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Abstract 

 

Mutations in the SOD1 gene are the best characterized genetic cause of 

amyotrophic lateral sclerosis (ALS) and account for ~20% of inherited cases and 

1-3% of sporadic cases. The gene-editing tool Cas9 can silence mutant genes 

that cause disease, but effective delivery of CRISPR-Cas9 to the central nervous 

system (CNS) remains challenging. Here, I developed strategies using canonical 

Streptococcus pyogenes Cas9 to silence SOD1. In the first strategy, I 

demonstrate effectiveness of systemic delivery of guide RNA targeting SOD1 to 

the CNS in a transgenic mouse model expressing human mutant SOD1 and 

Cas9. Silencing was observed in both the brain and the spinal cord.  In the 

second strategy, I demonstrate the effectiveness of delivering both guide RNA 

and Cas9 via two AAVs into the ventricles of the brain of SOD1G93A mice. 

Silencing was observed in the brain and in motor neurons within the spinal cord. 

For both strategies, treated mice had prolonged survival when compared to 

controls. Treated mice also had improvements in grip strength and rotarod 

function. For ICV treated mice, we detected a benefit of SOD1 silencing using net 

axonal transport assays, a novel method to detect motor neuron function in mice 

before onset of motor symptoms.  These studies demonstrate that Cas9-

mediated genome editing can mediate disease gene silencing in motor neurons 
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and warrants further development for use as a therapeutic intervention for SOD1-

linked ALS patients.  
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Chapter I Introduction 

 

1.1 Amyotrophic Lateral Sclerosis 

 

Amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig’s 

disease (United States) and Motor Neuron Disease (United Kingdom), is an 

adult-onset neuromuscular degenerative syndrome characterized by motor 

neuron degradation and progressive paralysis. ALS affects both upper and lower 

motor neurons (Fig. 1), which distinguishes this disease from other motor-neuron 

disorders (i.e., primary lateral sclerosis, progressive supranuclear palsy, and 

corticobasal syndrome). ALS is uniformly fatal; death typically occurs 3-5 years 

after onset.2  

First described by the French neurologist Jean-Martin Charcot in 1874, 

ALS is the most common adult-onset motor neuron disease in the U.S.— the 

annual incidence of ALS is 400,000 people per year. Worldwide, ALS prevalence 

is approximately 6 per 100,000 people, and the incidence is approximately 2 per 

100,000 annually3,4. This equals approximately 140,000 new cases every year or 

384 new cases per day worldwide. Incidence changes with age, increasing after 

age 50, but rapidly decreasing after age 80. Incidence is also higher among men 

than women: 3 and 2.4 per 100,000, respectively4. 
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.

 

Figure 1. Anatomy of motor neurons affected by ALS. 

Upper motor neurons reside in the motor cortex and their axons project down the spinal cord 

through the corticospinal tracts project and innervate lower motor neurons the axons. Cell bodies 

of lower motor neurons reside in the ventral horn of the spinal cord and project through the 

ventral root to innervate muscles. Neuromuscular junctions are the points of connection between 

lower motor neurons and muscles. 

Additionally, ALS is now widely considered to be part of a spectrum of 

neurological disorders that include ALS-frontotemporal lobar degeneration 

(FTLD). FTLD is the fourth most common adult onset neurodegenerative 
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disorder, behind Alzheimer’s, Parkinson’s, and ALS. The connection between 

ALS and FTLD was recognized as early as 19325. Many patients present with 

symptoms of both disorders6,7, and patients diagnosed with either ALS or FTLD 

often develop symptoms of the other. These disorders have overlapping 

biochemical hallmarks (FUS and TDP43 protein aggregation), and overlapping 

gene mutations, which include C9ORF72, HNRNPA1, HNRNPA2B2, SIGMAR1, 

ATXN2, SQSTM1, OPTN, VCP, UBQLN2 and CHCHD10.  Thus, developing 

treatments for ALS could potentially be beneficial for FTLS cases as well. There 

is, however, no cure for either disorder 

Currently, there are two FDA-approved drugs for ALS aimed at slowing 

disease progression. Each drug provides only modest benefits. Riluzole, a 

sodium channel blocker approved in 1995, may extend patient survival by 2-3 

months8. Edaravone, a novel free-radical scavenger approved in 2017, slowed 

early-stage ALS progression in a 6-month trial9,10. However, the impact of 

edaravone on patient survival has yet to be reported. Recently new interventions 

have progressed into clinical trials.  

The causes of approximately 90% of ALS cases are unknown or 

“sporadic”, but 10% of cases are genetically inherited or “familial”. To date, over 

30 genes are robustly associated with familial ALS. Among these genes, the 

free-radical scavenger—copper-zinc superoxide dismutase 1 (SOD1)—was the 

first to be linked to ALS11. Over 100 different SOD1 mutations are ALS-related12.  
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ALS treatment strategies intending to silence or knockdown the SOD1 

gene are appealing because: (1)SOD1 mutations associated with ALS have a 

gain-of-function toxicity; (2) SOD1 mutations are common, accounting for ~20% 

of familial cases and in 1-3% of sporadic cases13–16; (3) Among ALS mutations, 

those in SOD1 are the best characterized—numerous SOD1 animal models 

recapitulate hallmark features of ALS, including adult onset neurodegeneration 

and paralysis17, making it feasible and tractable to study gene silencing 

strategies; and (4) Patients with wildtype SOD1 (wtSOD1) often have SOD1 

aggregation similar to that observed in patients with mutant SOD1, which may 

suggest that both mutant and wtSOD1 contribute similarly to disease pathology15, 

and therapeutic SOD1 gene silencing might benefit patients with or without 

mutant SOD1.  Effect design of such silencing strategies, however, require an in-

depth understanding of SOD1, and how mutations change the characteristics of 

the protein and how these changes cause or progress symptoms in ALS. 

1.2 SOD1 and ALS 

 

The protein product of the SOD1 gene dismutates superoxide free radicals 

into molecular oxygen and hydrogen peroxide13. SOD1 protein resides primarily 

in the cytoplasm, but also localizes to mitochondria; it is highly expressed, 

comprising ~1-2% of total protein in cultured cells18. SOD1 is a member of the 

superoxide dismutase family. 
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The catalytically-active, holoenzyme form of SOD1 is a homodimer that 

weighs ~32 kilodaltons. Notable structural features of SOD1 include an eight-

stranded β-barrel structure, a zinc-binding loop, an electrostatic loop, and a 

cysteine-cysteine disulfide bond, a rare characteristic for proteins residing in the 

cytosol. Each subunit binds one copper and one zinc ion, both of which 

contribute to structural stability19,13,16,20. Homodimerized SOD1 is highly stable; it 

has a melting temperature (Tm) of 92⁰C, much higher than physiological 

conditions, and is resistant to both chaotropic and ionic denaturization7,12. SOD1 

is also one of the fastest enzymes known; its rate-limiting step is the diffusion of 

superoxide to its active site21. It is the positively-charged electrostatic loop of the 

enzyme that brings the negatively-charged superoxide towards the active site, 

where both copper and zinc contribute to dismutation22.  

ALS-associated SOD1 mutations generally have two common features: 

(1)  destabilization of the protein, causing aberrant misfolding/aggregation; and 

(2) reduced dismutase activity, causing oxidative stress16,20. While these two 

features certainly contribute to toxicity, how they initiate ALS remains unknown.  

Numerous candidate pathways have been investigated, including synaptic 

dysregulation/excitotoxicity, mitochondrial dysfunction, and impairment of 

autophagy/proteasome15,20,23 (Fig. 2). However, more work is required to dissect 

which of these interwoven pathways cause ALS, and which are merely 

consequences of upstream stressors. Such findings are critical for the design of 

drug therapies. The subsequent subchapters briefly review oxidative stress, 
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protein misfolding/aggregation, and the putative downstream pathways affected 

by oxidative stress/protein misfolding and the evidence of their role in ALS. 

 

 

 

Figure 2. Neuronal pathways of damage in SOD1 ALS 

Proposed chain of events that leads to motor neuron degeneration in SOD1 ALS. Oxidative 

stress and/or SOD1 misfolding/aggregation are likely upstream events that trigger dysregulation 

of the synapse, proteasome, autophagy, and mitochondria. Dysregulation of these processes 

causes increase in Ca2+ which in turn can trigger apoptosis. Red indicates process which occurs 

in the cell body. Blue indicates process which occurs in the synaptic membrane. Green indicates 

process indicates process which occurs in axon/post synaptic membrane. Gradient indicates 

process occurs in cell body, synaptic membrane and axon. 
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1.2.1 SOD1 and Oxidative Stress 

 

The first genetic mechanism hypothesized to cause ALS was SOD1 

haploinsufficiency followed by oxidative stress. This mechanism was proposed 

shortly after the discovery of ALS-associated SOD1 mutations when evidence of 

reduced SOD1 activity and oxidative stress was found in ALS patient 

brains24,25,27,28. Additionally, biochemical analyses demonstrate that many ALS-

associated SOD1 mutations result in diminished or complete loss of dismutation 

activity in vitro26.  

SOD1 loss of function, however, cannot fully explain SOD1-linked ALS 

pathogenesis because: (i) there is a lack of correlation between mutant SOD1 

dismutase activities and clinical outcome (i.e., a patient with a SOD1 mutation 

that causes 50% dismutase activity does not have a worse clinical outcome than 

a patient with an SOD1 mutation that causes 0% activity), (ii) no ALS-like 

phenotype is observed in Sod1-null mice (although Sod1-null mice do have mild 

denervation and neuropathy27), and (iii) transgenic mouse models of ALS, which 

robustly phenocopy neurodegeneration, have increased net dismutase activity 

due to the multiple copies of transgenes inserted27–29. These observations lead to 

the investigation of other potential mechanisms of ALS pathology. 

 

1.2.2 SOD1 misfolding and aggregation 
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Mutant SOD1 and wtSOD1 have been shown to misfold and aggregate in 

vitro, in vivo, and in ALS patients13,30. Mutations in SOD1 result in altered 

monomer-dimer homeostasis, favoring the monomer state. Monomer-dimer 

homeostasis can also be disrupted in wtSOD1 under certain stressors like 

demetallation and reduction of the C57–C146 intramolecular disulfide bond. In 

both cases, monomeric SOD1 is more likely to oligomerize into soluble aberrant 

conformations and aggregate into insoluble fibrils, a pathological hallmark of 

SOD1 ALS.  

Evidence of mutant SOD1 aggregation first came in 1994, when Lewy 

body-like inclusions in spinal cords of sporadic ALS patients were found to be 

immunoreactive to SOD130. Mutant SOD1 was also reported to cause abnormal 

aggregations in cultured neurons31 and in transgenic SOD1 mice16. Multiple lines 

of evidence demonstrate that SOD1 misfolding and aggregation is toxic. SOD1 

aggregations cause cell death in cell culture and can spread to neighboring cells 

in a “prion-like” fashion32,33. Moreover,  SOD1 aggregate levels in the CNS 

increase and correlate with disease progression in ALS mouse models34,35. 

Distinct from ‘aggresomes’, mutant SOD1 oligomers have also been observed in 

transgenic mice36. Interestingly, recent evidence suggests that the soluble 

oligomeric conformations of SOD1 are toxic while the insoluble aggregates may 

be sequestered by the cell and rendered inert37.  

While mutant forms of SOD1 are more prone to misfolding, even 

misfolded wtSOD1 can be detected in sporadic ALS patients, suggesting an 
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association between SOD1 misfolding and ALS, although the mechanisms 

driving the disease initiation and progression remain unclear 38,15,30.   

While evidence supports SOD1 misfolding toxicity, it is still unclear how it 

causes ALS. The current hypothesis is that the synergism of oxidative stress and 

SOD1 misfolding contributes to ALS. Specifically, SOD1 aggregation causes a 

‘gain of a loss of function’, where a toxic gain-of-function from misfolding 

exacerbates oxidative damage that cannot be mitigated due to SOD1 reduction 

of function28,39,40.  Pathways known to be dysregulated in ALS that are affected 

by SOD1 misfolding include: (1) synaptic dysregulation/excitotoxicity, (2) 

mitochondrial dysfunction, and (3) autophagy/proteasome impairment. 

 

1.2.3 SOD1 and synaptic dysregulation/excitotoxicity 

 

One of the first symptoms of ALS, preceding even muscle weakness, is 

fasciculation (or muscle twitching) caused by distal axon dysfunction. Aberrant 

upper and lower motor neuron electrical signaling—i.e. synaptic dysregulation—

in ALS was first demonstrated in electrophysiological studies of patients 41,42. In 

1995, biochemical evidence for synaptic dysregulation came when altered 

glutamate levels in post-mortem tissue and CSF were described in a subset of 

ALS patients43,44. Glutamate, the major excitatory neurotransmitter found in 

mammalian excitatory synapses, is an agonist for ionotropic transmembrane 

receptors, including those found in motor neuron synapses: α-3-amino-3 
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hydroxy-5-methyl-4-isozaxelopropionic (AMPA) and N-methyl-D-aspartic acid 

(NMDA). 

SOD1 mutations may cause ALS via glutamate dysregulation and 

consequent synaptic dysregulation. It is thought that in ALS, a feedback loop 

emerges where oxidative stress causes more oxidative stress. In humans, the 

main protein responsible for shuttling glutamate out of the synapse, Excitatory 

Amino Acid Transport 2 (EAAT2), is reduced in some ALS patients 32,33,45–47, 

leading to increased and persistent glutamate concentrations in motor neuron 

synapses 48,49. Elevated glutamate concentrations in the synapse causes 

hyperactivity, or pathologic increase of action potential firing in the post-synaptic 

neuron50. Hyperactivity also increases intracellular Ca2+ levels—which in turn 

activates the stress signals nitric oxide synthase, phospholipase A2, and 

xanthine oxidase49, which in turn increases oxidation and can cause further 

perturbations to glutamate homeostasis. This oxidative damage feedback 

mechanism may help explain why ALS causes degeneration specifically in motor 

neurons, as spinal motor neurons have inherently weak Ca2+ buffering capacity 

48,50,51,  thus making them sensitive to excitotoxic insults. 

Glutamate dysregulation, however, cannot fully explain pathogenesis 

because reduced brain and CSF glutamate is observed in only a subset of 

patients. Furthermore, EAAT2 downregulation occurs in other neurological 

conditions, such as Alzheimer’s, ischemic hypoxia, and traumatic brain injury, 

suggesting that it may be a generalized consequence of damage.  
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1.2.4 SOD1 and mitochondria dysfunction 

 

Mitochondrial dysregulation in ALS was observed as early as 1984 in 

electron microscopy studies. Mitochondria in skeletal muscle and spinal cord 

neurons of ALS patients have abnormal morphologies52,53, including 

vacuolization, swollen cristae, and perturbations to the inner and outer 

membranes. Functional deficits of mitochondria in ALS include defects in 

electron transport protein complex activity and Ca2+ buffering capacity. Given that 

both electron transport protein complex disruption and Ca2+ defects cause the 

release of proapoptotic factors54–56, it is proposed that mitochondrial perturbation 

initiates apoptosis. Recent findings that mutant SOD1 binds to apoptosis 

regulator gene BCL2, which can promote apoptosis under certain conditions, 

supports the notion that mitochondrial dysregulation drives toxicity via apoptotic 

pathways57–59.  

Mitochondrial abnormalities are also seen in Alzheimer’s, Parkinson’s and 

Huntington’s suggesting that they may be a generalized consequence of 

unspecified damage, and not a cause of ALS. Indeed, oxidative stress causes 

mitochondrial stress, but mitochondrial defects precede ALS symptoms in the 

SOD1G93A mouse model. This suggests that mitochondrial damage may be the 

pathogenic factor, not a downstream consequence.  
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1.2.5 SOD1 and impairment of autophagy and proteasome 

 

The proteasome and autophagy pathways regulate protein homeostasis 

and eliminate toxic protein species in eukaryotic cells. Recent evidence shows 

that mutant SOD1 is degraded by and impairs both proteasome and autophagy 

processes60. 

Proteasome. The proteasome is a large, multi-subunit complex that 

degrades proteins by breaking peptide bonds through multiple catalytic sites. 

Proteins are polyubiquitinated by E3 ubiquitin ligases, marking them for 

degradation. Misfolded forms of mutant SOD1, but not wtSOD1, are 

polyubiquitinated for proteasome degradation and cause proteasomal inhibition 

in neuronal cell lines59.  Immunoprecipitation studies by multiple groups revealed 

that mutant SOD1 is specifically targeted by the ubiquitin ligases Dorfin, CHIP, 

NEDL1, and the mitochondrial-expressing MITOL61–63. Interestingly, two of these 

ubiquitin ligases have previously described roles in neurodegeneration—Dorfin 

activity is involved in Lewy body aggregation in Parkinson’s Disease64, and 

mutations in CHIP cause Spinocerebellar ataxia type 1662,65.  

Not only is mutant SOD1 targeted by the proteasome, but mutant SOD1 

impairs proteasome function. Overexpression of Dorfin in the presence of mutant 

SOD1 in neuronal cell culture reduces cell death, suggesting that mutant SOD1 

impairs the proteasome in ALS64. This is supported by recent evidence of 

proteasome dysregulation in patients, with increased levels of ubiquitin and 
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proteasomal αβ subunits found in spinal cords of end-stage ALS patients 

compared to healthy controls66.  

A SOD1 proteasome model for toxicity in ALS has been proposed: prior to 

disease onset, misfolded SOD1 is cleared by the proteasome and protein 

homeostasis is maintained. A combination of excessive misfolded protein and 

oxidative stress due to SOD1 dysregulation overwhelms the proteasome causing 

a feedback loop of increased SOD1 misfolding and proteasome dysregulation.   

Autophagy. Autophagy is the regulatory process in which a cell 

sequesters components into membrane-bound vesicles called autophagosomes, 

and fuses with hydrolytic-enzyme-containing lysosomes to degrade the contents. 

Autophagy levels are tightly linked to cell survival, either promoting survival by 

clearing damaged organelles, proteins, and toxic metabolites or mediating cell 

death through self-digestion67. 

In SOD1G93A mice, increased levels of autophagy vacuoles have been 

found in late stages of disease68, although this may be a consequence of 

upstream toxicity. In addition, many mutant SOD1 binding partners have roles in 

regulation autophagy: 1) BCL2, which inhibits autophagy via binding of 

autophagy formation protein, Beclin1; and 2) P62, which is involved in autophagy 

activation67,69. Interestingly, P62 gene mutations cause a subset of familial ALS70. 

A drug screen revealed that inhibitors of the mTOR pathway, which 

regulates autophagy, increased survival percentage of cultured neurons and 
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SOD1 mouse models of ALS71 by 8 days, suggesting that autophagy impairment 

plays a role in SOD1 toxicity.  

1.3 Suppressing SOD1 as a therapeutic strategy 

 

Despite the ambiguity of how mutant SOD1 initiates and drives ALS, 

genetic silencing of SOD1 has proven to be a rational and viable strategy for 

therapy of SOD1 mediated ALS. Silencing SOD1 ameliorates neurodegeneration 

by delaying onset, and increasing survival in SOD1 animal models14,23,72–7414,23,72–

74.  Interestingly, since aberrant SOD1 misfolding is also observed in a subset of 

ALS patients who do not have a SOD1 mutation, it is conceivable that silencing 

SOD1 may be of therapeutic benefit to a subset of sporadic ALS patients that do 

not have mutant SOD1. Regardless, the wealth of literature describing the 

outcomes of SOD1 silencing has allowed for analysis of the mouse model; an 

excellent candidate for studying the therapeutic potential of CRISPR-based gene 

editing.  

Previous strategies used to repress SOD1 in transgenic animal models 

include neutralizing antibodies34, antisense oligonucleotides (ASOs)75, short 

hairpin RNA (shRNA)73,76,77, artificial microRNA (miR)72, and chemically-modified 

shRNA23 (Table 1). The wealth of knowledge gained from previous experiments 

allows for the design, development and optimization of new SOD1 silencing 

strategies that may be more efficacious for therapy, such as increased survival, 
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and reduced number of injections. Outlined below are key concepts that have 

been elucidated in previous SOD1 silencing research.  
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Vector Construct Delivery Treatment 
start 

Animal Survival 
(%) 

1st Author Year 

Lentivirus shRNA IM p7 Mouse 77 Ralph 2005 

Lentivirus shRNA IS p40 Mouse nr Raule 2005 

Transgene shRNA systemic embryonic Mouse 27 Xia 2006 

- ASO ICV p65 Rat 8 Smith 2006 

Mod. siRNA siRNA IT p85 Mouse 6 Wang 2008 

AV-U6 shRNA SN p94 Mouse 8 Wu 2009 

AAV2 shRNA SN p43-109 Mouse 0 Wu 2009 

-- monoclonal 
ab 

ICV pump p65 mouse 8 Gros-Louis 2010 

AAV6 shRNA IM p1-p15 Mouse 0 Towne 2011 

AAV9 shRNA IV p1 Mouse 39 Foust 2013 

-- ASO IT post disease 
onset 

human - Miller 2013 

AAVrh10 miR IT p55-60 Mouse 11 Wang 2014 

-- single chain 
ab 

IT p45 mouse 11 Patel 2014 

AAV9 shRNA IC p70 Rat 12 Thompsen 2015 

AAV6 miR ICV p2 Mouse 26 Dirren 2015 

AAV9 miR ICV p2 Mouse 14 Dirren 2015 

AAVrh10 miR IV p56-68 Mouse 20 Borel 2016 

AAV9 miR ICV p0-1 Mouse 50 Stoica 2016 

AAV9 Cas9 IV p1 mouse 25 Gaj 2017 

Table 1.  In vivo silencing of SOD1 

(IM) Intramuscular. (IV) Intravenous. (SN) Sciatic Nerve. (ICV) Intracerebroventricular. (IT) 

Intrathecal. (IC) Intracortical. (miR) microRNA. 
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Allelic targeting of SOD1. Most silencing experiments have, out of 

practicality, targeted both mutant and wt. alleles because transgenic mouse 

models contain only the mutant human allele. Initially, this raised concerns about 

potential detrimental effects, but concerns subsided somewhat because silencing 

wtSOD1 appears to be tolerable in the CNS78. Indeed, experiments that silenced 

both human SOD1 and mouse Sod1, comparable to a biallelic Sod1-targeting 

strategy in patients, prolonged survival without overt adverse symptoms78. 

Furthermore, Sod1-null mice have no overt motor degenerative phenotype or 

motor neuron loss, although there is enhanced cell death after axonal injury, 30% 

shortening of life span and higher incidence for hepatocellular carcinoma27,79.   

Timing of Intervention. In mouse models, SOD1 silencing at early 

timepoints is more beneficial than later timepoints. Experiments by Foust et al. 

show that delivering adeno-associated viral vectors (AAVs) containing shRNA via 

facial vein delivery at p1-2 had a maximum prolongation of survival, and survival 

benefits decreased with increasing age at delivery73. Despite the benefit of early 

intervention, Foust et al.  showed the delivery of shRNA as late as p85 could 

significantly prolong survival, suggesting silencing of SOD1 could prove useful in 

the clinic. 

Similarly, experiments by Borel et al. using AAVs delivering artificial 

microRNA via intracerebroventricular delivery at day 56-58 prolonged survival14, 

and experiments by Gros-Louis et al. showed that silencing of SOD1 by using 

monoclonal antibodies against SOD1 at p65 could extend survival34. These 
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studies demonstrate that SOD1 silencing in patients could be beneficial when 

given to adults prior to disease onset. More research is needed to understand the 

effects of SOD1 silencing in patients after onset. 

In most cases, silencing delays onset, but does not prevent or reverse 

neurodegeneration, or duration of disease (i.e., the time between disease onsets 

and endpoint remains the same). However, there are some notable exceptions.  

Saito et al, reported an increase in duration of disease in a SOD1G93A 
-

mouse model. However, in Saito’s experimental paradigm, mutant SOD1 was 

targeted at conception via crossing SOD1 mice with mice expressing shRNA78. 

Borel et al. reported that delivering artificial microRNA prolonged disease 

duration when the expression of the microRNA was under a pol II Chicken Βeta 

actin promoter but not a pol III-type U6 promoter14. It is unclear why the promoter 

caused differences in disease duration.  

Stoica et al., also reported a subset of mice that did not undergo normal 

neurodegeneration: rather, the mice treated at day p1 showed little degeneration 

as measured by electrophysiology and died following sudden weight loss and 

kyphosis14. In the subset of mice, disease duration was eliminated because the 

mice did not undergo canonical degeneration.  

Cell type-specific SOD1 targeting. Motor neurons are primarily affected 

by ALS, but numerous studies have shown that such toxicity is not solely cell-

autonomous. Microglia80, astrocytes81, oligodendrocytes82 and skeletal muscle 83 

contribute to SOD1-mediated motor neuron toxicity. The research to-date shows 
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that silencing SOD1 specifically in astrocytes84 leads to a benefit in survival, 

while silencing SOD1 in muscle only does not translate to increased survival85–87. 

More research is needed to understand whether silencing SOD1 in other cell 

types leads to increased survival.  

Previous experiments have focused on SOD1 silencing in lower motor 

neurons, which reside in the spinal cord. There is comparatively less literature 

discussing the state of neurodegeneration in upper motor neurons in transgenic 

mouse models. Özdinler et al. demonstrated that upper motor neurons undergo 

specific neurodegeneration as early as p3088, which recapitulates what occurs in 

ALS patients. Moreover, Thomsen et al. demonstrated that silencing SOD1 in the 

motor cortex, and not the spinal cord, leads to a 20-day extension in survival in 

SOD1 rats74. 

The collective observations from previous work provides a framework for 

developing strategies to silence SOD1. Such strategies should focus on early 

intervention, non-cell type specificity, and targeting of both upper and lower 

motor neurons.  

 

1.4 Therapeutic SOD1 silencing using CRISPR-Cas9 

 

CRISPR-Cas9 mediated gene therapy has emerged as a potent gene 

editing technology. It is an easy-to-use, cost-effective tool that targets and 

cleaves desired regions of genome DNA allowing for the silencing and/or repair 
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of mutant gene expression. CRISPR-Cas9 technology was engineered from 

bacterial/Archaea CRISPR systems which provide sequence-specific, adaptive 

immunity to invading nucleic acids like viruses and mobile elements.  

As bacterial/archaeal immune components, CRISPR systems work by 

integrating short sequences of invading DNA (e.g., bacteriophages, virions, and 

mobile DNA elements) into the CRISPR gene locus, creating a memory of 

infection. In subsequent invading DNA infections, the previously inserted DNA is 

transcribed into a short strand of RNA called crRNA and forms an effector 

complex with CRISPR associated (Cas) proteins and yet another strand of RNA 

called tracrRNA. This effector complex cleaves the invading DNA, mitigating 

harmful effects of the infection.  

CRISPR systems are broadly found in bacteria/archaea and have been 

identified in the genomes of approximately 40% of sequenced bacteria and 90% 

archaea 89. CRISPR systems are very diverse in terms of the structure of the 

CRISPR locus, the composition of proteins, and the structure of the effector 

complex. Classification of CRISPR systems currently divide CRISPR systems 

into 2 Classes (Class 1 and Class 2), and subdivided into 6 types (Type I through 

Type VI)90.  Class 1 CRISPR systems are defined as having multiple protein 

subunits in their effector complex while Class 2 CRISPR systems are defined by 

having a single protein, called Cas9, in the effector complex. Two major events 

made it possible to develop CRISPR-Cas9 into a gene-editing technology: (1), 

the discovery that Cas9 enzymes could be reprogrammed to target a desired 



21 
 

DNA sequence91 and (2), the engineering of a single strand of RNA that functions 

as both crRNA and tracrRNA, thus simplifying both designing and manufacturing 

of CRISPR-Cas9 based gene editing strategies92,93.   

The steps by which Cas9 targets and cleaves DNA are relatively well-

understood, as numerous crystallization and bio-structural experiments have 

recently been published94,95. Cas9 forms a complex with a single guide RNA 

(hereafter referred to as gRNA). The complex scans the cell’s genome for a short 

2-6 nucleotide sequence called the protospacer adjacent motif (PAM). Cas9 

proteins from different bacterial species recognize different PAMs. If the targeting 

sequence in the guide RNA matches the sequence upstream of a PAM, the Cas9 

complex unwinds the genome DNA using complementarity binding from the 

guide RNA. An R-loops then forms with the gRNA and target DNA, and the HNH 

and RuvC nuclease domains within Cas9 cleave the complementary and 

noncomplementary DNA strands, respectively.  

When Cas9 cleaves DNA in eukaryotic organisms, the resulting double 

stranded breaks are repaired by either error prone non-homology end joining 

(NHEJ) or homology directed repair (HDR) mechanisms.  For gene therapy 

considerations, both repair pathways can be utilized depending on the desired 

outcome. The error-prone NHEJ occurs more frequently, and almost exclusively 

in non-dividing cells. NHEJ causes random insertion deletion mutations (indels) 

at the CRISPR targeting locus and can be used to disrupt coding sequences of 

desired genes 1,91,93. Disruption of the coding sequence will generate premature 
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stop codons and activate nonsense mediated decay pathways which will destroy 

nascent pre-mRNA and silence gene expression (Fig. 3). HDR, occurs with a 

lower frequency in dividing cells, and can be used to insert a donor DNA 

template at the target site for precise editing92. The two outcomes give CRISPR a 

flexibility in designing gene therapies. 

CRISPR is not the first nor the only gene-based technological platform for 

gene-therapy considerations. Other gene editing technologies such as 

meganucleobases, zinc finger nucleases, TALENs, have been previously 

designed and conceptualized for gene therapy. Utilization of these technologies, 

however, is difficult; since targeting different areas of the genome requires 

reconfiguration of the protein nuclease. Therefore, designing these technologies 

to target different sites in the genome is cumbersome, and strategies to build 

gene therapies based on these technologies is generally not scalable. Gene 

therapies using CRISPR, on the other hand are much simpler to design and 

scale since they use one single invariable protein and one programmable RNA 

strand. 

Other gene therapy technological platforms which work by targeting RNA 

also exist and are used for gene therapies. These include RNA interference 

(RNAi)-based strategies and antisense oligonucleotide (ASO)-based strategies. 

RNAi strategies utilize endogenous nuclease AGO2 to suppress and cleave 

RNA, and ASOs utilize endogenous RNAse H to cleave RNA. When compared to 

other gene silencing technologies, such as RNAi and ASOs, Cas9 targets the 



23 
 

genome, not the transcriptome, allowing for permanent alteration. From a 

therapeutic perspective, one single delivery can permanently silence a gene via 

transient expression of the editing machinery. This in contrast with other 

therapies what need repeated injections to remain beneficial 

 

Figure 3. DNA repair via non-homologous end joining DNA repair generates insertions 

and mutations. 

1.  Cas9, guide RNA, and target DNA in complex. If the complementary sequence is 

immediately upstream of a PAM sequence, the gRNA forms and R-loop with the 

complementary target DNA strand enabling double stranded cleavage a few nucleotides 

upstream of the PAM. 2. The RuvC domain of Cas9 cleaves the noncomplementary strand and 

the HNH domain of Cas9 cleaves the complementary strand 3. NHEJ repairs cleaved DNA, 

often generating indels, in this case an insertion is shown in red. 4. If indels are within coding 
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sequence, frameshifting occurs, generating premature stop codons downstream from cleavage 

site. premature stop codons will activate nonsense mediated decay and silence gene 

expression.   

 

The CRISPR genome editing system has been demonstrated to work in 

the brains and spinal cords of mammals96,97, and thus could be used to treat 

numerous genetic disorders of the central nervous system, including ALS. 

One disadvantage of Cas9 as a gene therapy platform is the unknown 

effects associated with permanent gene editing. Much more work needs to be 

done to assess potential off-target effects of Cas9. Additionally, after injection of 

Cas9 there would be no way to stop or reverse silencing, in the event of an 

adverse reaction.  

Recently, Staphylococcus aureus Cas9 (SaCas9) was used to silence 

SOD1 in mice97. The small size of SaCas9 is advantageous for in vivo delivery, 

yet it recognizes a long “NNGRRT” PAM that limits the number of available 

PAMs in the genomic region of interest. By contrast, Streptococcus pyogenes 

Cas9 (SpCas9) recognizes a short “NGG” PAM that enables a larger selection of 

target sites in the gene of interest. Developing an in vivo delivery platform for 

SpCas9 will expand the genome editing toolkit for studying ALS.  

 



25 
 

1.5 Adeno-associated virus as a delivery vector 

AAVs are small, single-stranded DNA viruses within the phylogenetic viral 

family Parvoviridae. AAVs are well-suited as vectors for gene therapy because of 

their broad tropism, low immunogenicity, and ability to infect non-dividing cells98. 

AAVs are well-established for use in therapeutic interventions, are currently 

being investigated in numerous clinical trials, and have been approved for use for 

a therapy to treat the neurological disorder  spinal muscular atrophy99,100
. The 

demonstrated efficacy and safety profile of AAVs make them ideal for use in 

delivering a CRISPR-based strategy to silence SOD1 in the CNS. 

Structurally, AAVs lack a membrane envelope but have a protein capsid. 

These capsids comprise 60 protein subunits arranged in icosahedral symmetry. 

Serotypes of AAVs are largely defined by differences in the structure of their 

capsids. Different capsids have different tissue and cell tropism. There are over a 

hundred known natural AAV capsids that infect humans and other primates101. 

The AAV genome consists of two genes, (each with their own promoter), 

rep and cap. Rep protein isoforms are involved in replication and cap protein 

isoforms are involved in capsid formation and capsid development. The genome 

is flanked by inverted terminal repeats, which play a role in many functions 

including encapsidation, DNA synthesis, and concatenation/circularization into 

episomal DNA following infection102,103. The size of the AAV genome is 

approximately 4.7kb. 
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The mechanisms by which AAVs infect cells are not fully understood. 

AAVs adhere to host cell plasma membranes by interacting with membrane 

glycans. Different AAV capsids preferentially bind to different glycans and 

different receptors. For most capsids, endocytosis is mediated by the host cell 

AAV receptor (AAVR), a transmembrane protein that interacts with AAV particles 

via an Ig-like polycystic kidney disease domain104,105.  Endosomes containing 

AAVs are then trafficked to the trans-Golgi network via a microtubule-mediated 

mechanism after which the AAV particles escape the endosome by using the 

phospholipase capsid protein VP1106. From the cytoplasm, it is thought that the 

AAV particles are trafficked to the nucleus by importin-β107 (see Fig. 4).  

AAV vectors, have had the viral rep and cap genes replaced with 

therapeutic factors. As such,  AAV vectors  have a no ability to replicate and 

integrate into the host genome, and thus confer an increased degree of suitability 

for gene therapy.  Further efforts have been utilized to increase engineering 

strategies that have been developed to produce better AAVs for gene therapies. 

Such examples include hybridizing and/or designing new capsid proteins and 

changing ITRs sequences to improve transcription.  

Numerous experiments have been designed using AAVs to deliver RNA 

interference cargo (i.e., shRNA or miRNA) into mammals. More recently, efforts 

to delivery Cas9 machinery via AAV have ramped up. 
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1.6 Challenges using rAAVs to delivery CRISPR therapeutics 

 

Challenges of using AAVs to deliver gene therapy include the small 

genome size, distribution and cell-specificity of the AAVs, ability to sufficiently 

transcribe cargo, and immunogenicity of AAVs in human populations.  

AAV genome size: The AAV’s small genome size constrains the amount 

of cargo it can deliver. When considering designing a RNA interference-based 

strategy, the small cargo size is not problematic. When delivering a CRISPR-

based strategy, however, the small genome size becomes a challenge. Co-

expressing the canonical Streptococcus pyogenes Cas9 (with a genome size of 

4.3kb) along with sgRNA and all requisite regulatory elements in the same AAV 

vector exceeds the genome size of the AAV. To overcome this, smaller Cas9 

proteins have been employed 97,108, or delivery of Cas9 and sgRNA can be split 

onto multiple AAVs.  

 



28 
 

 

Figure 4. AAV transduction and nuclear localization.  

AAVs bind to cell surface through glycan-capsid interactions. Endocytosis is mediated by 

AAVR1.  AAVs escape endosome and are imported to nucleus. AAV DNA persists as 

circularized and concatenated episomal DNA.  

 

Distribution and cell specificity: To be an efficient in gene therapy, 

AAVs must reach to and infect the desired tissue and cell type. Much research 

has been employed to develop different AAV capsids and different routes of 

injection, to confer tissue and specificity. Designing strategies to target tissue 

within the CNS, the blood-brain barrier confers is a major consideration. To this 

effect, researchers have employed AAV capsids that can cross the blood-brain 
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barrier (e.g., AAV9 or rhAAV.10) 109,110 , or have administered AAVs directly into 

the CNS (e.g., via intrathecal, stereotaxic, or intracerebroventricular injections) 96.  

Transcriptional Strength:  All vehicles used to delivery nucleotide-based 

therapies (i.e., AAVs, lentivirus, lipid nanoparticles, etc.) faces similar challenges 

in maximizing/optimizing transcriptional efficiency of the cargo. Much research 

has focused on the characterization and optimization of regulatory elements, 

including promoters, polyA signals, and post-regulatory elements. One challenge 

specific to AAVs is slow transcriptional kinetics. Since AAVs comprise a single-

stranded DNA genome and lack a polymerase gene, they require host cell 

machinery for priming and transcription, which results in slow transcription 

kinetics and comparatively weak expression. One method to increase efficiency 

includes the use of self-complementary AAVs, which bypass the rate limiting 

second-strand replication necessary for AAV transcription. This forgoes the need 

for host-machinery mediated second-strand replication and thus, achieves faster 

onset of transcription 111,112. 

Immunoreactivity in human populations. Previous exposure to natural 

AAV infections can generate an immune response that can hamper AAV-

mediated gene therapy. Both humoral and cell-mediated responses to AAVs 

have been detected. Humoral responses to AAVs include circulating neutralizing 

antibodies that limit cell transduction113. Cell-mediated responses to AAVs 

include a CD8+ T Cell response that can cause both a loss of transduced cells 

and adverse inflammation114. 
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 Neutralizing anti-AAV antibodies have been found  in all human 

populations 115.  Most individuals carry anti-AAV neutralizing antibodies that 

recognize some AAV capsids100. Antibodies against AAV1 and AAV2 are the 

most common and are found in nearly 70% of the human population, followed by 

antibodies against AAV6 and AAV9 which are found in nearly 45% of the human 

population10. 

Efforts to overcome the challenge of AAV immunoreactivity include 

screening for anti-AAV titers and immunosuppressing patients before AAV 

treatment. Delivery of AAVs to immune-privileged areas such as the CNS, 

however, may not be inhibited by an immune response.  

In summary, despite many challenges, AAVs are among the most 

practical delivery vectors for gene therapy, They have previously been used to 

deliver Cas9 and guide RNA into the CNS in animal models and have a record of 

safety in clinical trials. 

 

1.7 Rationale 

 

ALS is a uniformly fatal neurodegenerative disease for which there is no 

cure. Mutations in the gene SOD1 cause a subset of ALS cases, and are well 

characterized by animal models. Designing AAV-based, systemic and localized 

strategies to silence SOD1 will help in the development of a therapy for SOD1 

ALS.  
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Chapter II Methods 

 

2.1 Plasmid Construction 

 

We designed sgRNAs targeting the human SOD1 using the CRISPR 

DESIGN tool from MIT (crispr.mit.edu), which ranks all possible guides given a 

target genomic input based on predicted faithfulness of sgRNA (see Table 2 for 

sequences). All oligonucleotides encoding the sgRNA sequences were 

synthesized by Genewiz. For in vitro screening, we cloned our guide vectors into 

the lentiCRISPRv2 Cas9-FLAG-2A-Puro (Addgene 52961). For cloning, we 

phosphorylated our oligos using PNK (NEB), digested the plasmid backbone with 

BsmBI, and ligated with T4 DNA ligase (NEB). For plasmids packaged into AAV 

vectors, we cloned our gRNA oligos into the pAAV-U6sgRNA_hSyn-GFP-KASH-

bGH plasmid (Addgene 60958, a gift from the Feng Zhang lab) via SapI 

restriction digestion. pAAV-pU1A-spCas9-RBGpA Cas9 plasmid was a gift from 

the Guangping Gao lab. 
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Oligonucleotide Type ID Sequence (5’ to 3’) or Plasmid Name 

sgSOD1 sequence-Lead 

candidate for intravenous 

injection 

1657 sghSOD1.E2c AATGGACCAGTGAAGGTGTG 

sgSOD1 sequence-LC 

ICV injection 

sg.10 CCTCTATCCAGAAAACACGG 
 

sgSOD1 sequence sg.C ccgtgaaaagaaggttgttt 

sgSOD1 sequence sg.D CGGCGTGGCCTAGCGAGTTA 

sgSOD1 sequence sg.E TCTGGCCTATAAAGTAGTCG 

sgSOD1 sequence sg.F GTGGGCCAAAGGATGAAGAG 

sgSOD1 sequence sg.G tgagtaacaaatgagacgctg 

sgSOD1 sequence sg.J TTGCAGTCCTCGGAACCAGG 

sgSOD1 sequence sg.E2A AGCATTAAAGGACTGACTGA 

sgSOD1 sequence 1657 sghSOD1.E2c AATGGACCAGTGAAGGTGTG 

sgSOD1 sequence SG.9 AATCCTCTATCCAGAAAACA 

sgControl sequence* 
sgLacZ(Addgene 

60228) 

TGCGAATACGCCCACGCGAT 

SOD1 genotyping primer mSOD fwd GCATACCCAATCACTCCACAG 

SOD1 genotyping primer mSOD rev GTCCATGAGAAACAAGATGAC 

SOD1 genotyping primer hSOD fwd CATCAGCCCTAATCCATCTGA 

SOD1 genotyping primer hSOD rev 
TCTTAGAAACCGCGACTAACAATC 

Sequencing library primer 1811 SOD1exon2.F CCATCTCCCTTTTGAGGACA 
 

Sequencing library primer 1812 SOD1exon2.R CGACAGAGCAAGACCCTTTC 

backbone AAV-sgRNA Addgene 60228 AAV:ITR-U6-sgRNA(LacZ)-pCBh-Cre-
WPRE-hGHpA-ITR 

backbone AAV-sgRNA Addgene 60958 pAAV-U6sgRNA_hSyn-GFP-KASH-bGH 

backbone-AAV Cas9 AAV.Cas9 pAAV-pU1A-spCas9-RBGpA Cas9 

backbone-Lenti 

sgRNA/Cas9 
Addgene 52961 lentiCRISPR v2 

‘* initially published in Platt, R. J. et al. CRISPR-Cas9 Knockin Mice for Genome Editing and 
Cancer Modeling. Cell 159, 440–455 (2014). 
 

Table 2.  Oligonucleotides used for the design, development and optimization of AAV-

mediated targeting of SOD1 
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2.2 Lentivirus packaging 

 

For generation of sgSOD1 lentivirus, we used lentiCRISPRv2-Cas9-Flag-

2A-Puro plasmids (see Table 2 for Addgene requisition numbers). HEK293fs 

were seeded in 6-well plates to a density of 70%. Cells were then transfected 

with lentiCRISPRv2-Cas9-Flag-2A-Puro-sgSOD1 along with Δ8.2 and VSVG 

helper plasmids. Supernatant containing virus was collected at 36, 48 and 60 

hours. Viruses were purified by passing supernatant through a 0.45um Whatman 

filter (GE). Viruses were either frozen at -80⁰C or used immediately by dropping 

them onto human carcinoma HCT116 cells that were seeded at 70% confluence. 

Polybrene was added to the infected cells immediately after infection.  

2.3 Cell culture 

 

We maintained all cell lines at 37C and 5% CO2. For initial screening, 

human carcinoma HCT116 cells RNA were maintained in DMEM supplemented 

with 10% FBS. HCT116-sgSOD1-Cas9 cell lines were generated by infection 

with lentiCRISPRv2-Cas9-Flag-2A-Puro.sgRNA lentivirus. For in vitro testing of 

the AAV9 vectors, human embryonic kidney HEK293T cells were maintained in 

DMEM supplemented with 10% FBS. 

2.4 Surveyor and T7 assays 

 

We transfected both HEK293T and SH-SY5Y cells as follows: We seeded 

cells to a density of 70% and transfected them using the TransIT LT1 transfection 
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kit (Mirus Bio). After 72 hours we isolated DNA using QuickExtract™ DNA 

Extraction Solution (Epicentre). We amplified the SOD1 locus using Herculase II 

polymerase and primers we previously designed (Table s1). Both the Surveyor 

mutation detection kit (IDT) and the T7 endonuclease kit (NEB) were used to 

check for indels. We detected cleavage products by gel electrophoresis using a 

Tris-Borate 10-12% gel 

2.5 Tracking of Indels by Decomposition (TIDE) analysis 

 

DNA was isolated and amplification of the SOD1 locus was done as 

described above. Amplified DNA was Sequenced using Genewiz using the 

forward and reverse primers (Table 2). Trace files were used to quantify Indel 

percentage using TIDE (https://tide.nki.nl/).  

2.6 Mice 

 

All mouse work was approved by IACUC (Docket# A-1984-14-9).  All mice 

were housed in the UMASS Medical School Albert Sherman Center vivarium. All 

mice had constant access to food and water. For facial vein injections, we 

crossed SOD1G93A mice (B6SJL-Tg(SOD1*G93A)1Gur/J, Jax 002726) with  

either B6;129-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J Jax 024857) or 

STOCK Gt(ROSA)26Sortm1.1(CAG-cas9*,-EGFP)Fezh/J Jax 024858) Cas9 

knockin mice to create double transgenic mice. For ICV injections we used 

https://tide.nki.nl/
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SOD1G93A mice (B6SJL-Tg(SOD1*G93A)1Gur/J, Jax 002726). For both studies, 

animals were injected and observed by blinded personnel.  

All mice with human mutant SOD1 were monitored daily for signs of 

neurodegeneration. After signs of degeneration, mice were provided gel water 

and moistened food.  For survival studies, endpoint was defined as the time point 

when a mouse when they cannot right themselves (go from a lateral position to a 

ventral position) from one side in less than 10 seconds. Mice were sacked at 

endpoint according specifications in the IACUC protocol.  

 

2.7 Facial vein injections 

 

The protocol was adapted from published literature116. Mice, aged p1-p3, 

received up to 2x10e12 genome copies (gc) AAV in PBS solution or PBS in a 

maximum volume of 50ul PBS through the facial vein. Prior to injection, mouse 

pups were anesthetized by placing them on a rubber glove atop wet ice for 30-60 

seconds until no longer moving. Anesthetized mice were then placed under the 

microscope and a 30G needle was used to deliver the vector. The needle was 

inserted bevel-side up and 50 or 100ul volumes was used to deliver the vector. 

After injection, mice were rewarmed by hand for 2-3 minutes. To prevent 

rejection by the mother, pups were covered with bedding material, and the 

mother’s nose was dabbed with a Kim wipe soaked in ethanol. When necessary, 

a portable hand warmer or recirculating water heating pad was used to rewarm 
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the neonates.  Following injection, neonates were monitored closely during the 

first 24 hours for possible rejection by the mother.  

 

2.8 ICV injections 

 

All experiments were performed at the University of Massachusetts 

Medical School and were approved by the Institutional Review Board. Male 

B6SJL-Tg(SOD1-G93A)1Gur/J (Jackson Laboratory, Bar Harbor, ME; stock# 

002726) and  female non-transgenic (NTG) littermates were used to breed mice. 

AAV9.Cas9 and AAV9.guide vectors were mixed together and then injected into 

the cerebral lateral ventricles of postnatal day 1 (P1) mice as described by Stoica 

et al72. Undiluted stock concentrations were 8e9/ul for the AAV9.cas9 vector and 

9e9/ul for the AAV9.guide vector. Untreated SOD1G93A mice, AAV9.Cas9 treated 

SOD1 mice, and AAV9.nontargeting guide+AAV9 treated mice were used as 

controls. Mice were observed weekly for signs of paresis/paralysis and sacked at 

disease endpoint, defined by the inability for a mouse to right themselves after 

being placed on their back within 10 seconds. Mice were euthanized and 

immediately frozen or fixed in 10% formalin or 2.4% glutaraldehyde. Three mice 

from five mice from the Cas9+sgSOD1 group and three mice from the 

Cas9+sgControl group and the Cas9+sgSOD1 group were sacrificed at disease 

midpoint, 110 days, for histological and biochemical studies. At day p85 and 
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p110, mice from the sgSOD1 group and untreated SOD1 group were used for 

net axonal transport measurements.  

2.9 Grip strength performance: 

We monitored the evolution of clinical weakness using the grip-strength 

meter (Mark-10, USA). This device measures the strength of both the hind limbs 

and fore limbs of the mice. Grip strength testing was performed in a unidirectional 

air flow hood. Mice were positioned such that they could grip the meter, and then 

were gently pulled back away from the meter, generating a force measurement. 

Grip strength from the forelimbs and from all limbs were assessed. There is no 

risk of injury for the mice during these tests. Mice were acclimated for 2 weeks 

before recording results. Testing occurred once a week. 

 

2.10 Rotarod motor performance: 

We monitored the evolution of clinical weakness of mice by using a rotarod 

device (Omnitech Electronics). Rotarod testing of all experimental and control 

animals began at 90 days post-birth.  Rotarod testing was performed in a 

unidirectional air flow hood in AS-1061 Procedure Room (see Section A7). 

Rotarod testing sessions were performed twice per week, with 2-3 days between 

tests. The Rotarod was set to a speed of 15 revolutions per minute, and animals 

were run on the rotating rod for a maximum of 300 seconds 3 trials were 

performed per session with minimum of 10minutes rest between each trial.  
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2.11 Weight and paresis 

 

Mouse were weighed weekly and the degree of paresis was assessed by 

the following scoring system: 1; upon lifting mouse by tail, mouse fully abducts 

hind limbs. 2; upon lifting mouse by tail, mouse abducts hind limbs, paws face 

outwards. 3; Upon lifting mouse by tail ‘clasping’ observed, lack of hind limb 

abduction, paws no longer face outward and face behind. 4; Severe Clasping 

and waddling and dragging rear quarters behaviors. 5; paralysis in one or more 

limb.  

 

2.12 Deep sequencing 

 

Deep sequencing was performed using the ILLUMINA MiSeq kit. Genomic 

DNA from end stage Cas9+guide treated and end stage NT+Cas9 treated mice 

were extracted using the High Pure PCR template Preparation Kit (Roche). Each 

site was amplified by PCR using Phusion Flash polymerase. Custom barcodes 

were incorporated into via a second PCR. PCR products were purified using the 

Qiagen PCR purification Kit.  Barcoded amplicons were pooled together and 

sequenced using the MiSeq DNA sequencer (Illumina). Reads were sorted by 

barcode, filtered for >99% confidence (phred33 ≥ 20) per read. Indel 

quantification was done using CRISPResso117  

2.13 Quantification of ventral root axons 
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Mid-disease mice (p110) were fixed by perfusion with 4% PFA in PBS and 

the L5 ventral nerve roots dissected. The ventral root samples were first fixed 

overnight in 2.5% glutaraldehyde in 0.1M cacodylate buffer, and then washed 

and post-fixed in 1% osmium tetroxide for 1 hour. Samples were then dehydrated 

through a graded ethanol series into propylene oxide, followed by overnight 

fixation in 1:1 solution of propylene oxide and SPI-Pon 812 rein mixture. 

Following a three-hour incubation, samples were polymerized at 68C for 4 days. 

Nerves were trimmed, reoriented and cut into 0.6um sections. These sections 

were mounted on glass plates, stained with toluidine blue, washed and mounted 

with a coverslip. Sections were then imaged, with axon number diameter and 

area quantified using ImageJ (National Institutes of Health, Bethesda, MD).  

 

2.14 Neuromuscular junction staining 

 

We perfused and fixed mice using 4% PFA as described previously.  We 

cut 35μm thick sections of gastrocnemius. For staining, tissues were thawed, 

washed with PBS, permeabilized with PBS-0.4% TritonX and then blocked with 

10% donkey serum in PBS-TritonX. Tissues were then incubated overnight with 

rabbit anti-synaptophysin (Invitrogen 080130) and rabbit anti-ΒIII tubulin 

(Covance, PRB-435P-100). Tissues were washed with PBS and incubated with 

Donkey anti-Rabbit and α-bungarotoxin diluted in PBS. Images were taken on 

Nikon microscope and visualized using ImageJ and Nikon Elements Viewer. A 
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blinded observer recorded and scored by eye each NMJ as either intact, partially 

denervated, or fully denervated. Three treated groups were scored, untreated, 

sgSOD1, and sgControl, n=3 mice for each group.  

 

2.15 In vivo quantitation of net axonal transport. 

 

Preparation of recombinant tetanus toxin fragment C (TTC) was prepared 

as follows: TTC was overexpressed and purified in Escherichia coli strain BL21 

(DE3)118, and radiolabeled by incubating 3 ug of TTC per mCi of 125Iodine-

radionuclide (125I)  (Perkin Elmer) for 10 minutes. Radiolabeling of TTC was then 

quenched with tyrosine.  

In vivo imaging of net axonal transport was performed as follows: One 

week prior to imaging, mice were given water supplanted with potassium iodine 

to block baseline interactions with free 125I.  For the imaging, mice were under 

isoflurane anesthesia during the entire procedure. ~100 ug of TTC was injected 

into the gastrocnemius at a rate of 10 ul per minute. Following the injection, 

animals were imaged on a NanoSPECT/CTTM small animal imaging camera 

(Bioscan Inc.) at twenty-four-hour intervals. The collected CT and SPECT images 

were reconstructed, and radioactivity at the region of interest was analyzed using 

VivoQuant 1.23 software (InvivoCRO). All imaging experiments and data 

analyses were performed blind.  
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2.16 Laser capture microdissection 

 

Frozen, unfixed spinal cord tissue embedded in OCT was cut using a 

cryostat into 10μm thick sections. 8 sections were fitted onto one slide. Slides 

were stored at -80 until use. 

 All laser capture microdissection was performed using the Arcturus XT 

Laser Capture microdissection system. (Arcturus). Slides were thawed in 75% 

EtOH for 30 seconds, washed in ddH20 for 30 seconds and then stained with 

Cresyl Violet. Slides were then dehydrated in graded ethanol solutions (75% 

EtOH, 95% EtOH, 100% EtOH, 100% EtOH, 30 seconds per solution) and 

cleared in Xylene for 5 minutes. Slides were then dried using handheld fan and 

mounted onto the microscope. For each sample, 300 motor neurons, identified 

by morphology and location within the ventral horn of the spinal cord, were 

dissected using the Infrared laser. The collection cap containing the micro-

dissected motor neurons was placed upright on ice and 5μl RIPA buffer 

containing a protein inhibitor cocktail (Roche) was added. Considerate care was 

taken to ensure that all portions of the collection tube’s surface area was 

immersed in RIPA. The caps were then placed in collection tubes, vortexed for 

30 seconds, spun down and stored at -80 until further use. 

Lysate was analyzed using the ProteinSimple Wes capillary western blot 

machine and normalized to total protein levels. Anti-goat SOD1 antibody was 

used to detect SOD1 (AF3418, R&D Systems) and total protein was assessed 
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using ProteinSimple Total Protein kit (ProteinSimple). for each sample two 3μl 

volumes were loaded into two lanes, with one lane detecting total protein and the 

other lane detecting SOD1. Results were visualized and analyzed using 

Compass SW software (version 4.4.0 ProteinSimple). To both quantity total 

protein and ensure that detection of total protein fell within the machine’s limit of 

detection, a standard curve consisting of serially diluted whole brain RIPA extract 

was run alongside laser captured samples.   

 

2.17 ELISA 

Tissue samples were lysed in RIPA buffer with a protein inhibitor cocktail 

(Roche) and protein lysate isolated and stored at -80C. Lysates were then 

thawed on ice, and their concentrations were determined by BCA assays.  

Lysates were then diluted to 0.2ng/ul and assayed using a commercially-

available sandwich ELISA for human SOD1 (Invitrogen). 

2.18 digital droplet PCR (ddPCR) of LCM motor neurons 

 RNA from Laser-captured motor neurons in lumbar and thoracic spinal 

cord sections were isolated using Arcturus Pico Pure RNA isolation kit. RNA was 

converted to cDNA using Multiscribetm RNA transcriptase (ABI) kit. cDNA from 

150 motor neurons were analyzed per section. Tissue from the dorsal horn was 

dissected from each spinal cord section and served as an internal control. 

Sample cDNA were processed into droplets and run on the Bio-Rad QX100 
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ddPCR system according to the manufacturers’ protocol. Results were analyzed 

using Quantasofttm Analysis Pro software (Bio-Rad).  

2.19 Statistical analysis 

For ELISA, Grip strength, Neuromuscular junction analyses, and ddPCR t-

tests were used to compare sgSOD1 mice and control cohort. For survival 

analysis of CRISPR-Cas9 treated mice, differences Kaplan Meir curves were 

determined by log rank test. For comparison of correlation between Age of onset 

and duration of disease, significance was determined by Fischer’s z to r test. 

For ventral root axon diameter analysis, statistical significance was 

determined by one-way ANOVA using the Holm-Sidak method for correcting for 

multiple correction.  Motor neurons that we ascribed as having a diameter of 4um 

and greater, were analyzed and a P< 0.05 was regarded as significant. 

For net axonal transport Statistical significance was determined by two-

way ANOVA after Bonferroni’s correction, with P < 0.05 being regarded as 

significant. The P values for each experiment were determined and stated in the 

figure legends. To determine the associations between disease stage/age with 

peak amplitude or between disease stage/age with time-to-peak values, linear 

regression was used to generate trendlines with R2 values stated in the figure 

legends. 

For gel capillary western blot, statistical significance was determined by 

unpaired student’s t-tests.  
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Chapter III Systemic delivery of sgRNA targeting SOD1 

prolongs survival in transgenic mice expressing Cas9 

and SOD1G93A 

 

3.1 Preface 

 

I conceptualized the project under mentorship of Dr Robert Brown and Dr 

Wen Xue. I designed sgRNAs using MIT.CRISPR.edu and by manual review. I 

synthesized and cloned all sgRNAs. I performed all cell culture, qPCR, western 

Blot, TIDE and Surveyor Assays. For all preceding experiments I was assisted by 

Haiwei Mou. For cell culture assays, I was assisted by Suetyan Kwan. Packaging 

of AAV plasmids into AAV9 virus was done by the Viral Core at Children’s 

Hospital Boston. I performed additional QC on virus. I generated SOD1 x Cas9 

mice. Jia Lee performed facial vein injections. I performed genotyping, weight, 

grip strength, neuro-score, and rotarod assays. For all mouse work, I was 

assisted by Alexandra Weiss and Jake Metterville. I performed all animal 

harvests. I performed all tissue sectioning and was assisted by Alexandra Weiss 

and Jake Metterville. I performed all microscopy and was assisted by Haiwei 

Mou. For Western Blots, I was assisted by Tingting Jiang and Haiwei Mou.  

 

  



46 
 

3.2 Abstract 

 

Genetic silencing of the SOD1 is a promising strategy for therapeutic 

intervention of ALS. Mutations in SOD1 are the most characterized genetic cause 

of ALS and account for ~20% of all familial cases. CRISPR-Cas9 technology, 

based on the programmable nuclease Cas9, can specifically and robustly silence 

genes by generating frameshift mutations within the coding sequence of a 

desired gene. Before CRISPR technology can progress to the clinic, strategies to 

deliver CRISPR components to the Central Nervous System need to be 

investigated.  In this study, we assess the ability of Streptococcus pyogenes 

Cas9 to silence SOD1 in the brain and spinal cord. We delivered via intravenous 

injection a guide RNA targeting SOD1 into a transgenic mouse expressing 

human mutant SOD1 and Cas9 using adeno-associated virus 9. (AAV9). We 

demonstrate on-target gene editing, increased survival, improvements in rotarod, 

grip strength and weight retention, and a trend for decreased SOD1 mRNA 

expression in the brain and spinal cord. We also observe high levels outside the 

CNS, with exceedingly high levels of indels in the liver, which could be 

detrimental in a clinical application. We conclude that Cas9-mediated genome 

editing can mediate disease gene silencing in the CNS and warrants further 

development for use as a therapeutic intervention for SOD1-linked ALS patients. 
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3.3 Introduction 

 

ALS is an adult-onset motor neuron disease that causes progressive 

degeneration in upper and lower motor neurons, leading to death usually within 

3-5 years of onset. Approximately 90% of ALS cases are sporadic and 10% of 

cases of ALS are familial, in which one of numerous ALS associated mutations is 

inherited. Mutations in the free-radical scavenger gene SOD1 are the second 

most prevalent genetic cause of Amyotrophic Lateral Sclerosis (ALS), accounting 

for ~20% of all inherited cases and 1-3% of all sporadic cases13–16. While the 

exact mechanism by which SOD1 causes neurodegeneration is unclear, 

numerous studies suggest that SOD1 protein misfolding and consequent 

aggregation contribute to cell death16,119. Interestingly, SOD1 misfolding is also 

observed in a subset ALS cases with no genetic SOD1 mutation 15,20,32, 

suggesting wtSOD1 may contribute to pathology in a manner similar to mutant 

SOD1. These lines of evidence suggest that silencing SOD1 could be potentially 

therapeutic in a subset of ALS cases, including cases that do not have a SOD1 

mutation.  

Many animal studies have demonstrated that repression of SOD1 through 

RNA interference (RNAi) ameliorates disease in animal models by delaying 

onset, prolonging progression, and increasing survival14,23,72–74. Yet, RNAi has 

limitations as a therapeutic, because delivery of RNAi molecules only transiently 

repress translation. For RNAi to be an effective therapeutic, either continuous 

expression of the RNAi molecule must occur in the brain and spinal cord, or 
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continual delivery of new RNAi vectors must be administered. Both present 

drawbacks in terms of developing a rationale therapeutic strategy to silence 

SOD1. 

In contrast, the DNA-editing technology based on the type II CRISPR-

associated Cas9 protein (Cas9) can complex with the bioengineered single guide 

RNA (sgRNA) and cleave DNA, leading to permanent silencing of gene 

transcription in vitro and in mammalian models1,91,93. Cas9 is guided to the target 

sequence by a complementary base pairing of the sgRNA and cleaves both 

strands of the DNA. A portion of the cleaved DNA is imperfectly repaired by non-

homologous end joining (NHEJ) repair pathway, creating insertions or deletions 

(indels) at the target site. When targeted to the coding sequence of a gene, these 

indels disrupt the reading frame of the sequence, generating premature stop 

codons and driving degradation of subsequent mRNA by nonsense mediated 

decay (NMD). After DNA cleavage, Cas9 expression is no longer needed to 

silence genes and doesn’t need to be continually expressed.  

The permanence of Cas9 editing makes it advantageous over RNAi as a 

potential therapeutic, as one administration of sgRNA and Cas9 could potentially 

rectify genetic disorders. However, several drawbacks remain. Currently utilized 

Cas9 proteins have demonstrated ‘off-target’ cleaving, where sites of DNA that 

have near-complementary to the 5’ end of the sgRNA are targeted. Additionally, 

the generation of indels at the targeted site cannot be precisely controlled and 

may cause missense mutations, which would not silence gene expression and 
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express a mutant isoform of the target gene. These considerations taken with the 

challenges associated with delivery to specific tissue make it clear that gene 

therapy approaches involving Cas9 need more investigation. SOD1 is an 

excellent candidate as a target for a Cas9 translational study, as there is both a 

clinical need and a wealth of previous literature describing the outcomes of 

SOD1 repression in mouse models. 

 

3.4 Results 

3.4.1 Design of sgRNAs and AAV packaging 

 

We designed sgRNAs within the first four exons of the human SOD1 locus  

using CRISPR.MIT.edu that finds and ranks sgRNAs algorithmically based on 

lowest probability of off target-sites (Fig. 5A). We selected an sgRNA sequence 

that did not overlap the most common mutant SOD1 gene mutations found in 

patient populations (Fig. 5B).  We then cloned the sgRNAs into the Cas9-

containing plasmid px330 (Addgene 42230). We tested sgRNA indel efficiency by 

transfecting the human carcinoma cell line HCT116 and then performing 

Surveyor mutation detector assays (Fig. 5C). 

To determine whether our sgRNA could work in vivo, we first generated a 

transgenic mouse model that expresses both human mutant SOD1G93A and Cas9 

(generated from Jax mice stock number 002726 and 024857) (Fig. 5D). We then 

cloned the sgRNA into an AAV plasmid (Addgene 60229), which controls sgRNA 

under a U6 promoter, and CRE under control of a BBH promoter and packaged 
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them into AAV9 viruses (Fig 5.E top) .We injected via intraperitoneal injection our 

AAV9 expressing sgSOD1 into a transgenic mouse model and sacked mice after 

3 weeks (Fig. 5E bottom). We found formation of indels at the predicted SOD1 

locus in the liver and pancreas (Fig. 5E bottom right). 
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Figure 5. CRISPR-mediated editing of human SOD1 

 

(a) sgSOD1 targets the third exon of human SOD1.  (b) Schematic of common SOD1 

mutations found in ALS patients and targeting region of sgRNA. (c) Surveyor Assay of stably 

infected HEK293T cells stably expressing Cas9 and sgRNA. Band at 445bp is the PCR 

product of the SOD1 locus. Cleavage bands indicate the presence indel mutations. (d) 

Generation of double transgenic human SOD1G93A x Cas9 mice. (e) Schematic of AAV plasmid 

used for in vivo studies. sgRNA is under control of a pol III U6 human promoter. (f) In vivo 

experiment design. 1-3-day old SOD1G93A x Cas9 transgenic mice received 2x1012 AAV vector 

delivered into the facial vein. Mice were monitored weekly and until endpoint. 

 

3.4.2 Survival and motor function Improvements 

 

To determine if our sgRNA could edit SOD1 in the CNS and to assess 

survival and functional outcome, mice were injected intravenously with sgRNA 

through their facial vein within 2 days of birth with 2E12 gc vector (n=15) and 

monitored for survival (Fig. 5F). For controls, we used un-injected Cas9:SOD1 

mice, injected SOD1G39A mice (i.e. littermates, that lack the Cas9 transgene), and 

un-injected littermates that lack the Cas9 transgene (total n=10).  Mice were also 

monitored daily with weekly weight, grip strength and rotarod assessments 

recorded. Compared to control groups, treated mice had increased median 

survival (Fig. 6A, 145.5 days vs 127, p<0.0001). Compared to controls, treated 

mice had improved weight retention starting at week 17 (Fig. 6B).  Treated mice 

also had a delay in disease onset as measured by observation of hindlimb 

clasping (Fig 6C 129 days vs 113 days, p=0.004). Motor improvements were also 
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observed through both rotarod performance starting at week 17 (Fig. 6D, mean 

time to fall 130 sec vs 62 sec p=0.0013), and grip strength starting at week 16 

(Fig. 6E, maximum force generated 1.04N vs 0.78N, p=0.033). 
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Figure 6. Targeting SOD1 increases survival in SOD1G93A; Cas9 mice 
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SOD1G93A x Cas9 mice were injected intravenously through their facial vein within 2 days of 

birth with 2E12 gc vector and were monitored daily. (a) Median survival for treated mice (n=16) 

was 145.5 compared to 127 to mice in the control group (n=10).  p-values for Mantel-Cox Log 

Rank test was p<0.0001. (b) Average weights of treated mice compared to mice in the control 

group, with significant differences observed at weeks 16, 17 and 18, p-values=0.0223, 0.0001, 

and <0.0001, respectively. (c) Kaplan Meir graph of onset of clasping phenotype, an 

observable measure in which mice can no longer fully abduct hindlimbs after lifting them by 

their hindlimbs. Median age for onset of clasping phenotype for treated mice was 129 days 

compared to 113 days for control, p=0.004. (d) Rotarod testing of treated mice showed 

differences in latency to fall at weeks 17 and 18 compared to mice in the control group, p-

values =0.0007, and 0.004 respectively. (e) Max Grip strength decline is slowed in treated mice 

compared to controls at week 16 and 17 p-values =0.0013 and 0.0001, respectively. 

 

3.4.3 Detection of on-target indels by deep sequencing cortical and spinal 

cord tissue 

 

To ensure that the survival and phenotype improvement was due to indel 

formation, we deep-sequenced the targeted locus within the SOD1 locus. All 

indels observed in the brain and spinal cord that occurred with a frequency 

higher than 0.01% generated premature stop codons at one of four sites (Fig. 

7A). Critically, all premature stop codons generated were upstream of the NMD 

boundary, a region +-50nts upstream of the last exon-exon junction after which 

premature stop codons no longer signal for nonsense mediated decay120. 

We detected indel frequencies of 3% in the spinal cord and 5% in the 

brain.  In both the brain and the spinal cord, the most prevalent indel mutation 

was the insertion of adenosine 3 nucleotides upstream from the PAM (Fig. 7B 

and 7C). No indels that occurred with a frequency higher than 0.01% caused 

missense mutations, which would not be degraded by nonsense mediated decay.      
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To determine whether AAV9.sgRNA infected peripheral tissue, we 

sequenced DNA from the liver. We found high levels of editing in the livers, 76% 

(Fig 7B and C). 
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Figure 7. Indel formation in the brain and cpinal cord following facial vein injection of 
AAV9.sgSOD1 
 

(a) Exon map of sgRNA binding location, premature stop codons generated by indel mutations, 

and NMD boundary within SOD1. (b) Sequencing reads and frequency of indels detected at 

sgRNA targeting locus. For the Brain, Spinal Cord and liver, the most frequent indel was the 

insertion of A three nucleotides upstream of the PAM. (c) Plot of frequency of individual indel 

versus location within SOD1 locus. All indels detected were upstream of PAM and generated 

premature stop codons and not missense mutations.  

 

 

3.4.4 Decrease of SOD1 transcripts in CNS 

 

 

To determine whether AAV9.sgSOD1 reduces SOD1 transcripts in the 

CNS spinal cord, we performed qPCR on endpoint cortical and lumbar spinal 

tissues. Compared to untreated mice, there was a ~31 percent reduction in 

SOD1 transcripts in the brain (Fig. 8A, p=0.0173), and a 66 percent reduction in 

the lumbar spinal cord (Fig. 8B, p=0.0475). Additionally, in the lumbar spinal 

cord,  we observed an increase in the standard deviation of qPCR results 

between sgSOD1 mice when compared to sgControl mice.  

To assess whether our facial vein injection was permitting excessive viral 

transduction outside the CNS, we performed qPCR for SOD1 on endpoint liver 

tissue. We found that treated mice had a 73 percent reduction in SOD1 

compared to mice in the control group (Fig. 8C, p=0.0078).   

To determine whether AAV9.sgSOD1 reduces microgliosis, we measured 

transcript levels of the microglial-specific marker Ionized calcium binding adapter 
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molecule (Iba1) via qPCR on endpoint cortical tissue. We did not find a statistical 

difference in Iba1 levels between treated and untreated mice (Fig. 8B).  

  

 

Figure 8. sgSOD1 reduces SOD1 mRNA expression 

(a -c) qPCR relative expression of SOD1 in control mice and in treated mice, in Brain (a), 

Lumbar Spinal Cord LSC (b) and in Liver (c), p-values = 0.0173. 0.0475, 0.0078, respectively. 

(d) qPCR relative expression of microglial marker IBA1 in control and treated mice cortical 

tissues, p-value =0.719. 
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Chapter IV ICV CNS delivery via ICV injection of Cas9 

and guide RNA targeting SOD1 prolongs survival 

 

4.1 Preface 

 

I conceptualized the project under the mentorship of Drs. Robert Brown 

and Wen Xue. I designed sgRNAs using MIT.CRISPR.edu and by manual 

review. I synthesized and cloned all sgRNAs. I performed all cell culture, qPCR, 

western Blot, TIDE and Surveyor Assays. For all preceding experiments I was 

assisted by Haiwei Mou. For cell culture assays, I was assisted by Suetyan 

Kwan. The University of Massachusetts Medical School Vector core packaged 

and performed quality control on AAVs. I performed additional QC. Alexandra 

Weis performed ICV injections. I performed genotyping, weight, grip strength, 

neuro-score, and rotarod assays. For all mouse work, I was assisted by 

Alexandra Weiss and Jake Metterville. Alexandra Weiss and I performed all 

animal harvests. I performed all tissue sectioning and was assisted by Alexandra 

Weiss and Jake Metterville. Alexandra Weiss performed ventral root dissections 

and the UMASS Electron Microscopy core prepared slides for ventral root 

counts.  I performed all Immunofluorescence assays. For neuromuscular 

junctions, I was assisted by Jake Metterville. For all microscopy, I was assisted 

by Haiwei Mou, Nick Rice and Samantha Ho. Pin-Tsun Lee performed net axonal 

transport assays. I performed laser capture microdissections. I was assisted by 



60 
 

Harry Haruhiko and Rachel Stock. Ventral root sectioning and mounting was 

performed by the UMass Electron Microscopy Core.  

 

4.2 Abstract 

 

Mutations in the SOD1 gene are the most characterized genetic cause of 

amyotrophic lateral sclerosis (ALS) and account for ~20% of inherited cases and 

1-3% of sporadic cases. The gene-editing tool Cas9 can silence mutant genes 

that cause disease, but effective delivery of CRISPR-Cas9 to the central nervous 

system (CNS) remains challenging. Here, I developed a strategy using canonical 

Streptococcus pyogenes Cas9 and guide RNA packaged into separate AAV9 

vectors to silence SOD1 following delivery into the cerebral ventricles. I 

demonstrate effectiveness of delivering Cas9 to the CNS in a transgenic mouse 

model. Mice treated with both AAV.Cas9 and AAV9.gRNA had prolonged 

survival when compared to mice treated with AAV.Cas9 only. Treated mice also 

had improved grip strength, improved rotarod function, and improved net axonal 

transport. This study demonstrates that AAV delivery of Cas9 and guide RNA 

can mediate disease gene silencing of SOD1 in motor neurons and necessitates 

further development for use as a therapeutic intervention for SOD1-linked ALS 

patients. 
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4.3 Introduction 

 

ALS is a neurodegenerative disease in which loss of upper and lower 

motor neurons results in progressive muscle weakness, paralysis, and death, 

typically within 2-5 years of onset121,122. There is a clear need to develop 

treatments for ALS; only two FDA-approved drugs are available, with each 

providing modest delays in ALS progression. Riluzole, a sodium channel blocker 

approved in 1995, extends patient survival by approximately three months8. 

Edaravone, a novel free-radical scavenger approved in 2017, slowed early-stage 

ALS progression in a 6-month trial9. Currently, the impact of edaravone on 

patient survival has not been reported. 

Approximately 90% of ALS cases are sporadic and 10% of cases are 

familial122. Currently, over 30 genes are associated with familial ALS, Mutations 

in the free-radical scavenger gene SOD1 (Cu-Zn superoxide dismutase 1) are 

the second most common genetic cause of ALS, accounting for ~20% of familial 

cases and in 1-3% of sporadic cases13–16. ALS-associated SOD1 mutations 

destabilize the protein, causing aberrant misfolding and aggregation that likely 

contribute to cell death16,119. The mechanism of how SOD1 misfolding causes cell 

death is not fully understood, but numerous pathways have been implicated—

glutamate excitotoxicity, mitochondrial dysfunction, synaptic transport deficiency, 

and impairment of autophagy and the proteasome50,71,123–126. Interestingly, 

aberrant SOD1 misfolding is also observed in a subset of ALS cases lacking 
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SOD1 mutations15,20,32, suggesting that mutant and wtSOD1 may contribute to 

pathology in a similar manner. Thus, targeting SOD1 may have therapeutic 

potential beyond those with a mutant SOD1 gene. 

Numerous studies have demonstrated that repressing SOD1 ameliorates 

ALS in animal models by delaying onset, and increasing survival14,23,72–74. Many 

of these studies used the SOD1G93A (gain-of-function mutation) transgenic mouse 

model, which exhibits motor neuron loss and a shortened lifespan (5 to 6 

months). Previous strategies to repress SOD1 in transgenic animal models 

include neutralizing antibodies34, antisense oligonucleotides (ASOs)75, viral 

vector-mediated delivery of short hairpin RNA (shRNA)73,76, artificial microRNA 

(miR)72, and chemically-modified shRNA23.  The wealth of literature describing 

the outcomes of SOD1 silencing make the mouse model an excellent candidate 

for studying the therapeutic potential of CRISPR-based gene editing.  

CRISPR-associated Cas9 protein (Cas9) binds with a single guide RNA 

(sgRNA) to cleave genomic DNA. Cas9 can target anywhere in the genome 

where there is a Protospacer Adjacent Motif (PAM), a short sequence of 2-6 

nucleotides. Cas9 proteins from different species of bacteria recognize different 

PAMs. After cleavage, the Non-Homologous End Joining (NHEJ) repair pathway 

can introduce frameshift insertion/deletion mutations, resulting in gene silencing 

via nonsense-mediated decay1,91,93.  
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The CRISPR genome editing system has been demonstrated to work in 

the brain and spinal cord of mammals96,97. In comparison to other methods of 

gene silencing, A Cas9 strategy for silencing SOD1 is appealing because of 

ability to target the genome and cause permanent alteration, eliminating the need 

for repeat doses, or delivering persisting AAVs, and reducing potentially harmful 

immunogenic responses. 

Recently, Staphylococcus aureus Cas9 (saCas9) was used to silence 

SOD1 in mice127. The small size of saCas9 is advantageous for in vivo delivery, 

yet it recognizes a long “NNGRRT” PAM that limits the number of available 

PAMs in the genomic region of interest. By contrast, Streptococcus pyogenes 

Cas9 (SpCas9) recognizes a short “NGG” PAM that enables a larger selection of 

target sites in the gene of interest. Developing an in vivo delivery platform for 

SpCas9 will expand the genome editing toolkit for studying ALS.  

Adeno-associated virus (AAV) is the favored delivery vector for gene 

therapies due to its low pathogenicity and ability to infect nondividing cells, 

including motor neurons31. However, the cargo size of AAVs is small, and co-

expressing the large SpCas9 (4.3kb), sgRNA and requisite regulatory elements 

in the same AAV vector is challenging. In this study, we applied a dual vector 

strategy in which SpCas9 and sgRNA are on separate AAV9 vectors. We 

demonstrate that this delivery platform can target SOD1 in brain and spinal tissue 

and prolong survival in the SOD1G93A mouse model of ALS.  
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4.4 Results 

4.4.1 Design and Screening of sgRNAs and in vitro validation 

 

We designed sgRNAs within the first three exons of the human SOD1 

locus (Fig. 9A top panel) and cloned them into separate lentiV2 plasmids. To test 

sgRNA silencing efficacy, we generated stable cells using the diploid human 

HCT116 cell line for each sgRNA and measured SOD1 protein levels by Western 

Blot (Fig. 9B). Our top sgRNA candidate, guide E2C (hereafter called sgSOD1) 

had the highest knockdown efficiency (Fig. 9B), and targeted both wildtype and 

G93A human SOD1 alleles. To determine if knockdown was due to the 

generation of indels near the target site of sgRNA, we sequenced the sgRNA 

target region and detected indels at the predicted location (Fig. 9C). We further 

confirmed SOD1 mRNA knockdown using qPCR (Fig. 9D). To ensure that the 

efficiency of sgSOD1 was not specific to one cell line, we transiently infected two 

additional cell lines—human embryonic kidney HEK293T and human 

neuroblastoma SH-SY5Y—with AAV9 plasmids (described in next paragraph) 

and detected indels at the predicted location (Fig. 9E).  
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b

 

Figure 9. in vitro CRISPR-mediated editing of human SOD1 

 

(a) Map of gRNAS against SOD1 in screen (b) Protein analysis via western blot. sgSOD1 

depletes SOD1 in HCT116 cells stably expressing Cas9 and sgRNAs. GAPDH serves as a 

loading control (c) Indel formation of sgRNA E2C in HCT116 stable cell line HEK293T. sgE2C, 

hereafter called sgSOD1, was selected for further characterization (d) qPCR of SOD1 in 

HCT116 stable cell lines (e) Sequencing traces in various cell types 72 hours after infection 

with AAVs expressing Cas9 and sgSOD1. (e) Sequencing traces of DNA from various cell lines 

72 hours after infection with AAVs expressing Cas9 and sgSOD1.  

 

4.4.2 AAV Packaging and AAV9 selection 

sgSOD1 targeted SOD1 within the second exon and utilized a GGG PAM 

(Fig 10A). For in vivo experiments, we generated two AAVs, one expressing 
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Cas9 (a gift from the Gao lab) and the other expressing sgSOD1 (backbone 

addgene # 60958). We choose the AAV9 capsid because of its well-established 

ability to infect motor neurons76. The AAV9.sgSOD1 comprises a U6 promoter 

driving sgSOD1 and a hSYN1 promoter driving an EGFP-KASH protein, which 

localizes GFP to the outer nuclear membrane. AAV9.Cas9 comprises a pU1A 

promoter driving HA-NLS-Cas9-NLS (Fig. 10B).  

To confirm whether our AAV9 vectors containing Cas9 and sgSOD1 could 

silence SOD1 expression in vitro, we infected HEK293T cells with AAV9.sgSOD1 

and AAV9.Cas9 and measured SOD1 protein levels. We detected a significant 

decrease in SOD1 protein at 72 hours post infection (Fig. 10C). 

4.4.2 Survival and behavior 

 

To determine if we could edit SOD1 in vivo, we delivered our dual AAV9 

system to transgenic SOD1G93A mouse pups (postnatal day 1, or p1) via 

intracerebroventricular (ICV) injections (hereafter referred to as sgSOD1 mice, 

n=38) (Fig. 10D). While previous studies have used facial vein injections to 

deliver AAV9 to the CNS, including our own work, we chose ICV injections based 

on their ability to distribute throughout the CNS. Moreover, ICV uses less volume 

and targets fewer non-CNS tissues than facial vein injection72, limiting off-tissue 

expression of Cas9 outside of CNS. For controls, we used 3 groups: (1) un-

injected SOD1G93A mice (n=13), (2) mice with AAV9.Cas9 only (n=14), and (3) 

mice with AAV9.Cas9 and AAV9 containing a non-targeting sgRNA (hereafter 
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referred to as sgControl mice) (n=13). We then monitored all mice throughout 

their lifespan for motor symptoms.  

 

 

Figure 10. in vivo CRISPR-mediated editing of human SOD1 

(a) sgSOD1 targets the second exon of human SOD1.  (b) Schematic of dual AAV9 vectors 

used for in vivo experiments. For the guide AAV9, a U6 Pol III promoter drives sgRNA and the 

human Synapsin promoter drives EGFP-KASH expression. The KASH domain localizes GFP 

to the nuclear membrane. For the Cas9 AAV9 vector, the ubiquitous pU1A promoter drives the 

spCas9, which contains a 5’ HA Tag and flanking NLS signals. (c) sgSOD1 depletes SOD1 

protein in HEK293T cells 72 hours after infection with AAV9.sgSOD1. GAPDH serves as a 

loading control. (d) Schematic of in vivo experiment design. SOD1G93A transgenic mice (p1) 

received 2ul each undiluted AAV vector delivered bilaterally into the cerebral ventricles. 

 

We compared survival of mouse groups using Kaplan Meir graphs. 

Compared to all control groups, AAV9 sgSOD1 mice had increased survival 

(median survival 154 vs 134 days of sgControl+Cas9, p<0.0001) (Fig. 11A-B). 
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There was no significant difference in survival amongst control groups 

(sgControl+Cas9 vs Cas9 only, p =0.99; sgControl + Cas9 vs uninjected, 

p=0.17). sgSOD1+Cas9 mice also had a significant delay in disease onset, as 

measured by peak body weight (Fig. 11C-D, 115 days vs 99 days of 

sgControl+Cas9 mice, p<0.001).  

Extending disease duration, (i.e., increasing time between disease onset 

and endpoint of a mouse) is an important metric with regards to clinical 

application, as any therapeutic that could work after onset of symptoms would be 

favorable. Thus, we sought to determine if there were any changes in disease 

duration between sgControl and sgSOD1 mice. In the aforementioned survival  

graphs, the delay in onset was approximately equal to the increase in survival, 

suggesting that the duration of disease is not affected by SOD1 silencing. 

Furthermore, we found no correlation between duration of disease and survival in 

either sgSOD1, sgControl, or Cas9 only mice (Fig. 12C). Finally, to account for 

the possibility of AAV transduction variation affecting disease duration (i.e., mice 

receiving different doses due to human error),  we compared median disease 

duration between high-surviving sgSOD1 mice (i.e., mice with survival 150 days 

or longer) vs sgControl (Fig 12D. There no significant difference between these 

groups (Fig. 12C, 39.4 days vs 36.08, p-value 0.556). 

sgSOD1 mice showed significant improvement in grip strength starting at 

week 15 and rotarod performance starting at week 18 compared to sgControl 
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and Cas9 only mice (Fig. 11E and Fig. 12A).  sgSOD1 mice also showed 

significant improvement in rotarod performance (Fig. 11F and Fig. 12B). 

To ensure that sgSOD1 treated mice had no other adverse or unexpected 

symptoms, we monitored all mice for any changes in behavior, or health issues. 

Across all control groups, we observed six unexpected and adverse events that 

include bloated abdomen, obesity, death of mouse not due to paralysis, eye 

infection, hyperactivity, kyphosis, or seizures (Table 3). 

 

sgSOD1 
n=38 

sgControl 
n=14 

Cas9 only 
n=16 

Unexpected/adverse 

event 

m 

n=22 

f 

n=23 

m 

n=7 

f 

n=7 

m 

n=8 

f 

n=8 

bloated abdomen 2 (9.1%) - - 1 (14%) - 1 (12.5%) 

obese 2 (9.1%) - - - - 1 (12.5%) 

died not at endpoint 4 (18.1%) - 1 (14%) - 4 (50%) - 

eye infection 4 (18.1%) - - - - - 

hyperactive 1 (4.5%) - - - - - 

kyphosis 2 (9.1%) 1 (4.3%) 

4(4.3%) 

- - - 1 (12.5%) 

seizure or immobile 

after rotarod 

2 (9.1%) - - 1 (14%) - - 

Table 3. Unexpected and adverse events in mice 
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Figure 11. AAV CRISPR treatment prolongs survival in SOD1G93A mice. 

SOD1G93A mice were monitored daily by a blinded observer until they reached experimental 

endpoint.  Mice were either untreated (n=14), sgSOD1 (n=38), sgControl (n=13), or Cas9 only 

(n=13). (a-b). Median survival is 154 days for sgSOD1 and 134 days sgControl (p<0.0001). Error 
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bars on panel B show median and 95% confidence interval. (c-d) Median disease onset is 115 

days for sgSOD1 and 99 days for sgControl p<0.001. Error bars on panel B show median and 

95% confidence interval. (e) Grip strengths for all four limbs per mouse were normalized. 

Significant differences between sgSOD1 and sgControl were first detected at week 14. (f) 

Rotarod performance of sgSOD1 and sgControl mice were assessed by rotarod performance. 

Significant differences were first detected at week 16.  For panels E and F, error bars represent 

standard deviation. *p<0.05, **p<0.01, ***p<0.001, ****P<0.0001. 

 

Figure 12. AAV CRISPR treatment delays motor symptoms and duration of disease. 

 (a) Grip strengths from all four limbs per mouse were normalized. Significant differences 

between sgSOD1 and Cas9 only groups were first detected at week 16. (b) Rotarod performance 

of sgSOD1 mice. Significant differences were first detected at week 17. (c) Disease duration 

sgSOD1 mice, and sgControl mice and Cas9 only mice. Pearson correlation coefficients = 0.12 

for sgSOD1, >0.01 for sgControl, and 0.01 for Cas9 only  (d) disease progression vs age of onset 

in high survivor sgSOD1 and sgControl mice, Fischer r to z test, z=0.41, not significant. Error bars 

represent standard deviation. *p<0.05, **p<0.01, ***p<0.001, ****P<0.0001. 
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4.4.3 Tissue distribution and indel formation in brain and spinal cord tissue 

 

To determine if our dual delivery injection of AAV9.sgSOD1 and 

AAV9.Cas9 was efficiently distributed throughout the CNS, we immunoassayed 

brain and thoracic spinal cord sections for GFP (used as a marker of 

AAV9.sgSOD1) and HA-tagged Cas9. (Fig. 13A and 13B, respectively). We 

detected both AAV9 vectors in the brain and the thoracic spinal cord.  

To confirm signal detection of the AAV9.sgRNA vector, we observed 

slides of spinal cord using confocal microscopy for GFP signal (Fig. 13C). GFP-

KASH  was found to localize to the outer membrane of the nucleus, as expected. 

To confirm signal detection of the AAV9.Cas9 marker, we immunoassayed with 

another antibody, anti-Cas9, and observed signal in the spinal cord (Fig. D). 

To determine if the Cas9 and sgSOD1 generated indels at the SOD1 

locus, we targeted deep sequencing of the SOD1 locus in the brain and lumbar 

spinal cord and analyzed sequencing using CRISPRESSO117. We found indels at 

the targeted locus with an average editing frequency of 4.181% in the cortex and 

0.4% in the lumbar spinal cord. (Table 4). The results were similar to the in vitro 

results, the most prominent indel detected was the insertion of a thymine three 

nucleotides upstream of PAM (Fig. 14).   
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Figure 13. Distribution and detection of AAV vectors in CNS 

(a-b) Detection of GFP and Cas9 in the cortex (a) and spinal cord (b) of sgSOD1 mice. Native 

GFP detection. For detection of Cas9, anti-HA antibodies were used. Scale bar 100μm. (c) 

Confocal image of GFP localized to nuclear membrane, 100x magnification (d) Detection of Cas9 

using Cas9 antibodies in the spinal cord, scale bar 100μm. 
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Figure 14. Indels generated by sgSOD1 

Representative sequence traces of Indels dected by CRISPRESSO located at the predicted 

targeted locus with SOD1 from Lumbar spinal cord and Cortex.  

 

 

Tissue Treatment avg indel % 
Fold 

change 
 Coverage Range (#reads) 

Cortex control 0.077 54x 2,129,209  - 3,015,574  

 
sgSOD1 4.181 

 
583,546  - 3,234,125 

LSC control 0.041 10x 281,203  - 2,584,891  

 
sgSOD1 0.404 

 
502,527 - 2,235,998 

Liver control 0.034 
54x   331,566  -   576,528 

 
sgSOD1 1.865 

 
2,534,548 - 3,018,736  

 

Table 4. Deep sequencing of sgSOD1 locus in the CNS and liver 

 

4.4.4 Preservation of structure of distal axonal processes 

 

Neuromuscular junction destruction and distal axonal pathology are 

hallmarks of neuro-degeneration in SOD1G93A mice128–130. To determine if 

increased survival was due, in part, to preserved distal axonal architecture, we 

analyzed neuromuscular structures of mice at disease midpoint (p110). We 

stained fixed gastrocnemius muscle with antibodies against presynaptic motor 
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neuron markers—βIII tubulin and synaptophysin—and with α-bungarotoxin, 

which binds to acetylcholine receptors in the post-junctional folds of the muscle. 

We compared the number of intact, partially intact, and denervated 

neuromuscular junctions (Fig. 15A). Compared to sgControl, sgSOD1+Cas9 

mice had significantly more intact neuromuscular junctions (87.3% ± 6.2% vs 

49.7% ± 10.8%, p<0.01) (Fig. 15B). Conversely, sgSOD1+Cas9 mice had 

significantly less partially intact (7.3% ± 4% vs 27.4% ± 3.3%, p<0.01) and 

denervated (5.3 ± 2.4 vs 29.6 ± 3.1%, p<0.001) neuromuscular junctions 

compared to sgControl. The number of intact, partially intact, or denervated 

junctions were similar between sgSOD1+Cas9 and wt littermate controls (Fig. 

15B, intact: 87.3% ± 6.2% vs 94.3% ± 2.4%; partially intact: 7.3% ± 4.0% vs 4.8% 

± 2.2%; denervated: 5.3% ± 1.4% vs 1.4% ± 0.8%, respectively). 
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Figure 15. sgSOD1 treatment preserves neuromuscular junction structure. 
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(a) sgSOD1  mice were sacrificed at disease midpoint (p110). Gastrocnemius muscles were 

immunostained for the neuromuscular markers anti-synapsin and anti-βIII tubulin (shown here 

as green), and for the postsynaptic muscle fiber marker acetylcholine receptor using α-

bungarotoxin (shown here as red). Representative images of intact (upper panel), partial 

denervated (middle panel), and denervated (lower panel) neuromuscular junction. Arrows 

denote neuromuscular junctions. * denotes autofluorescence of muscle fibers. (b) Quantitation 

of percentage of intact, partially intact and fully-denervated NMJs. Error bars are standard 

deviation, ** p<0.01, ***p<0.001. n=3 mice (>300 NMJs per mouse). 

 

4.4.5 Preservation of structure of proximal axonal processes 

 

To determine if sgSOD1 could preserve proximal axonal architecture, we 

sectioned the ventral root from the L5 lumbar region and observed axon cross 

sections via microscopy (Fig. 16A). We plotted ventral root axon diameters from 

mice sacked at disease midpoint (p110) mice in a histogram binned by size. The 

resulting histograms for all mouse groups showed a characteristic biphasic 

distribution of both axons per section and counts of, with large-diameter axons 

comprising α motor neurons and small diameter axons comprising gamma-motor 

neurons. The large diameter, α-motor neurons generate force and are 

susceptible to degeneration during ALS while the small diameter, gamma-motor 

neurons provide proprioceptive feedback to α-motor neurons and are usually 

spared of degeneration in ALS models131. sgSOD1 mice had significantly more 

intact motor neuron axons measured by frequency distributions of axon 

diameters (Fig. 16B showing histogram of axon diameter, and Fig.16C showing 

histogram of large axon diameter counts). These data indicate that CRISPR 
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treatment preserved the architecture of motor neuron and neuromuscular 

junctions.  

 

Figure 16. sgSOD1 treatment delays motor neuron axonal degeneration in mice of disease 

midpoint (p110) mice. 

 (a)  Representative images of cross sections of ventral nerve root from the the L5 lumbar spinal 

segment from wildtype, sgSOD1 and sgControl mice. Scale bar for top panel: 100μm. (b)  

Frequency distribution of axon diameters amongst three groups. (c) Inset of motor neuorons 

(axons diamter greater than 4μm), p-value from one way ANOVA of sgSOD1 and sgControl with 

pairwise comparison to wt mice. p=0.044 for sgControl and p- = 0.271 for sgSOD1. Error bars 

denote s.e.m. 
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4.4.6 Preservation of function of axon transport in lower motor neurons 

 

To determine if the observed preservation of axon architecture confers a 

functional improvement, we measured net axonal transport in live mice using an 

assay developed by Pin-Tsung Lee and Robert Brown.  The assay quantifies 

uptake of 125Iodine conjugated C-terminal portion of the Tetanus Toxin (TTC) that 

binds to the presynaptic membrane of the neuromuscular junction and is 

internalized and transported in a retrograde fashion to the spinal cord132. 

Following injection of 125Iodine conjugated TTC into the tibialis anterior muscle, 

uptake of the TTC into the corresponding L4-L5 motor neurons is quantified 

using single photon emission computed tomography (SPECT). 

We injected TTC into the tibialis anterior muscles of live mice at an early 

onset time point (p85) and a mid-disease time point (p110) and measured TTC 

uptake into the spinal cord. (Fig. 17A and 17B).  For controls, we used SOD1G93A 

untreated mice. At p85, the uptake of TTC in sgSOD1 mice was similar that of wt 

littermates and significantly higher than that of untreated SOD1G93A mice. At 

p110, sgSOD1 mice showed significant increased TTC uptake as compared to 

untreated SOD1G93A mice at day 85 (Fig. 17C). These data suggest that CRISPR 

treatment improved net axonal transport. Moreover, net axonal transport 

detected benefit of SOD1 silencing at 85 days, well before any other outcome 

measured (e.g., grip strength, 112 days, rotarod 119 days).  
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4.4.7 Decrease in SOD1 protein detected in brain and in motor neurons 

within spinal cord 

 

 To determine whether the sgSOD1 treatment reduces SOD1 proteins in 

the spinal cord, we performed an ELISA assay from whole cortical and lumbar 

spinal tissues. Given our sequencing data showed higher percentages of indels 

in the cortex than in the spinal cord, we hypothesized that there would be more 

SOD1 knockdown in the brain compared to the spinal cord. In the brain, when 

compared to sgControl mice, sg SOD1 mice had 60% reduction in SOD1 protein 

(Fig. 18A left panel, 2.9 vs 9.2ng/ml, p=0.033). Intriguingly, there was no 

difference in SOD1 protein in the lumbar spinal cord (Fig. 18A, middle panel, 

p=0.845). We also observed a 60% reduction of SOD1 in the liver (Fig. 18A, right 

panel, 3.8 vs 9.8 ng/ml, p=0.013). 

The lack of SOD1 decrease in the spinal cord was surprising, since we 

had measured improvements in axon structure and function. We hypothesized 

that SOD1 may be specifically downregulated in motor neurons, but not in other 

Figure 17. AAV CRISPR treatment improves net axonal transport in mice. 

(a). Measurement of net axonal transport using tetanus toxin fragment C (TTC). TTC was injected 

in the tibialis anterior muscle of wt. untreated, sgSOD1, and untreated SOD1G93A mice and mice 

were imaged using SPECT at pre-disease (p85) and disease midpoint (p110) timepoints. (b). 

Representative PET scan images. Arrows denote radioactivity in spinal cord. Triangle denotes 

site of injection. (c) Radioactivity vs time plots of TTC signal in the spinal cord. Error bars 

represent S.E.M. 2-way ANOVA multiple comparisons with pairwise comparison to wt untreated 

mice, **p<0.01, ***p<0.001. 
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cell types, which could explain the lack of significant downregulation of SOD1 

from whole lumbar spinal cord tissue. To this effect, we performed laser-capture 

microdissection of motor neurons in the lumbar spinal cord and assessed protein 

levels by gel capillary western blotting (ProteinSimple) (See Fig. 18B for 

representative images of captured tissue). We captured precisely 150 motor 

neurons per mouse and assayed SOD1 levels. We found a ~50% decrease in 

SOD1 protein when compared to controls (Fig. 18C shows gel image and Fig 

18D shows quantitation of SOD1, p-value = 0.01), suggesting silencing of SOD1 

is selective to in motor neurons. 

The gel capillary western blot results revealed the presence of SOD1 

immunoreactive bands at 44 and 62 kilodaltons. These molecular weight of these 

immunoreactive bands correspond with the predicted SOD1 molecular weight of 

SOD1 dimers and trimers, suggesting that they represent dimerized and 

trimerized SOD1. Since trimeric SOD1 is cytotoxic37,133, we measured abundance 

of the putative SOD1 trimeric band. When compared to sgControl mice, the 

SOD1 trimeric band is decreased (Fig. 18E, p-value 0.087), suggesting that 

sgSOD1 treatment reduces toxic oligomeric forms of SOD1.   
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Figure 18. SOD1 silencing in the CNS 

(a). ELISA assays measuring SOD1 levels in sgSOD1 and sgControl+Cas9 treated mice, n=3-5 

per group. Average SOD1 expression from 150 motor neurons in sgSOD1 and sgControl mice 

was 9.8 vs 10.2ng/ml for LSC p=0.85,  2.9 vs 9.2ng/ml in cortex, p=.03, and 3.35 vs 9.77ng/ml in 

liver p=0.012. Error bars denote standard deviation. (b) Representative images of spinal cord 

sections before laser capture (top left) and after laser capture (bottom left).  Samples, stained, 

with cresyl violet and cleared with xylene show motor neurons in the ventral horn (top right panel, 

inset bottom right panel. arrows denote motor neurons. (c) Image of gel capillary western blot gel 

of SOD1. Denoted are SOD1 band at ~25kDa, and two SOD1 immunopositive higher weight 

molecular bands spaced ~19kDa apart, putatively dimeric and trimeric forms of SOD1. (d) 

Quantitiation of image density of SOD1 bands from gel capillary western blot. Average SOD1 

expression in sgSOD1 and sgControl motor neurons was decreased 58%, p-value =0.01. (e). 

Quantitation of image density of putative SOD1 trimeric 62kDA band from sgSOD1 and sgControl 

mice. Average density of bands show a trend for decreased bands in sgSOD1 mice p-value 

=0.087. Error bars denote standard deviation. 

 

Both microgliosis and astrogliosis are hallmarks of ALS. To determine 

whether SOD1 knockdown decreased both types of gliosis, we performed 

Branched DNA assays (BDNA), targeting the microglial marker IBA1 and the 

astrocyte marker GFAP of endpoint tissue (Figs. 19A and 19B) We did not find 

significant differences in either marker among sgSOD1 and sgControl mice in 

endpoint tissue.  

To ascertain whether sgSOD1 silenced mouse endogenous Sod1, we 

performed BDNA assays targeting mouse Sod1 (Fig. 19C) in tissue at endpoint. 

We did not find significant differences in mouse Sod1 between sgSOD1 and 

sgControl groups. To determine whether sgSOD1 treatment reduced gliosis, we 

performed BDNA assays on endpoint tissue using markers for reactive 
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astrocytes, GFAP, and microglia, IBA1. We found no significant differences in 

expression of either GFAP or IBA1 133.  

The observation of ~1% gene indel editing and ~50% protein knockdown 

was unexpected. To further understand the disparity between the efficiency of 

indel editing and the efficiency of protein knockdown, we looked at mRNA levels 

of SOD1. Surprisingly, we saw no differences in spinal cord motor neuron SOD1 

levels between sgSOD1 mice and control mice, (i.e., non-treated and sgControl 

mice) (Fig. 20). Furthermore, there was no detectable difference in SOD1 mRNA 

levels between motor neurons and dorsal horn tissue.  

 

 

Figure 19. sgSOD1, gliosis and mouse endogenous expression 

Branched DNA assays from mouse endpoint tissue (a) BDNA assays measuring microglia 

marker IBA1 in the cortex and spinal cord. (b) BDNA assay measuring astrocyte marker GFAP 

in the cortex and spinal cord. (c) BDNA assay measuring mouse SOD1 in the cortex and spinal 

cord. Error bars denote standard deviation. 
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Figure 20. SOD1 mRNA from motor neurons in spinal cord. 

ddPCR following laser capture microdissection of motor neurons (MNs) in the spinal cord. Tissue 

from the dorsal horn (DH) served as internal controls. Control group comprises both untreated 

and sgControl mice sgSOD1 mice were treated with sgSOD1 and Cas9. No significant difference 

between any of the groups observed. 
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Chapter V Discussion 

 

5.1 Systemic delivery of sgSOD1 prolongs survival in SOD1G93A  x 

Cas9 mice 

 

Here we utilized systemic delivery of AAV9 containing sgSOD1 via facial 

vein and demonstrated a prolongation of survival and improvement of symptoms 

in a SOD1 Cas9 transgenic mouse model of ALS. We detected indel mutations at 

the predicted locus within SOD1 at a rate of ~5% in the Brain and 3% in the 

spinal cord.  

While our studies show feasibility of utilizing Cas9 to target SOD1 in the 

CNS, several experimental considerations need to be addressed. In these 

experiments, we used a transgenic mouse model with endogenous expression of 

Cas9. While this model allowed us to deliver a single AAV9 expressing sgRNA 

targeting SOD1 and forgoing challenges with delivering Cas9 protein, future 

experiments would need to deliver both Cas9 and sgRNA to have more clinical 

relevance. Furthermore, we used facial vein injections in neonatal P1 mice as a 

route of delivery. In mice, AAV delivered via facial vein injections at p1 can cross 

the nascent blood brain barrier and distribute to both the brain and spinal cord 

with comparatively high efficiency. Clinically, this route of delivery is not feasible, 

as adult patients have fully formed blood-brain barriers and thus would prevent 

distribution of vectors throughout the CNS.  Additionally, we observed high rates 
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of indels in the liver after facial vein injections (~70%), much higher than 

observed in either the brain or spinal cord, a concern for patients, as that could 

potentially cause unforeseen adverse effects in patients.  

 

5.2 ICV delivery of Cas9 and sgSOD1 prolongs survival in SOD1G93A 

mice 

 

Our experiments demonstrate that genome editing of SOD1 using a dual 

AAV9 vector, ICV delivery scheme delays onset and prolongs survival in 

SOD1G93A mice. We showed that CRISPR treatment improves motor function of 

mice as measurement by grip strength and rotarod performance and survival.  

One caveat in interpreting the survival of the sgSOD1 mice was the lack of 

a control group which received Cas9 and a guide RNA that cleaved DNA at a 

‘safe harbor’, a genomic site where gene editing would have no endogenous 

gene activity. Such a control group could distinguish positive effects from SOD1 

silencing from potential effects that occur after any DNA cleavage. For example, 

it is documented that DNA cleavage from Cas9 can activate the p53 pathway134, 

which could impact motor neuron health and overall survival. 

Our experiments also demonstrate successful silencing of SOD1 gene 

expression, and subsequent protein reduction as measured by ELISA assays 

and gel capillary Western blotting. Interestingly, we observed in the spinal cord, 

an enhancement of gene silencing in the motor neurons. This enhancement is 
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likely due to the tropism of the AAV9 vector in which motor neurons where 

transduced at higher rates than other cell types.  It is well documented that 

toxicity from SOD1 is not exclusively cell-autonomous, and silencing SOD1 in 

glial cells and oligodendrocytes prolong survival80,133,134. Future strategies to 

delivery AAVs carrying Cas9 could employ testing a variety of AAV capsids to 

achieve higher survival.  

We show that CRISPR treatment preserves distal axonal architecture 

based on measuring intact neuromuscular junctions. Denervation of the 

neuromuscular junction is an early onset symptom in SOD1 transgenic mouse 

models and impaired neuromuscular junctions can be detected in 4-6 week old 

mice128.  It is widely reported that the large diameter α-axons in the ventral root of 

ALS patients and SOD1G93A mice undergo degeneration40–42. We observed that 

silencing of SOD1 reduces degeneration of large diameter α-axons in the ventral 

root of SOD1G93A mice. 

We observed a level of indel formation and survival prolongation similar to 

that of Gaj et al, where a single AAV vector expressing saCas9 was injected via 

facial vein. Our experimental design, however differed from Gaj et al if a few key 

ways; we used spCas9 and we used a dual AAV vector approach. spCas9 is 

more widely-used and has a more prevalent PAM compared to saCas9, thus 

making it a more practical platform for which to develop gene-silencing 

strategies.  
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Our study is also distinguished by the use of TTC to measure in vivo net 

axonal transport. This new assay provides an in vivo, repeatable assay of neuron 

function. This assay documented that the benefit of SOD1 silencing is evident as 

early as day 85. To our knowledge, no other trials of therapy in SOD1 ALS have 

employed axonal transport as an outcome measure. Future studies using net 

axonal transport at even earlier timepoints are critical for understanding etiology 

of ALS and optimizing timing of Cas9 therapies. 

In our studies we did not detect a decrease in reactive astrocytosis or 

microgliosis at tissue endpoint in our sgSOD1 mice when compared to controls. 

However, since we looked at disease endpoint, it might be possible that we did 

delay onset of these symptoms. Investigation of astrocytosis and microgliosis at 

earlier endpoints is therefore warranted. 

In our studies, we use an sgRNA targeting both mutant and wildtype 

SOD1. Our sgRNA can potentially target a large number of ALS-associated 

SOD1 mutations 12. Future studies may benefit from the use of an allele-specific 

guide targeting only mutant SOD1. 

5.3 Degree of indel formation and degree of SOD1 knockdown 

discrepancy 

 

One interesting observation that occurred both in our studies and by Gaj 

et al, was the relatively low indel percentage (between 0.2 and 5% in the brain 

and spinal cord) and the relatively high protein silencing (up to 60% SOD1 
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knockdown detected by ELISA in the cortex). The discrepancy between the low 

genomic indel percentage and the high knockdown is unexpected. I speculate 

that the discrepancy may be explained by an inability of our deep sequencing 

methods to detect large-scale deletions of multiple copies of SOD1 in the 

transgene cassette, and as such underreports the true amount of edited SOD1 

gene copies. The SOD1G93A mouse that we used as a model has 25-30 copies of 

human SOD1, which is different than what occurs in patients, as the majority of 

SOD1 patients have one mutant copy. It has been observed that Cas9 can 

induce largescale deletions when targeted to multiple sites on the same 

chromosome138. Targeting SOD1 in transgenic mice causes multiple breaks in 

the chromosome and may cause large scale deletions. Such deletions would not 

be detected by either our deep sequencing methods or by the methods described 

in Gaj et al and would cause underrepresentation of percent of edited SOD1 

copies. Looking forward, to account for the magnitude and effect of chromosomal 

deletions by Cas9, future studies could employ SOD1 knock-in models, in which 

only one transgenic copy of SOD1 is present in the mouse Sod1 locus. In this 

model, the rate of large-scale deletions would be less as Cas9 is no longer 

targeting multiple locations on the same chromosome. Additionally, any deletions 

observe would possibly be more relevant to what would occur in patients.  

To further probe the disparity between indel editing percentage and 

protein knockdown percentages, we looked at SOD1 mRNA using ddPCR. 

Surprisingly, we saw no differences in spinal cord motor neuron SOD1 levels 
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between sgSOD1 mice and control mice, (i.e., non-treated and sgControl mice) 

(Fig. 20). Furthermore, there was no detectable difference in SOD1 mRNA levels 

between motor neurons and dorsal horn tissue. This  could suggest that our 

sgSOD1 treatment does not appreciably change mRNA abundance, rather it 

works by limiting translation. These results, however, disagree with our in vitro 

data showing knockdown of SOD1 mRNA via qPCR. A more throughout analysis 

using ddPCR with multiple references is thus warranted.  

 

5.4 Decrease in SOD1 immunopositive, high molecular weight 

species 

 

It is widely accepted that misfolded and aggregate SOD1 are toxic and 

play a role in etiology and/or pathology of ALS. Preclinical strategies targeting 

toxic misfolded forms of SOD1 have increased survival in mouse models of 

ALS34. Therefore, demonstrated decrease of misfolded SOD1 may partially 

explain the survival benefit observed in sgSOD1 mice. In our gel capillary 

western blot, we noticed in all SOD1 samples the presence of immunoreactive 

bands sized 44 and 62 kilodaltons. Given the stability of misfolded SOD1133, and 

previous histological evidence of the presence of SOD1 aggregation found in 

mice as young as p90139 we speculate that these may represented non-

denatured SOD1 dimer and trimers. The trimeric form of SOD1 is not found in 

healthy patients and is cytotoxic37,133. Furthermore, we found a decrease in 
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abundance of putative SOD1 trimeric bands in our sgSOD1 mice, suggesting that 

our strategy may reduce the toxic oligomeric forms of SOD1. More 

experimentation, however, is needed to reach definite conclusions.  

One caveat to data from the gel capillary western blot data is the antibody. 

The antibody we used generated one singular SOD1 band at 25 kilodaltons. We 

expected to observe two SOD1 bands, the human band at 16 kilodaltons and a 

mouse with a slightly lower molecular weight. It is unclear as to why SOD1 runs 

at a higher apparent molecular weight in the gel capillary western blot, and why 

there is not two distinct human and mouse bands.  It is likely that the mouse 

Sod1 is present and runs at the same size of human SOD1. This change in 

apparent weight of SOD1 may also be from ubiquitination status of SOD1.   

Repeating the molecular assays with increased number of mice and with different 

antibodies will increase our confidence in the results.  

 

5.5 Previous SOD1 silencing paradigms  

 

The ICV experiments resulted in an approximate 15% increase in lifespan 

in SOD1G93A mice.  When benchmarking the results from the ICV experiments 

from other attempts to knockdown SOD1 via exogenously delivered 

mechanisms, comparisons can be made to design future experiments.  

Foust et al, used the same AAV delivery vector and facial vein injections 

to deliver shRNA and achieved 39% increase survival. Stoica et al used the 
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same AAV vector and ICV injections to deliver miRNA targeting SOD1 and 

achieved a 50% increase in survival. Borel et al. also used AAV vector rAAVrh10 

and tail vein injections to deliver artificial miRNA and achieved a 21% increase in 

survival. Given that both ICV and facial veins have been used to achieve higher 

survival, future experiments involving sgSOD1 should consider testing various 

titers to achieve maximum survival. 

 One early concern regarding our experimental paradigm was the 

possibility that dual delivery of two AAV vectors would be inherently ineffective at 

transducing enough cells to confer a survival benefit . Since SOD1 silencing 

required transduction of both AAV vectors, one carrying Cas9 and the other 

carrying sgSOD1, we thought it possible the odds of each cell being co-

transduced could be low enough that insufficient amounts of  SOD1 silencing 

would occur and no improvements in survival would be observed. Our results, 

however, yielded similar results in both indel percentages and survival compared 

to Gaj et al, who used a single AAV experimental paradigm to delivery Cas9 and 

guide RNA. Similar indel percentages and survival amongst this work and work 

by Gaj et al, suggests that coincident transduction of a two AAV delivery 

paradigm is not a limiting factor for SOD1 silencing.  
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Vector Construct Delivery Median 
survival 

untreated vs 
treated (days) 

Δ days Author 

Chemically modified 
siRNA 

Long term 
infusion 

125 vs 133 8 Wang…Xu 2008 

AAV9 shRNA Temporal 
Vein 

132 vs 183.5 51.5 Foust…Kaspar 2013 

AAV9 miRNA ICV 137 vs 206 69 Stoica…Esteves 2016 
rAAVrh10 miRNA Tail Vein 131 vs 158 27 Florie…Mueller 2016 

Mut AAV9 saCas9 Facial Vein 124 vs 151 27 Gaj…Schaffer 2017 

AAV9 spCas9 ICV 134 vs 154  20 *** 

 

Table 5. Comparison to other SOD1 knockdown experiments 

Results from our experiments in red. 

 

5.6 Considerations for clinical applications of Cas9-mediated SOD1 

silencing 

 

Several considerations need to be addressed before a dual vector AAV9 

Cas9 strategy can be considered for clinical studies. One such consideration that 

need further scrutiny is the timing and route of delivery. In both studies, we 

administered AAVs long before onset of symptoms. From a pathologic 

perspective, delivery of gene therapy before onset of symptoms is desirable, as 

maximum benefit is correlated with earlier intervention73. Preclinical therapy, 

however, is not currently practiced for genetic disorders. Nevertheless, preclinical 

therapy may become feasible with early genetic screening for SOD1 mutations.  

While AAV9 is a safe viral vehicle and there are numerous clinical trials 

utilizing AAV9, AAVs persist in cells and presumably expressed their genetic 
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cargo over a long time, which increases likelihood of Cas9 off-target editing140. 

To account for this, studies utilizing methods to reduce or transiently express 

Cas9, such as delivering Cas9 in activatable AAVs, lipid nanoparticles or 

exosomes, could be employed.  

Enhancing CNS tissue specificity of AAV vectors could both increase 

transduction of CNS tissue and reduce peripheral transduction thus, improve 

therapeutic potential. New AAV vectors with increased capability of crossing the 

blood-brain barrier and transducing brain and spinal cord tissue could potentially 

increase the efficiency and decrease off-tissue targeting of CRISPR delivery for 

ALS109.  

Another dimension to be considered for optimization was the engineering 

of Cas9 and nuclear localization signals. Recent work has demonstrated that 

nuclear localization of Cas9 correlates with editing efficiency and designing Cas9 

with multiple copies of NLS increases nuclear localization141 The Cas9 construct 

used in these experiments had one 3’ and one 5’ NLS signal. After 

immunostaining for Cas9 in spinal cord section, we observed that the majority of 

Cas9 signal was in the cytoplasm and not the nucleus (Fig. 13D). This findings 

are consistent with other published findings141. Future studies could employ a 

Cas9 with increased copies of NLS to boost nuclear localization. 

In summary, we report that dual AAV9 delivery of spCas9 and guide RNA 

delays disease onset and prolongs survival in a mouse model of ALS. Our study 
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provides a blueprint to develop effective spCas9-based tools to study in vivo 

genome editing for ALS genes.   
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