
High pressure elasticity of FeCO3-MgCO3 carbonates

Michal Stekiela,∗, Tra Nguyen-Thanhb, Stella Charitonc, Catherine
McCammonc, Alexei Bosakb, Wolfgang Morgenrotha, Victor Milmand, Keith

Refsone,f, Björn Winklera

aInstitute of Geosciences, Goethe Universität, Altenhöferallee 1, 60438 Frankfurt am Main,
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Abstract

We have determined the elastic stiffness moduli of FeCO3 across the spin tran-

sition up to 60 GPa by inelastic X-ray scattering and density functional theory

calculations. We have derived functions describing the dependence of the com-

ponents of the elastic tensor of Mg1−xFexCO3 solid solutions on pressure and

concluded that there is a linear dependence of the C11, C33, C44 and C14 moduli

on the composition parameter x. The elastic tensors were employed to calculate

the sound velocities and velocity anisotropies of Mg1−xFexCO3. These results

allow an assessment of the potential seismic signature of deep mantle carbonates.
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1. Introduction

Carbonates play a significant role in the deep carbon cycle of the Earth.

They can be transported to the interior of the Earth in subducting slabs, thus

potentially contributing to the deep carbon storage in the lower mantle [1].

The most abundant carbonates at shallow depths are calcite/aragonite, CaCO3,5
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dolomite, CaMg(CO3)2 and magnesite, MgCO3 [2, 3]. However, during subduc-

tion, calcium rich carbonates react with silicate minerals forming iron bearing

magnesite Mg1−xFexCO3 [4, 5, 6] which is stable at lower mantle conditions

[7, 8, 9]. Knowledge of the elastic properties of Mg1−xFexCO3 carbonates at

Earth’s mantle conditions is thus important for understanding the deep carbon10

cycle and is a prerequisite for the prediction of the seismic signature, that would

be indicative for carbonates in the mantle.

At ambient temperature and up to 60 GPa both siderite, FeCO3, and mag-

nesite, MgCO3, crystallize in space group R3̄c, with octahedrally coordinated

cations and planar CO3 groups [10, 11]. Such a symmetry results in 6 indepen-15

dent Cij moduli: C11, C33, C44, C12, C13 and C14. At 45 GPa FeCO3 undergoes

a spin transition associated with a 10 % decrease of the unit cell volume [12, 11].

The bulk modulus increases by 18 % across the spin transition from 317 GPa

to 373 GPa [11, 13]. Different studies on Mg1−xFexCO3 carbonates reporting

the spin transition pressure [13, 14, 15, 16, 17, 18] show that it lies within the20

region of 40-47 GPa. There is an ongoing discussion on whether this transition

is ”sharp”, i.e. takes place over an interval of 2 GPa [17], or ”gradual”, i.e.

takes place over an interval of 7 GPa [16].

Our knowledge of the pressure dependence of the elastic stiffness tensor of

carbonates is currently very limited. Yang et al. (2014) [19] measured the25

full elastic stiffness tensor of MgCO3 up to 14 GPa at ambient temperature

and additionally up to 750 K at ambient pressure by Brillouin scattering in a

diamond anvil cell. They reported that the elastic stiffness moduli of MgCO3

increase linearly with pressure and decrease linearly with temperature. Fu et

al. (2017) [18] measured the full elastic stiffness tensor of Mg0.35Fe0.65CO3 up30

to 70 GPa at ambient temperature by Brillouin light scattering and impulsive

stimulated light scattering in a diamond-anvil cell. They observed a drastic

softening of the C11, C33, C12, C13 moduli and stiffening of C44 and C14 moduli

across the spin transition in the mixed-spin state. Outside the region of the spin

transition they observed a linear increase of all elastic moduli with pressure.35

Sanchez-Valle et al.(2011) [20] measured the elastic tensor of Mg1−xFexCO3 for
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four different compositions at ambient conditions and concluded that, within

the resolution of their data, all elastic stiffness moduli follow linear trends upon

substitution of Fe for Mg.

Previous high pressure DFT calculations on FeCO3 [21, 22] report the pres-40

sure dependence of the bulk modulus without deriving the full elastic tensor.

Shi et al. [21] calculated the spin transition pressure of FeCO3 to be at 28 GPa

based on GGA+U calculations. They report an abrupt increase of bulk modulus

at the spin transition from 218 GPa to 261 GPa. Hence, their values are in only

moderate agreement with Lavina et al. (2009) [11]. Hsu and Huang (2016) [22]45

investigated Mg1−xFexCO3 carbonates with an iron concentration in a range of

x = 0.125-1 employing LDA+Usc calculations. They concluded that the spin

transition occurs in the region of 45-50 GPa regardless of the iron concentra-

tion. They also calculated the pressure and temperature dependence of the bulk

modulus of Mg1−xFexCO3 carbonates taking into account the mixed-spin state.50

They predict a drastic softening of the bulk modulus along the spin transition

which was confirmed experimentally in the case of Mg0.35Fe0.65CO3 [23, 18].

In order to quantify the change in the elasticity of pure FeCO3 across the

spin transition we performed an inelastic X-ray scattering (IXS) experiment and

complementary DFT calculations to determine the full elastic stiffness tensor.55

We have investigated the reliability of our computational approach by comput-

ing the pressure dependence of the elastic stiffness tensor of MgCO3, and by

comparing our results with published data [19, 20, 24, 25]. A combination of

all experimental and theoretical data allows us to interpolate the elastic prop-

erties of Mg1−xFexCO3 for any composition and pressure up to 60 GPa. From60

this data we can obtain sound velocities and velocity anisotropies of lower man-

tle Mg1−xFexCO3 carbonates, which then can be employed in mineral physics

models.
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2. Experimental methods

Single crystals of FeCO3 were synthesized by following the method devel-65

oped by French (1971) [26] and Cerantola et al. (2016) [16]. We have tested

the quality of the crystals on an Xcalibur single crystal diffractometer or by

synchrotron radiation. Crystals of highest quality were chosen for high pressure

IXS experiments, their dimensions were 80 × 50 × 22 µm (S18), 35 × 30 ×

15 µm (S15) and 25 × 25 × 10 µm (A1). Crystals S18 and S15 were loaded70

into Boehler-Almax type diamond anvil cells with 350 µm and 300 µm diamond

culet size, respectively, and rhenium gaskets with initial hole dimensions 160 ×

55 µm (diameter × thickness) and 110 × 40 µm, respectively, with Ne as pressure

transmitting medium. Crystal A1 was loaded into a symmetric diamond anvil

cell with bevelled diamonds with diameters of 250 µm, a rhenium gasket with75

initial dimensions 140 × 60 µm and He as pressure medium. Crystal S18 was

measured at 2 GPa and 28 GPa, S15 at 15 GPa and A1 at 55 GPa. The

pressure was measured before and after IXS measurements at each pressure

point. Crystal quality degraded significantly with increasing pressure as indicated

by the increase of intensity of the elastic line, see Fig. 1.80

IXS measurements were performed at the ID28 beamline of the ESRF. The

spectrometer was operating at 17.794 keV incident photon energy providing an

instrumental energy resolution of 3 meV. The X-ray beam was focused using

KB mirrors to a spot size of 20 × 30 µm. At each pressure point energy scans

were performed along the Γ-T direction, around convenient Bragg reflections85

(see supplementary materials). At 55 GPa measurements along other directions

were performed in addition. Before each IXS scan the UB matrix of the crystal

was refined, to determine the exact orientation of the crystal and measure the

lattice parameters used to determine the density of the sample.

Linear dispersion relations were fitted to the measured data in the vicinity90

of the Γ point, to obtain the sound velocities. Velocities of the longitudinal

phonons were used to determine the C33 modulus, and velocities of the trans-

verse phonons were employed to determine the C44 modulus by solving the
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Christoffel equation [27]. Velocities obtained from additional measurements at

55 GPa were compared with calculated values.95

3. Computational details

Spin-polarized density functional theory calculations were performed with

commercial and academic versions of the CASTEP program [28] using the gen-

eralized gradient approximation formalized by Perdew, Burke & Ernzerhof [29]

(PBE) with a plane wave basis set and ultrasoft pseudopotentials from the100

CASTEP 8.0 database. The maximum cutoff energy of the plane waves was 750

eV. A 12 × 12 × 12 Monkhorst-Pack grid [30] was employed for sampling of

the reciprocal space corresponding to a k-point separation of less than ∼ 0.022

Å−1.

A Hubbard U of 4 eV was employed for the Fe d-electrons. Additional105

calculations showed that a variation of U by 10 % had only a negligible influence

on the elastic stiffness moduli. The calculations were considered to be converged

once the maximal residual force acting on an atom was <0.01 eV/Å, the residual

stress was <0.02 GPa, and the maximal energy change was <5 · 10−6 eV/atom.

For the calculations of stress-strain relations two strain patterns were employed.110

The maximum strain amplitude was 0.003.

The calculations were done in 10 GPa pressure steps for both MgCO3 and

FeCO3. In case of FeCO3 we performed the calculation in pure spin state, i.e.

in high-spin state from 0 to 40 GPa inclusive, and in low-spin from 40 to 60

GPa inclusive.115

4. Results and discussion

4.1. IXS, high pressure elasticity of FeCO3 and MgCO3

Representative high-pressure IXS spectra of FeCO3 are shown in Fig. 1.

The velocities derived from low-q phonon dispersion relations of LA and TA

branches measured along c* direction were used to determine the C33 and C44120

moduli of the elastic tensor of FeCO3, as shown in Fig. 2. We have performed
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complementary DFT calculations to determine the full elastic tensor and com-

pared the results to our data (Fig. 2). Velocities obtained from additional

measurements at 55 GPa are compared with calculated values in Fig. 3.
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Figure 1: IXS spectra (black points with error bars) of FeCO3 measured at 2 GPa (A) and

55 GPa (B) along with fitted spectra (red lines) that are a combination of phonon excitations

(blue lines) and elastic line (green lines). At 2 GPa spectra were measured around the (0 0 12)

reflection, and at 55 GPa around the (0 1 -4) reflection. Linear dispersion relations were fitted

to determine sound velocities (red dashed lines) and elastic stiffness moduli (see text). ”×N”

denotes the magnification of the respective spectrum.

The experimental values of C33 and C44 moduli of high-spin FeCO3 are125

in good agreement with the results of our calculations. The excellent corre-

spondence between calculated and measured elastic moduli is almost certainly

fortuitous as DFT-calculated elastic moduli are typically accurate to a few per-

cent. At ambient pressure the calculated values of C12 and C13 are lower than

the experimental values by 28% and 23%, respectively, other moduli are the130

same within the given error. We see a linear stiffening of all Cij moduli with

pressure, up to the transition pressure. After the spin transition all Cij moduli

stiffen abruptly with the exception of C12 which in the low spin phase has sim-

ilar values to the ones extrapolated from the high-spin state. In the low-spin

state all Cij moduli stiffen linearly with pressure.135
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Figure 2: C33 (panel A) and C44 (B) elastic stiffness moduli of FeCO3 measured by IXS

(full symbols) compared with calculated values (empty symbols: high-spin siderite, partially

empty: low-spin siderite). Calculated values of C11, C12 moduli (C) and C13, C14 moduli (D)

are indicated by empty symbols (high-spin FeCO3), and full symbols (low-spin FeCO3). ”×”

denotes the values measured by Sanchez-Valle et al. (2011) [20] at ambient pressure. Solid

lines are fits to the calculated values. Shaded area indicates the pressure range of the spin

transition [13, 15, 16, 17]. If not shown, errors are smaller than the symbol size.

Comparison between our results on FeCO3 and the results of Fu et al. (2017)

[18] on Mg0.35Fe0.65CO3 show the same behavior of the elastic stiffness moduli

out of the mixed-spin phase region. All elastic stiffness moduli of the low spin

phase stiffen with respect to the extrapolated values of the high spin phase,

apart from C12. In the experiment we could not observe a softening of C11,140

C33, C12, and C13 moduli across the spin transition in the mixed-spin state as
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Figure 3: Comparison between sound velocities of FeCO3 measured by IXS at 55 GPa (for de-

tails see supplementary materials) and calculated velocities. The value of ρV 2 is proportional

to the elastic stiffness moduli.

reported by Fu et al. [18], as the steps with which we increased the pressure

were too large. Our calculations also do not reproduce the softening, as they

were performed for the pure-spin state of iron.

We have calculated the elastic stiffness tensor of MgCO3 up to 60 GPa, the145

results are shown in Fig. 4. The calculated values are in good agreement with

experiments [19], except for the C12 modulus, where our calculations predict a

value that is systematically lower by 21%. Experimental data [19] show that

all Cij moduli of MgCO3 depend linearly on pressure up to 14 GPa. Our

calculations show that C33, C12 and C13 follow a linear trend even up to 60150

GPa, while C11, C44 and C14 behave non-linearly above 20 GPa. At 60 GPa,

for example, the calculated value of C11 is smaller by 156 GPa than would be

expected from the linear extrapolation.

4.2. High pressure elasticity of Mg1−xFexCO3

In order to investigate the influence of composition on the elastic properties155

of Mg1−xFexCO3 at high pressures we have compared the elastic tensors calcu-

lated in this study with the ones available in the literature, see Fig 5. In the

investigated pressure range we observe a linear dependence of C11, C33, C44,

C13 and C14 moduli on the Fe content. Up to the spin transition C12 and C13
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Figure 4: Calculated elastic stiffness moduli of MgCO3 (open symbols) compared to experi-

mental data (”+”) [19]. Solid lines are fits to the experimental data. Statistical and fitting

errors are smaller than the symbol size.

moduli increase with increasing Fe content, in contrast to the other moduli.160

After the spin transition all Cij moduli stiffen with increasing Fe content.

4.3. Discussion

The elastic tensors of Mg1−xFexCO3 were employed to calculate the sound

velocities and velocity anisotropies, as shown in Fig. 6. The anisotropies were

defined as: AVi = 2 (AVmax
i -AVmin

i ) / (AVmax
i +AVmin

i ), following Mainprice165

(2000) [31]. In the whole investigated pressure region the sound velocities of

Mg1−xFexCO3 decrease with increasing Fe content. An increase of both com-

pressional (Vp) and shear (Vs) velocities is observed after the spin transition.

A detailed analysis shows that the relative change of the sound velocity [(VLS
i -

VHS
i ) / VHS

i ] over the spin transition scales linearly with Fe content. After the170

spin transition Vp of FeCO3 increases by 11% and Vs by 28%. In the case of

Mg0.85Fe0.15CO3, a proposed deep mantle carbonate [32], Vp increases by 2%

and Vs by 5%.

The anisotropy of sound velocities increases with increased Fe content, in

contrast to the sound velocities. The compressional wave anisotropy increases up175

to the spin transition and decreases afterwards. The shear wave anisotropy drops
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Figure 5: Calculated (this study) and experimental (Fu [18], SV [20]) values of the elastic

tensor components of Mg1−xFexCO3 at ambient pressure (panel A, B), 40 GPa (C, D) and

60 GPa (E, F). Top row: diagonal coefficients, bottom row: off-diagonal coefficients. Solid

lines are fits to the data, while dashed lines are guides for the eye. In panels C, D the calculated

Cij moduli of high-spin FeCO3 are shown. The non-monotonic behavior of C12 is due to the

systematical difference between calculations and experiment (see text), and C13 at 60 GPa is

monotonic within experimental error.

after the spin transition by 24% for FeCO3 and less than 1% for Mg0.85Fe0.15CO3.

Beyond the region of the spin transition it shows linear behavior.

Our results are consistent with discussions presented by Sanchez-Valle et al.

(2011) [20] and Yang et al. (2014) [19]. They did not, however, discuss the180

influence of the spin transition on the detectability of deep mantle carbonates.

Fu et al. (2017) [18] were the first to investigate the sound velocities across the

spin transition. Based on their study of Mg0.35Fe0.65CO3 they concluded that

Vp would decrease by 10% decrease in a potential deep mantle carbonate, when

comparing the minimum velocity in the mixed-spin phase to the one in the high-185
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Figure 6: Calculated (solid lines) and experimental (dashed line) [18] sound velocities (panel

A) and velocity anisotropies of compressional (B) and shear (C) waves of Mg1−xFexCO3 across

the spin transition. The green solid line represents data on MgCO3, the purple solid line on the

potential deep mantle carbonate, Mg0.85Fe0.15CO3, the red solid line on Mg0.35Fe0.65CO3

studied by other authors [20, 18], and the yellow solid line on FeCO3. The data from the

mixed-spin region reported by Fu et al. [18] was omitted for clarity.

spin phase. In this study we focused on the pure-spin phases of Mg1−xFexCO3

and showed that increasing iron content leads to larger differences in sound

velocities and velocity anisotropies after the spin transition. Thus iron-rich

regions in the deep mantle might show even higher seismic contrast between

Mg1−xFexCO3 and other minerals.190

In order to quantitatively test the geophysical significance of our results

we have investigated the influence of Mg1−xFexCO3 on the velocity profiles in

the Earth’s lower mantle. We performed the calculations using the BurnMan

package [33] employing a model of pyrolitic mantle as given by Wang et al.

(2015) [34] with 80 % bridgmanite (5 % FeAlO3) and 20 % ferropericlase (18 %195

FeO) and considered varying amounts of Mg1−xFexCO3. Data for bridgmanite

and ferropericlase was taken from Stixrude & Lithgow-Bertelloni (2005) [35],

and all compositions are given in mol %. We have investigated the velocities in

the upper part of the lower mantle in the pressure range up to 60 GPa, which
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according to the PREM model [36], corresponds to a depth region of 700-1450200

km. We have included the temperature effect on Mg1−xFexCO3 taking the

temperature derivative of elastic tensor from Yang et al. (2014) [19] and density

correction from Dorogokupets (2007) [37].

The spin transition in FeCO3 gives a visible velocity contrast (at least 1 %)

if at least 4 % of pure FeCO3 is present in a pyrolitic mantle. In that case205

the shear velocity of the high-spin carbonated pyrolite is 2 % lower and for

low spin FeCO3 less than 1 % lower than that of non-carbonated pyrolite. A

similar effect is visible for compressional waves if 10 % of FeCO3 is present,

where in the high-spin region velocity is lower by 3%, and in low-spin by 2%.

However Mg0.85Fe0.15CO3 is proposed to be the composition of lower mantle210

carbonate. As discussed in section 4.3, this composition shows small velocity

contrasts over the spin transition for pure Mg0.85Fe0.15CO3, which is negligible

in a lower mantle pyrolite assemblage. Our calculations show that an addition

of 10% of Mg0.85Fe0.15CO3 would lower the shear velocity of carbonated pyrolite

by 1 %, and the addition of 9 % Mg0.85Fe0.15CO3 would lower the compressional215

velocity by 1 %. The calculations do not include the effect of velocity anisotropy,

which could be an additional discriminant for the presence of carbonates in the

lower mantle. The high anisotropy of carbonates mentioned by Sanchez-Valle

et al. (2011) [20] is confirmed in this study up to 60 GPa. After the spin

transition AVp decreases with pressure, while AVs increases up to 49% at 60220

GPa. The extrapolation of the current dataset to deeper parts of the lower

mantle is ambigous, because of the non-linear behaviour of C11 and C44 of

MgCO3, and beyond the scope of this study.

5. Conclusions

We experimentally obtained C33 and C44 elastic stiffness moduli of FeCO3225

across the pressure-induced spin transition. These data confirm the results

obtained by DFT calculations, where the latter provided all tensor components

up to 60 GPa. We have also calculated the full elastic tensor of MgCO3 up to 60
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GPa and compared our results to the experimental data [19]. Our calculations

are in good agreement with experiments with the exception of the systematically230

lower value of the C12 modulus.

We have investigated the influence of the composition of Mg1−xFexCO3 car-

bonates on their high pressure elastic properties by comparing the results of our

calculations to literature data on Mg0.35Fe0.65CO3. We observed an increase of

both compressional and shear velocity after the spin transition.235

We employed a mineral physics model of the upper part of the lower mantle

and investigated the influence of Mg1−xFexCO3 on a pyrolitic composition. We

observed that the presence of Mg1−xFexCO3 changes the shear velocity more

than the compressional velocity. At least 3 % of FeCO3 is needed to observe

a shear velocity contrast of more than 1% due to the spin transition, and 8 %240

of Mg0.85Fe0.15CO3 is needed to observe a velocity contrast of more than 1%

between carbonated and non-carbonated pyrolite under lower mantle conditions.

Values of Cij , velocity and velocity anisotropies for Mg1−xFexCO3 at high

pressures can be found in the supplementary dataset.
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