received images, and it manages the sim-
ulation environment. Trajectories generated by the agent are then executed
by the control process which uses Movelt! Commander and ROS Control
[Chitta et al., 2017, 2012]. Movelt! Commander provides an interface for
several state-of-the-art motion planning algorithms, and sets the trajectory
target the ROS Control. ROS Control operates the low-level control task.
The backend process describes the robot environment. The environment is
either the MuJoCo simulation environment [Todorov et al., 2012], or the
real environment. The environment provides the robot hardware interface
for control, and the camera interface for the agent.

We used the open source Robot Operating System (ROS) framework
to build the system [Quigley et al., 2009]. ROS offers a middleware for
the processes to communicate, and to share global state and configuration
information, such as the current state of the robot joints. Additionally, ROS
provides a wide variety of libraries and tools that are commonly needed in
robotic software development. These are, for example, the standard message
definitions for geometric concepts and for common sensor information, and
the methods for describing robot models, estimating poses, and visualizing
processes. Additionally, ROS provides services for controlling the actuators
of joints [Chitta et al., 2017].
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Figure 4.1: Our application architecture can be divided into three separate
processes: the agent process, the control process, the backend process.

4.1 Hardware Setup

We conducted experiments on the Franka Panda robot shown in Figure 4.2.
It is a 7 degrees of freedom industrial robot arm produced by Franka Emika.
Franka Emika provides ROS configurations for the robot, which include, for
example, the robot description, the model structure of the robot, and the
hardware interface for the physical robot.

In the real environment, we used Kinect V1 for capturing RGB images.
The resolution of the Kinect RGB camera is 640 x 480 pixels, and the field
of view is 84.1 x 53.8 degrees [Wasenmiiller and Stricker, 2016]. These same
parameters were used in the simulation environment.

4.2 Agent Process

The agent process executes the modular neural network system part for end-
to-end control shown in Figure 4.1. The neural network structure is built with
PyTorch, an open source machine learning library [Paszke et al., 2017]. The
agent process receives an RGB image of the environment from the backend
process, and passes it to the perception part. The perception part produces a
low-dimensional representation of the image. The camera pose, with respect
to the robot, is received from the backend process and concatenated to the
state representation. Based on the representation and the camera pose, the
policy part produces the desired action, which is then used to generate the
manipulator trajectory.

The trajectory is a 7 X n size vector, where 7 is the number of steps in
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Figure 4.2: The Franka Panda robotic arm used for the experiment.

the trajectory, and n is the number of robot joints. ROS provides a standard
message format for communicating the trajectories. The trajectory message
of the description is created, and then sent to Moveit! Commander.
Additionally, when running in simulation, the agent process manages the
simulation environment. The process changes the poses of the camera and the
task objects, and resets the simulation to the initial setup after the episode.
For generating the training datasets for the trajectory and the policy
parts, we use different agent processes than the one described above. For
generating the trajectory dataset, the agent process requests the trajectory
plans from Moveit! Commander. No ROS Control and simulation are needed
for the planning task. For generating the policy dataset, the process deter-
mines the poses of the objects and camera. From the determined layout, the
process captures the RGB image, and the corresponding trajectory target.
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4.3 Control Process

In the robot task, Moveit! Commander receives the trajectory message from
the agent process. Additionally, the agent process specifies the execution
duration for the trajectory. The duration is evenly divided for the 7 trajec-
tory points. Moveit! Commander sends the trajectory and the trajectory
duration to the joint trajectory controller that is operated by ROS Control
[Chitta et al., 2017].

The controller executes the trajectory points in an iterative fashion —
after the robot has reached the current target point, the joint trajectory con-
troller transforms the next trajectory point to the motor commands. The
communication between the controller and the robot is operated by the ab-
stract hardware interface class provided by ROS Control [Chitta et al., 2017].
The abstract hardware interface receives the motor commands from the state
trajectory controller, and sends them to the robot actuators. The interface
also provides the updated information about the current robot state to the
controller.

The physical robot has its own internal controller that transforms the
received target joint poses to the torque commands. Here, the joint trajectory
controller directly sends the joint poses and their duration to the robot via
the abstract hardware interface [Chitta et al., 2017].

In the MuJoCo simulation, the robot actuators receive angular velocities
which are then used to calculate the torque commands required for accurate
trajectory following [Todorov et al., 2012]. Here, the joint trajectory con-
troller sends the angular velocities to the abstract hardware interface, which
further sends them to the simulated robot. The joint trajectory controller
transforms the joint poses to the angular velocity commands with a PID
controller [Chitta et al., 2017].

4.4 Backend Process

The backend process describes the working environment. The process pro-
vides the abstract hardware interface for the joint trajectory controller. This
interface sends the motor commands to the robot and then updates the robot
state values.

Additionally, the backend process sends the RGB images of the environ-
ment and the poses of the camera to the agent process. This communication
is handled with a ROS topic [Quigley et al., 2009].

We utilize the OpenNI ROS package for capturing and broadcasting the
images from the camera. To compute the camera pose, we place an Aruco
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marker [Garrido-Jurado et al., 2014] next to the robot on the table. The
camera position, with respect to the marker, is computed by identifying the
location and size of the marker in RGB images of the environment. The
regular and distinctive patterns of the marker make it easy to identify and
to estimate its pose. This computation is performed using the Aruco ROS
package. Then, with the known relative position of the marker and the robot,
we compute the camera position with respect to the robot.

In the MuJoCo environment, the images are rendered with Open Graphics
Library. The backend process of the simulation environment changes the
positions of the objects and camera based on the requests of the agent process.
This communication is managed by a ROS Service [Quigley et al., 2009].



Chapter 5

Experiments and Results

The goal of the experimental evaluation was to study if the low-dimensional
affordance representation space can be used to successfully train policies for
visuomotor robot control. We first evaluated if affordances can be accurately
represented in a low-dimensional space using the UMD dataset [Myers et al.,
2015], a standard benchmark for the visual affordance learning task.

For holistically studying the approach, we developed an experimental
setup presented in Figure 5.1. In this setup, the task of the Franka Panda
robotic arm was to insert a ball into a container that is located on the table,
with the scene observed by an RGB-camera. We used the setup to evaluate
the performance quantified as position accuracy and task success both in
simulation and on physical hardware.

40
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Figure 5.1: Experimental setup, as viewed from top. The robot is marked
in white. The dark gray area shows the workspace and the blue circle an
example location of a target container. The camera is located on the left
side from the robot’s perspective.

5.1 UMD Dataset Benchmark

We first evaluated the capabilities of VAED to detect object affordances on
the UMD dataset [Myers et al., 2015]. The dataset was randomly divided
into training (70%) and validation (30%) data. For this evaluation, we used
a 20-dimensional representation space and KL-divergence penalty § = 4. We
used F as the evaluation metric [Margolin et al., 2014]. The results are
presented in Table 5.1 and are compared to the CNN-RGB and CNN-RGBD
networks introduced in [Nguyen et al., 2016].

We can notice that for two out of seven affordances — contain and wrap-
grasp — our model slightly outperformed the baseline, while for the other
affordances, the results were the same or slightly worse. Comparing the RGB
and RGB-D results, we can also see that discarding the depth information
does not have much impact on the performance.

This evaluation shows that the variational encoder-decoder structure us-
ing RGB images can be used for the affordance segmentation problem.
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VAED Nguyen et al.
Affordance | —REE T RGBD | RGB | RGB-D
grasp 0.667 | 0.643 | 0.719 | 0.714
cut 0.720 | 0.654 || 0.737 | 0.723
SCOOp 0.760 | 0.758 0.744 | 0.757
contain 0.859 | 0.858 0.817 | 0.819
pound 0.757 | 0.748 0.794 | 0.806
support 0.792 0.787 0.780 | 0.803
wrap-grasp || 0.774 | 0.777 | 0.769 | 0.767
Average 0.761 | 0.747 0.766 | 0.770

Table 5.1: Results of the UMD dataset evaluation

5.2 Learning Affordance Representation

We used Blender’s Python API to generate a domain randomized dataset of
1 million images. The development of this dataset generation program was a
separate work from this thesis. Example samples from the generated dataset
are shown in Figure 5.2. The Blender environment was constructed similarly
to the experimental setup: it included a table with a cup and clutter objects,
and the table was surrounded by walls. Each sample includes a rendered
RGB image and the corresponding affordance image, which was used as the
target output during training.

A simple cylinder model was built in Blender to represent the cup-like
object. Its shape was randomly generated by smoothly changing its diam-
eter along the height. Textures of the inner and outer parts of the object
were separately randomized. In our setting, two different affordances oc-
cur: the outer part has the wrap-grasp affordance and the inner part has the
contain affordance. The clutter objects were located on the table and their
affordances were ignored. In total, 66 clutter objects from the Yale-CMU-
Berkeley (YCB) Object and Model set were used [Calli et al., 2015].

The following features were randomized uniformly within reasonable lim-
its: (i) positions, scales, and textures of the clutter objects and the cup, (ii)
shape of the cup, (iii) texture and scale of the table, (iv) camera pose, (v) the
number of clutter objects on the table, and (vi) the number and positions of
lights in the scene. For the textures, we built a Blender Node structure that
generated random textures based on randomly sampled parameters. The
random textures were combination of two different textures. Based on the
sampled parameters, the structure generated a new texture that was modifi-
cation of the two textures in terms of scales, colors, rotations, and the level
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Figure 5.2: Samples from the affordance dataset. Green indicates the wrap-
grasp affordance and yellow indicates the contain affordance. Gray pixels
mean no affordance at all.

of noise.

The affordance representation network had four convolutional and corre-
sponding transposed layers. We used KL-divergence penalty 8 = 4 and a
10-dimensional representation space throughout the experiments. The opti-
mizer algorithm was the Adam optimizer [Kingma and Ba, 2014].

Only RGB data was used as the input of the model. We first included
the depth information to the input of the model, which slightly improved the
affordance detection in the training phase. However, the model performed
poorly with RGB-D images captured by Kinect V1, as these depth images
were of poor quality —the depth information was only partly captured, and
it included a lot of noise. Figure 5.3 demonstrates the difference between
these depth images. The model was not robust to these inaccuracies, as the
training data only included precise depth images from Blender.
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(a) (b)
Figure 5.3: Depth samples from Blender (a) and Kinect V1 (b).

5.3 Learning Trajectory Representation

Training data for the trajectory model included evenly distributed samples of
the trajectories that moved the end-effector on top of the workspace region.
Samples of the trajectory dataset were generated with the rapidly exploring
random tree star (RRT*) planning algorithm using Movelt! Commander.
The initial pose of the robot in the training dataset was the same as in the
real environment.

RRT* is a variant of a rapidly exploring random tree (RRT) algorithm
[Karaman and Frazzoli, 2011], which searches for trajectories to target posi-
tions by randomly exploring the joint space of the robot arm [Lavalle, 1998].
The RRT* algorithm converges towards an optimal solution [Karaman and
Frazzoli, 2011]. In other words, with sufficient time, it finds trajectories
whose lengths are close to the shortest possible.

Multiple trajectories exist which move the end-effector to the same end
position. Here, if trajectories are randomly generated, learning the low-level
structure of the trajectories is difficult or impossible, because of the incon-
sistency and randomness of the trajectories. We found that the trajectory
generation model learns a more accurate low-dimensional trajectory repre-
sentation with training data, generated by RRT* instead of RRT. RRT*
produces more consistent trajectories than RRT, as RRT* converges towards
an optimal solution.

The encoder and the decoder of the trajectory VAE consist of three fully
connected layers each. We used the Adam optimizer for updating the pa-
rameter values [Kingma and Ba, 2014]. The value of the § coefficient was
increased while training such that it was initialized with 8 = 1078, and then
B was iteratively increased in 400 epoch intervals towards 3 = 107°. By
iteratively increasing 3, the model learns first to reconstruct trajectories ac-
curately without considering the smoothness and neighborhood preservation
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properties of the low-dimensional space. Without this, the model got stuck
to local minima, where its trajectory reconstruction accuracy was poor.

We found that the KL-divergence penalty was essential in learning the
trajectory representation. Without KL-divergence, the produced trajectories
were not sufficiently smooth for the controller to execute them. We assume
that the KL-divergence resulted in a more robust representation space of
the model. Here, the generated trajectories were more consistent with the
trajectories in the training dataset.

Trajectories were encoded to a 5-dimensional action space, and the num-
ber of steps in each trajectory was 24.

5.4 Policy Learning

Figure 5.4: The policy training samples were generated in simulation. The
relative position of the camera and the cup to the robot corresponded to the
real environment.

The policy training setup was constructed in simulation mimicking the
physical setup. Figure 5.4 shows the simulation environment.

In order to train the policy, the affordance perception, policy and tra-
jectory generation parts were combined into a single network. The learned
parameters of the affordance and trajectory models were not updated during
the policy training phase. The policy network consists of three fully con-
nected layers. Like previously, the weights were updated using the Adam
optimizer.
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The target of the policy was to determine the low-dimensional trajectory
representation that generates the trajectory whose final point lies above the
cup. The training loss was calculated as the mean squared error between the
target end-effector position and the actual final position.

Since the trajectory is expressed in the joint space, the forward kinematics
solution for the final point ur was computed. In order to backpropagate the
error through this computation, the base-to-hand transformation matrix —
which depends on the joint configuration — was expressed as a PyTorch
computation graph.

As the affordance representation is different for various cup shapes, po-
sitions, and camera angles, we used 15 different cup shapes and randomized
the camera and cup positions. In total, our training set contained 3 million
image and end-effector position target pairs. The average distance error was
0.9cm with validation data.

5.5 End-to-end experiments

We evaluated the system with and without clutter in terms of detection ac-
curacy and task success rate. The detection accuracy expresses the position
error of the end-effector againts manually labeled groundtruth, and the de-
tection accuracy respectively describes the success rate of placing the ball
inside the container.

5.5.1 No clutter

Without clutter, 13 different cup like objects shown in Figure 5.5 were used.
Each of the objects was placed in 10 to 12 positions, with a total number of
143 trials. The diameter of the ball was 4 cm.

The position errors and success rates are reported in Table 5.2. The
average error over all objects was 2.2 cm with three objects having over 3 cm
average error. The success rate was 100% for 8/13 containers and 73-91%
for the rest. The accuracy can be considered good, taking into account that
the system has been trained to detect any general cylindrical containers.

The variation in performance between objects seems to be explained by
the appearance of each object: the objects with the highest average distance
error—yellow and jar—differ significantly from those in the training set. The
yellow cup, for example, is smaller than the ones in training set, with a height
of 5.7 cm. The system therefore expects the cup to be taller, and hence there
is systematic error along the y axis. The object labeled as jar is a large
aluminum container with a mirror texture on the outside. Even though the
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Figure 5.5: Various cups and the ball used throughout the experiments. Left
to right, back row: white, pastel, rocket, can2, blue, jar. Front row: yellow,
red, green, can, stackl, stack3. stack2 is composed from two bottom layers
of stack 1, i.e. the large yellow and green parts.

training data did not contain any reflective objects, the system still managed
to detect the opening and successfully place the ball inside of it 82% of the
times.

To study the position dependency of error, all cup positions used for the
experiments, together with their average error ellipses are shown in Figure
5.6. There are no consistent differences in accuracy across positions. How-
ever, we can see that the system performs more accurately along the z-axis
than the y-axis. The higher error along y can be explained by the lack of
depth information in the system and by the camera placement. While the
position of the object along the z-axis can easily be deduced from the input
image, calculating the y-position without knowledge of depth or object size
is difficult.
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Table 5.2: Experiment results for different positions in clutterless environ-
ment. All distances are given in centimeters.

Cup Radius | Height | x error | y error | Error | Success
blue 3.45 16.60 0.73 2.48 2.68 82%
can 3.32 10.15 0.76 1.23 1.57 100%
can2 4.22 13.76 0.52 1.48 1.63 100%
green 3.92 9.33 0.74 1.00 1.35 100%
white 4.06 10.44 0.67 2.41 2.53 91%
jar 4.75 16.30 1.52 3.20 3.84 82%
red 4.30 8.08 0.59 1.60 1.76 100%
rocket 4.06 13.06 0.54 0.99 1.17 100%
stackl 3.70 10.52 0.52 1.99 2.07 100%
stack2 4.46 8.361 0.56 3.07 3.14 75%
stack3 2.72 8.76 0.51 1.15 1.31 100%
pastel 3.83 10.67 0.56 1.68 1.84 100%
yellow 4.06 5.69 0.95 3.45 3.69 73%
Average | 3.91 10.90 0.71 1.97 | 2.19 | 92.5%
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Figure 5.6: Evaluation positions with their respective average error ellipses

marked.



CHAPTER 5. EXPERIMENTS AND RESULTS 49

5.5.2 Cluttered Scene

Figure 5.7: Successful affordance detection with different amounts of clutter.

To evaluate the system’s susceptibility to clutter, we chose three objects
(rocket, red, can) from the ones used for previous experiments, providing
a variety of different shapes, sizes and texture. The clutter objects were
toys from a toy dataset!, which were not seen during training. They were
randomly shuffled on the table between each trial and their number was
steadily increased from 0 to 25. The cup object position was fixed during
these experiments.

Example scene images captured during these experiments are shown in
Figure 5.7. The wrap-grasp affordance of the cup is visualized in green and
the contain affordance in yellow. We can see that despite quite heavy clutter
the cup was successfully identified in both situations.

Clutter Rocket Can Red
objects d % | n d | % | n d | % | n
0-6 1.25 | 97 |45 1.64 | 92 | 28 || 2.02 | 94 | 69
7-12 1.86 | 96 | 30| 293 |76 |26 | 2.4 |82 |64
13-18 284 1100 | 6 || 447 | 73|30 | 4.76 | 63 | 36
19+ 227 80 | 1511 6.04 | 35|14 | 4.84 | 60 | 10

Table 5.3: Results of experiments in the cluttered environment. Columns d,
% and n indicate, respectively, the average position error in cm, percentage
of successful trials and the total number of trials.

The position errors and success rates are presented in Table 5.3. Not
surprisingly, the errors increase and success rates decrease with increasing
clutter, but the performance deterioration is gradual. Despite the training

Thttp://irobotics.aalto.fi/software-and-data/toy-dataset



CHAPTER 5. EXPERIMENTS AND RESULTS 20

data having only 0 to 10 clutter object on the table, our system proved to be
resilient to a larger amount of clutter. This is most likely caused by applying
heavy texture randomization when the training data was generated. The
perception model thus learned to perceive clutter as just a different texture
of the table - both of these look identical if there is no depth information
available to the model.

Figure 5.8: Examples of failure cases in different clutter configurations: the
detection fails with clutter behind the object (a) and succeeds when the
clutter is removed (b). With heavy clutter in front of the object its height is
incorrectly estimated (c, d)

Noticing that the task can succeed even in heavily cluttered scenes, such
as the one shown in Figure 5.7b, we further analyzed the data to determine
failure cases. We found that the amount of clutter was not as important as its
positioning—when clutter objects were located directly in front of the cup,
covering its bottom part, the system quite often failed to correctly position
the arm on the y axis. This is expected to happen—when the bottom part
of the cup is not visible, it is impossible for the model to deduce its height,
and thus estimate the y position. The situation is illustrated in Figures 5.8¢c
and 5.8d.

Putting an object directly behind the cup opening also had a noticeable
impact on performance, although the effect was less significant. In that case,
the problems are likely to be caused by the perception model having problems
estimating where the opening of the cup ends. It is, however, a difficult task
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to perform without depth data or stereovision. This is illustrated in Figure
5.8a, where a distractor object is placed directly behind the opening of a can.
As the distractor and the inside of the can have a similar color, it becomes
difficult to identify the opening in the image, and so the affordance part fails.
When the distractors are removed from the back (Figure 5.8b), the object
is successfully identified again.

5.6 Discussion

Section 5.1 showed that our variational affordance encoder-decoder (VAED)
model can learn to identify different affordances from the RGB images, and
represent them in a low-dimensional space. However, the model cannot work
in a different domain, as the UMD dataset only includes samples from a single
environment with a single viewpoint and no clutter objects. Additionally, the
dataset was randomly divided into the training and the evaluation sets —
the same objects appeared in both datasets, and only the orientations of the
objects were different.

By introducing the affordance prior to the control task, and generating the
domain randomized dataset, we produced the successful results presented in
Section 5.5. The low-dimensional affordance representation space included
no task-invariant information. The policy, trained in the simple simulation
environment, learned to interpolate the affordance representations of the real
observations.

The affordance images from VAED provide a solution to the need in
transparency in robot control tasks, where the predictability and safety of the
policy behavior are vital. In our experiments, the behavior of the policy was
consistent with the affordance images from the VAED. When the affordance
detection succeeded, we achieved desired performance of the policy. In turn,
when the affordance detection failed, the policy failed. Even here, the failed
trajectories moved the end-effector to the position that corresponded to the
incorrectly detected affordance.

Learning the low-dimensional trajectory representation also improved the
predictability of the system. By including KL-divergence to the learning
phase, the trajectory part only generated trajectories similar to the ones
appearing in the training data.

We observed that the VAED model failed when the cup was only partially
shown due to the clutter objects — a scenario that was not included in the
domain randomized affordance dataset used for training. In such situations,
the detected affordances were inaccurately positioned with respect to the y-
axis. Additionally, predicting the correct position and the shape is impossible
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when the relative depth distance between the clutter objects and the cup is
unknown.

The results showed statistically significant success in the performance of
the system in the non clutter experiment. The 95% confidence interval for
successfully accomplishing the task was 93% +4%. The experiment included
13 different cup-like objects that covered a wide range of different textures
and shapes, and were not seen in the training data.

For the cluttered experiment, the performance of the system showed
promising results. With 7 to 12 cluttered objects on the table, the 95%
confidence interval for successfully accomplishing the task was 96% + 7%
for the rocket cup, 76% =+ 16% for the can, and 82% =+ 9% for the red cup.
With a larger number of cluttered objects, the performance decreased. Nev-
ertheless, with the rocket cup that more closely corresponded to the objects
seen in training, the 95% confidence interval with over 19 clutter objects was
80% + 20%. Despite large confidence intervals in the cluttered experiment,
the results consistently showed over 50% success rate which can be considered
favorable, given that the system was trained to detect any general cylindar
containers.

The experimental task itself was simple which limits the generalization of
the system performance to other control tasks. Nevertheless, we argue that
the same affordance representation can be utilized in various robot control
tasks, as the low-dimensional representation of the cup encodes its general af-
fordance information. Additionally, our experiments showed that our VAED
model ignored task-invariant changes in the real environment. We showed
that learning the policy required only a simple replica of the real environment,
and the dataset of the task-specific trajectories. However, the experimental
task tolerated some level of inaccuracy, as a successful trajectory of the end-
effector was only needed to end within, and not necessarily in the center of,
the opening of a target in which the ball was placed. For many tasks, such
as grasping, less inaccuracy is tolerated.

The performance of the system cannot be directly generalized for more
complex affordance detection tasks where more target objects or affordances
of multiple objects exist in the environment. Only one target object was
placed on the table for each experiment, and we experimented the accu-
racy of the system solely with cup affordances. Nevertheless, we showed
that low-dimensional representations of multiple object affordances can be
learned with the UMD dataset. Additionally, previous works have shown
that a single network can detect affordances of multiple objects in the same
observation [Do et al., 2018].
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Conclusion and Future Work

The objective of this thesis was to study how to overcome the following
limitations in applying deep data-driven models for robotics control: (i) the
deep data-driven models, especially end-to-end trained models, require vast
amounts of task-specific training data, and a lot of interactions with the
physical robotic arm; (ii) if the task or the environment is changed, the
model, trained with the domain- and task-specific data, needs to be trained
from scratch with an entirely new dataset; (iii) the black-box nature of the
deep models limits interpretability and predictability of the models.

We studied previous works that introduced methods to achieve more suit-
able learning processes for robotic control by decreasing the amount of train-
ing data required. However, these methods all obtained task- and domain-
specific training data manually.

We demonstrated that a policy, trained in a simple simulation environ-
ment, can learn to generalize to the low-dimensional representations of the
real observations. We achieved this by introducing an affordance prior to
learn a low-dimensional affordance representation, and generating a domain
randomized affordance dataset. The low-dimensional affordance representa-
tion space included no task-dependent information. With the domain ran-
domized training data, the variational affordance encoder-decoder (VAED)
model can be made invariant to various changes in the environment, such as
adding distractor objects and changing textures. The entire system success-
fully performed the experiments in a zero-shot sim-to-real transfer manner.

We demonstrated that the behavior of the policy was consistent with the
affordance images from the learned VAED model. This provides a solution
for the transparency need of the deep data-driven approaches in robot control
tasks.

Future work should be conducted on the generality of the low-dimensio-
nal affordance representation — whether a wider variety of affordances can be

33
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represented in an observation for robot control tasks. We showed that with
the UMD dataset, our VAED model learned to represent multiple affordances
in the low-dimensional space. However, the environment in the dataset is
simple, and each of the samples includes only affordances of one object.

The variational encoder-decoder is a feedforward neural network that
has its limitation to represent several affordance objects from an image in
low-dimension. One approach to solve the described problem could be to
structure the model as an object detector network. This architecture would
produce a feature map that includes the separated semantic description of
each of the detected objects, as in the approaches in [Devin et al., 2018, Do
et al., 2018]. These semantic descriptions of the objects could be separately
used as the input of a VAED model so that the affordance representation
problem could be narrowed down. The affordances of only one object would
be simultaneously represented in the low-dimensional space.

We argue that the performance of the system could be improved by intro-
ducing the depth information to be used by the VAED model. The challenge
here is that the low-quality depth images captured by the real camera are far
away from the rendered precise depth images. Figures 5.3a and 5.3b demon-
strate the mismatch. This problem could be approached in both directions —
either generating domain randomized depth images that include similar error
structure as in the real depth images, or improving the quality of the real
depth images to correspond to the ones generated by Blender. Generative
adversarial networks (GANs) could help in transforming the precise depth
images to match the real depth images [Goodfellow et al., 2014]. The qual-
ity of depth images for VAED could be improved with a depth in-painting
method introduced in [Miao et al., 2012].

Finally, our system performs the task in a feedforward control manner.
The system produces the entire trajectory based on a single observation,
which limits the system’s ability to adapt to changes in the environment
while executing the trajectory. The low-dimensional affordance representa-
tion space could be utilized as the state space of feedback policies to learn,
for example, closed-loop visual alignment tasks, or even active closed-loop
search strategies for objects with particular affordances.

We believe that combining the generality of affordance information with
modular architecture will bring us closer to creating autonomous systems
with robust and reusable perception models. Such systems would be ready
to operate in diverse and constantly changing environments that we humans
are so used to in our every day lives.
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