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ABSTRACT 

 

 The TALE factors, comprising the pbx and prep/meis gene families, are 

transcription factors (TFs) vital to the proper formation of anterior anatomical 

structures during embryonic development. Although best understood as essential 

cofactors for tissue-specific TFs such as the hox genes during segmentation, the 

TALE factors also form complexes with nuclear factor Y (NFY) in the early 

zygote. In zebrafish, Pbx4, Prep1, and NFY are maternally deposited and can 

access their DNA binding sites in compact chromatin. Our results suggest that 

TALE/NFY complexes have a unique role in early embryonic development which 

is distinct from each factor’s independent functions at later stages. 

To characterize these TALE/NFY complexes, we employed high-

throughput transcriptomic and genomic techniques in zebrafish embryos. Using 

dominant negatives to disrupt the function of each factor, we find that they 

display similar, but not identical, loss-of-function phenotypes and co-regulate 

genes involved in transcription regulation and embryonic development. 

Independently, the TALE factors regulate homeobox genes and NFY governs 

cilia-related genes. ChIP-seq analysis at zygotic genome activation reveals that 

the TALE factors occupy DECA sites adjacent to CCAAT boxes near genes 

expressed early in development and involved with transcription regulation. 

Finally, DNA elements containing TALE and NFY binding sites drive reporter 

gene expression in transgenic zebrafish, and disruption of TALE/NFY binding via 
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mutation or dominant negatives eliminates this expression. Taken together, this 

data suggests that the TALE factors and NFY cooperate to regulate a set of 

development and transcription control genes in early zygotic development but 

also have independent roles after gastrulation. 
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 Transcription factors are a broad class of proteins that play one of the 

most fundamental roles in biology. They are essential for the regulation of gene 

expression and act as one of the major areas of control in nearly every cellular 

process. One such process is embryonic development. This extraordinary and 

complicated process, in which a complex organism arises from a single totipotent 

cell, requires fine-tuned management of timing and myriad factors that work 

together to ensure that every cell reaches its proper fate. Without the careful 

coordination of innumerable transcription factors, such a process would simply 

not be possible. 

 

Maternally deposited factors 

 

 Upon fertilization, the zygotic genome is transcriptionally inert. Thus, 

factors deposited by the male and female gametes must control early zygotic 

development. The oocyte contributes most of this material, which includes 

mRNAs and proteins. These factors carry out basic cellular functions related to 

processes such as metabolism and the cell cycle while also specifying early 

patterning and cell fates. A key point in early development is the maternal to 

zygotic transition (MZT), where many maternal factors degrade and the zygotic 

genome undergoes zygotic genome activation (ZGA) to begin producing on its 

own gene products (reviewed in (Vastenhouw et al., 2019)). 
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 Although the general principles remain the same across species, many 

parameters can vary greatly, such as the composition of the maternally deposited 

material relative to the size of the genome, the duration of its presence prior to 

degradation, and the amount degraded upon the ZGA. In Caenorhabditis 

elegans, maternally deposited material accounts for roughly 33% of the total 

genome (Baugh et al., 2003; Stoeckius et al., 2014). The MZT occurs just a few 

hours after fertilization, at which point about 33% of the maternally deposited 

material degrades (Baugh et al., 2003). Like in C. elegans, the MZT in Drosophila 

melanogaster takes place on the order of hours after fertilization; unlike C. 

elegans, however, maternally deposited material accounts for about 75% of the 

total genome and about 67% of this material degrades at the MZT (De Renzis et 

al., 2007; Lécuyer et al., 2007; Tadros et al., 2007). Maternally deposited 

material in Danio rerio (zebrafish), as in Drosophila, accounts for about 75% of 

the total genome (Aanes et al., 2011; Harvey et al., 2013). When MZT begins at 

roughly 4 hours post-fertilization (hpf), only about 25% of the maternally 

deposited material degrades (Aanes et al., 2011; Bazzini et al., 2012; Harvey et 

al., 2013; Mishima & Tomari, 2016). Finally, in Mus musculus (mice), the MZT 

does not take place until days after fertilization, with the maternally deposited 

material accounting for about 33% of the total genome and about 33% of that 

material degrading (Hamatani et al., 2004; Wang et al., 2004). 
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Maternal to zygotic transition 

 

 As embryonic development is a remarkably complex process requiring 

precise activity and timing, the stability and regulation of maternally deposited 

material is essential to successful progress. Since no new transcripts are being 

created prior to the ZGA, all regulation of maternally deposited factors must 

happen post-transcriptionally and post-translationally by other maternal factors. 

Regulation at the transcriptional level does not begin until after the ZGA, 

gradually becoming the predominant regulatory mechanism as transcription 

levels increase in the zygotic genome. One of the most significant mechanisms 

of regulating maternal material is its degradation. This process is tightly regulated 

to ensure that maternal materials are present when needed but removed once 

they have served their purpose (reviewed in (Vastenhouw et al., 2019)). 

 Maternal factors often must remain stable in oocytes for long periods of 

time, sometimes as long as years in some organisms. However, it also must be 

able to degrade rapidly at the appropriate time. Clearance of maternally 

deposited material rarely happens in one large wave; in most species, 

degradation of maternal material takes place in several discrete waves. In 

Drosophila and mammals, the first wave of maternal material degradation takes 

place upon egg activation prior to fertilization. Maternal factors carry out this 

clearing, as well as additional waves of degradation taking place before the ZGA. 

Following the ZGA, zygotic factors take over clearing maternal factors 
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(Bashirullah et al., 2001; Tadros et al., 2007). A diverse set of factors controls the 

clearance of maternal factors, including RNA-binding proteins (RBPs), RNA 

modifications, small non-coding RNAs, and codon optimality. 

 RBPs are one of the most versatile and widespread forms of mRNA 

stability regulation. In zebrafish, there are several examples of RBPs that control 

maternal mRNA stability and regulation. To prevent maternal mRNA expression 

in oocytes, the Y-box protein Ybx1 represses their translation (Sun et al., 2018). 

To destabilize maternal mRNAs and incite their degradation at the MZT, 

hnRNPA1 binds an AGGGA motif in the 3’ UTR of many maternal transcripts 

(Despic et al., 2017). AU-rich element proteins play a similar role and work in a 

similar manner to hnRNPA1 across many species, including C. elegans 

(D’Agostino, Merritt, Chen, Seydoux, & Subramaniam, 2006; Gallo, Munro, 

Rasoloson, Merritt, & Seydoux, 2008), zebrafish (Rabani et al., 2017), Xenopus 

laevis (Graindorge, Thuret, Pollet, Osborne, & Audic, 2006; Voeltz & Steitz, 

1998), and mice (Ramos et al., 2004). RNA modifications can also work with 

RBPs to destabilize maternal mRNAs. In zebrafish embryos, roughly 33% of 

maternal mRNAs contain an N6-adenosine methylation modification, which 

causes a structural shift in the mRNA and exposes key RBP sites (Liu et al., 

2015; Zhao et al., 2017). Additionally, clearance of nearly 50% of maternal RNAs 

early in the MZT and another 25% later requires the RBP YTHDF2, which binds 

N6-adenosine methylated RNAs (Ivanova et al., 2017). 
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 Micro RNAs (miRNAs) are small non-coding RNAs that can repress 

translation of specific mRNAs. Expressed during the early ZGA, the miR-430 

family plays an essential role in clearing maternal transcripts from many species, 

including mammals. In zebrafish, miR-430 is responsible for degrading about 

40% of the total maternal transcripts during the MZT via translation blocking and 

deadenylation (Bazzini et al., 2012). Indeed, poly-A tail (PAT) length is a major 

determinant of mRNA stability, making it a frequent target of factors responsible 

for the degradation of maternal transcripts. Transcripts with shorter PATs 

undergo less translation and degrade sooner. Terminal uridylation of many 

maternal transcripts increases during the MZT in zebrafish, Xenopus, and mice, 

which rapidly destabilizes mRNAs with short PATs (H. Chang et al., 2018). 

Finally, codon optimality is a strategy employed by some species such as 

zebrafish. Here, mRNAs with higher amounts of codons that have fewer 

conjugate tRNAs degrade preferentially (Mishima & Tomari, 2016). 

 

Zygotic genome activation 

 

 Much like the timing of maternal factor clearance, timing of the ZGA varies 

widely between species. In some species, such as mice and Homo sapiens 

(humans), ZGA takes place before the first cell division (Hamatani et al., 2004; 

Yan et al., 2013). In other species, it takes place at later cell divisions; for 

example, in zebrafish it takes place at the sixth cell cycle (Mathavan et al., 2005). 
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In such organisms, ZGA does not happen at the same moment across the entire 

embryo. Different species have various means of mitigating this, with zebrafish 

employing temporal averaging. Temporal averaging occurs during another key 

developmental state, the mid-blastula transition, in which cell cycles become 

longer and asynchronous. As ZGA initiates and transcription increases across 

the cells of the blastula, the longer cell cycles and accumulation of transcription 

events mitigate any complications stemming from the variable timing of ZGA 

(Stapel et al., 2017). This arrangement allows zebrafish embryos to develop 

rapidly while minimizing complications from asynchronous activation of the 

zygotic genome throughout the blastula. 

 ZGA is especially well-studied in zebrafish. The initial wave of ZGA in 

zebrafish sees roughly 25% of the entire genome transcribed, though only about 

25% of them are not also present among the maternally deposited factors (Aanes 

et al., 2011; Harvey et al., 2013; Lee et al., 2013). In many species, one isoform 

of some genes is maternally deposited and a different isoform is expressed at the 

ZGA (Aanes et al., 2011). The initial wave of zygotic genes is enriched for 

transcription factors, and in particular master transcription factors, that activate 

large gene networks, as well as factors involved in degrading maternal 

contributions (Lee et al., 2013). Many early transcripts in zebrafish, as well as 

Drosophila, are short and lack introns due to interference from DNA replication 

as a consequence of rapid cell division; longer transcripts are coincident with the 

longer cell cycles of the mid-blastula transition (Dalle Nogare et al., 2009). 
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Figure 1.1: The zebrafish maternal to zygotic transition. In zebrafish, degradation of maternal 
material begins soon after fertilization. By the 16-cell stage at 1.5 hpf, roughly 60% of maternally 
deposited material is degraded (red arrow). Soon after, at about 2 hpf, a minor wave of zygotic 
transcription begins (green arrow), in which the zygotic genome begins to produce short, 
intronless transcripts in gradually increasing amounts. At around 3.7 hpf, coincident with the mid-
blastula transition and its lengthened cell cycles, the major wave of zygotic transition begins (blue 
arrow). Degradation of the remaining 40% of the maternal material requires factors produced by 
the zygotic genome. 

 

Chromatin 

 

 Timing of the ZGA depends on a multitude of circumstances. One 

component influencing ZGA timing is the access to the zygotic DNA. Access to 

DNA depends on the structure of its packaging, also known as the chromatin 

state. Histones are major players in this process. There are four core histones: 

H2A, H2B, H3, and H4. H2A dimerizes with H2B and H3 dimerizes with H4. Two 

H2A/H2B dimers combine with two H3/H4 dimers to form an octamer, around 

which 147 nucleotides of DNA wrap to form a nucleosome. Nucleosomes are the 

most fundamental unit of chromatin organization, efficiently packaging DNA 

within the nucleus of every cell (Kornberg, 1977; Tropberger & Schneider, 2013). 
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 Modification of chromatin structure is one of the most commonly employed 

mechanisms of transcription regulation. This process involved arranging 

nucleosomes into higher-order structures, ranging from loosely packed open 

forms to tightly packed closed forms. In more open states, transcription factors 

can recognize and bind to their target sites on DNA, whereas in closed states 

those target sites are inaccessible. Thus, controlling the chromatin structure 

determines the level of access transcription machinery has to the DNA and, 

consequently, transcription activity. A widely used mechanism for controlling 

chromatin structure is post-translational modification of the core histones. 

Various molecular groups, such as acetyl and methyl groups, can be attached to 

certain amino acids of the core histone proteins. The nature of the moiety and 

location of its attachment affect the chromatin structure and, by extension, 

access to DNA binding sites. For example, acetylation of histone H3 lysine 27 

(H3K27ac) is a permissive chromatin mark generally associated with active 

transcription. Trimethylation of the same residue (H3K27me3) is a repressive 

mark, generally indicating compacted chromatin not accessible for transcription. 

The same moiety, however, can have different effects when attached to different 

amino acids; H3K4me3, for example, marks actively transcribed promoters and 

H3K4me1 marks enhancers. Due to its ability to obfuscate the sequence motifs 

that many transcription factors rely on to know where to activate transcription, 

altering chromatin marks to affect chromatin structure is one of the most widely 

utilized methods of transcription regulation (reviewed in (Gardner et al., 2011)). 
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Dynamics of zygotic genome activation 

 

Somewhat paradoxically, chromatin within the embryo generally exists in a 

loosely packed, open confirmation prior to ZGA (Bošković et al., 2014; Laue et 

al., 2019). While post-translational histone modifications play a more minor role 

in maintaining a transcriptionally inert zygotic genome, histones themselves are 

still a key factor in ensuring that ZGA does not begin prematurely. For example, 

zebrafish and Xenopus zygotes contain large numbers of histone proteins 

(Amodeo et al., 2015; Joseph et al., 2017). As histones can bind DNA with high 

affinity and little specificity, they easily outcompete transcription factors for DNA 

binding (Lorch et al., 1987). As the cells divide, DNA quantities grow 

exponentially, gathering up the excess histones (Jevtić & Levy, 2017; Prioleau et 

al., 1994). This causes the amount of excess histone proteins to drop. 

Meanwhile, the amount of transcription factor proteins translated from maternally 

deposited transcripts accumulate, finally reaching a critical threshold where they 

are able to compete with histones for DNA binding to initiate ZGA (Joseph et al., 

2017; Pálfy at al., 2017; Shindo & Amodeo, 2019). At the same time, the larger 

number of cells causes a reduction in the number of proteins responsible for 

nuclear import, which alters the balance of histones in the cytoplasm versus the 

nucleus. Many histones end up trapped in the cytoplasm, shifting the DNA 

binding equilibrium even further in favor of the transcription factors within the 

nucleus to ensure ZGA (Kopito & Elbaum, 2009; Shindo & Amodeo, 2019). 
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In zebrafish, H3K27ac levels begin to rise preceding ZGA (Zhang et al., 

2018). This increase is important for miR-430 expression, which is among the 

earliest genes expressed. In zebrafish, as well as Drosophila, mice, and humans, 

chromatin begins to compact across the genome following ZGA while local 

genome accessibility increases (Gao et al., 2018; Lu et al., 2016). In zebrafish, 

H3K4me3 begins to appear on promoters, indicating the beginning of 

transcription at those sites (Vastenhouw et al., 2010; Y. Zhang et al., 2014). 

Around this time, many master transcription and pluripotency factors begin 

working. One such class of transcription factors are the pluripotency factors, 

which can revert terminally differentiated cells to a more stem cell-like state. 

These factors play significant roles in ZGA (Soufi et al., 2012). 

 

Pioneer transcription factors 

 

The pluripotency factors are members of a unique classification of 

transcription factors known as pioneer transcription factors (PTF). As their name 

suggests, PTFs are among the first transcription factors to bind a given region of 

DNA. They can recognize their specific binding sequences in compact chromatin 

and initiate the transition to a more permissive chromatin environment. As the 

chromatin opens, binding sites for other transcription factors become available, 

stabilizing the region in a more open conformation (reviewed in (Mayran & 

Drouin, 2018; Zaret & Carroll, 2011)). 
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PTFs employ a variety of strategies for recognizing their binding sites 

within compacted chromatin. Most PTFs can bind nucleosomes, allowing them to 

scan for their DNA binding sequence. One such well-studied PTF is Forkhead 

box A (FOXA), which is involved in hepatocyte differentiation. FOXA contains a 

winged helix domain that mimics histone linker H1, helping it to dislodge 

nucleosomes (Cirillo & Zaret, 1999; Iwafuchi-Doi et al., 2016). The PTF PAX7 

contains two DNA binding domains, a homeodomain and paired domain, and 

binds to a composite motif recognized by both of its DNA binding domains for a 

highly stable interaction (Budry et al., 2012). Once bound, both FOXA and PAX7 

recruit a methyltransferase chromatin remodeling complex known as Trithorax (in 

Drosophila)/ COMPASS (in yeast)/ MLL (in mammals), which begins depositing 

permissive chromatin marks and opening the chromatin. These marks include 

H3K4me1 and H3K4me2 at target enhancers and H3K4me3 at target promoters 

(Jozwik et al., 2016; Mayran et al., 2018). 

In mammals, the pluripotency factors are OCT4, SOX2, and NANOG; in 

zebrafish, the orthologous genes are pou5f3, sox19b, and nanog, respectively 

(Gao et al., 2018; Lee et al., 2013; Leichsenring et al., 2013). Inactivation of 

Pou5f3, Sox, and Nanog using antisense morpholino oligos (MOs) in zebrafish 

causes embryos to stall prior to gastrulation. This phenotype is similar to that 

caused by α-amanitin, which blocks RNA polymerase II activity and, 

consequently, transcription. Injection of nanog and sox mRNA can rescue this 

phenotype. Furthermore, the morphant embryos display widespread loss of 
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genes generally expressed in the first wave of zygotic transcription. Among these 

first-wave genes is miR-430, which clears maternally deposited transcripts in 

zebrafish and Xenopus (Lee et al., 2013). 

In addition to the pluripotency factors, there are other factors which play a 

vital role in ZGA in different species. In Drosophila, a major player in ZGA is the 

zinc finger transcription factor Zelda. Similar to the pluripotency factors in 

vertebrates, Zelda binds specific regions of chromatin called TAGteam elements, 

maintaining the chromatin in an accessible state and allowing other transcription 

factors to bind their DNA motifs (Harrison et al., 2011; Liang et al., 2008; Nien et 

al., 2011). In mammals, the transcription factor DUX (DUX4 in humans) binds 

and activates many genes activated at ZGA; however, DUX is not maternally 

deposited. Activation of DUX requires the factors DPPA2 and DPPA4, which bind 

and activate DUX expression at the minor ZGA. Finally, nuclear factor Y (NFY) is 

required for ZGA in mice. (De Iaco et al., 2019; De Iaco et al., 2017; Eckersley-

Maslin et al., 2019; Hendrickson et al., 2017; Lu et al., 2016). 

 

Enhancers 

 

 Precise timing and location of gene activation is critical to proper 

embryonic development. Enhancers are a key component in ensuring the correct 

initiation of transcription at target genes and they also play a significant role in 

increased organism complexity without a corresponding expansion in genome 
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size. Enhancers are cis-acting DNA elements that are often far from their target 

genes linearly, relying on the 3D chromosome structure to be near their target 

promoters. They serve as binding platforms for transcription factor complexes, 

which typically interact via the Mediator complex with transcription complexes at 

promoters. The DNA sequence of enhancers builds specific combinations of 

factors intended to initiate transcription of target genes under specific conditions, 

allowing for precise control of the timing and location of target gene expression. 

For example, an enhancer may assemble a transcription complex which awaits 

the arrival of a specific factor. This ensures that every necessary component is 

present to avoid delays in gathering the various required factors, but also avoids 

premature activation by controlling the timing of one factor to trigger the release 

of the transcription complex (reviewed in (Schoenfelder et al., 2010)). 

The unique combination of factors assembled also contributes to 

increasing complexity in higher species. Despite the increase in complexity, 

higher organisms lack the expected corresponding increase in genome size. In 

vertebrates, this is partially explained by the presence of a diverse set of distal 

enhancers, which vastly outnumber protein coding genes in the same genome. 

Different enhancers contain different sequences, allowing them to assemble 

different complexes of proteins- some of which may have different functions 

based on the other factors present (see Pbx, below, in its interaction with Meis 

and HDACs). Thus, enhancers are a critical aspect of gene regulation, 

particularly in higher organisms (reviewed in (Schoenfelder et al., 2010)). 
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The TALE factors 

 

 A key class of transcription factors often found at enhancers in embryonic 

development is the three amino acid loop extension, or TALE, factors. Two 

families of genes comprise the TALE factors: the pbx family, and the prep/meis 

family. The TALE factors bind DNA with homeodomains which contain an extra 

set of three amino acids in the linker between α-helix 1 and α-helix 2, increasing 

the flexibility of the linker loop and distinguishing them from other homeodomain-

containing proteins (Bertolino et al., 1995). This extension forms a hydrophobic 

pocket essential for interactions with Hox proteins, which are the most widely 

studied binding partner of the TALE factors (Passner et al., 1999; Piper et al., 

1999). Indeed, the TALE factors are vital Hox cofactors, recruiting many Hox 

proteins to their target enhancers (reviewed in (Ladam & Sagerström, 2014; 

Selleri et al., 2019). 

 

The Pbx family 

 

 The pbx gene family is broadly conserved, with orthologs in C. elegans, 

Drosophila, zebrafish, and mammals. Vertebrates have four pbx genes, while 

Drosophila and C. elegans have only one, known as extradenticle (exd) and ceh-

20, respectively (Bürglin & Ruvkun, 1992; Bürglin, 1997; Van Auken et al., 2002). 

The mutation that identified exd in Drosophila caused similar phenotypes as the 
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hox genes but did not disrupt Hox expression. The discovery of pbx in humans 

happened independently of exd as part of study into a chromosomal 

translocation implicated in pre-B cell leukemia (Korsmeyer, 1992). Further study 

of Pbx revealed its essential role in Hox function in several systems and its 

orthologous nature to exd (Piper et al., 1999; Saadaoui et al., 2011; Shen et al., 

1997). Initially, pbx is maternally deposited and ubiquitously expressed, generally 

becoming tissue restricted later in development. For example, Pbx4 expression 

in mice is restricted to the testes, and in zebrafish each of the four pbx genes has 

a distinct region of expression in the body. Functionally, the Pbx proteins are very 

similar, and in zebrafish can all rescue one another’s function. (Capellini et al., 

2006, Capellini et al., 2010; Pöpperl et al., 2000; Wagner et al., 2001). 

 Pbx plays a critical role in early embryogenesis. Loss of Pbx1 function in 

mice results in death in utero as well as gross abnormalities in organ 

development (Brendolan et al., 2005; Capellini et al., 2006, 2011, 2010, 2008; 

DiMartino et al., 2001; Ferretti et al., 2011; Grebbin et al., 2016; Hurtado et al., 

2015; Kim et al., 2002; Koss et al., 2012; Losa et al., 2018; Manley et al., 2004; 

McCulley et al., 2018; Selleri et al., 2001; Stankunas et al., 2008; Villaescusa et 

al., 2016; Vitobello et al., 2011; Welsh et al., 2018). Pbx3-/- mutant mice die 

shortly after birth due to respiratory failure (Rhee et al., 2004), while Pbx2-/- mice 

show no obvious defects (Selleri et al., 2004); however, doubling either Pbx2 or 

Pbx3 mutants with a Pbx1-/- mutant results in earlier death and distinct 

abnormalities. These include skeletal, craniofacial, and distal limb defects which 
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are not present in Pbx1-/- mutants alone (Capellini et al., 2006, 2011, 2010, 

2008; Ferretti et al., 2011; Golonzhka et al., 2015; Hanley et al., 2016; Koss et 

al., 2012; Vitobello et al., 2011). This suggests overlapping function of the Pbx 

family members during embryonic development. 

 In addition to Hox proteins, Pbx interacts with many other factors. One 

such class of proteins are histone acetyltransferases (HAT) and histone 

deacetylases (HDAC), which add and remove acetyl groups from histones, 

respectively (Choe et al., 2009; Saleh et al., 2000). As acetylated histones are 

generally associated with open, active chromatin, this suggests that Pbx can 

participate in the opening of chromatin through the recruitment of HATs such as 

CBP as well as condensation through the recruitment of HDACs. Pbx also binds 

N-CoR/SMRT, a transcriptional corepressor that facilitates the recruitment of 

additional HDACs (Asahara et al., 1999). Pbx is also a cofactor for many other 

proteins besides Hox, including Engrailed, Pdx1, Emx2, Smads, and MyoD 

(Bailey et al., 2004; Capellini et al., 2010; Knoepfler et al., 1999; Kobayashi et al., 

2003; Peers et al., 1995; Serrano & Maschat, 1998). 

Which factors Pbx interacts with depends partially on its different isoforms. 

Alternative splicing of pbx transcripts creates isoforms with similar DNA binding 

specificities but different recruitment preferences (Milech et al., 2001; Monica et 

al., 1991; Nourse et al., 1990). For example, Pbx1 has two isoforms: Pbx1a, 

which contains a C-terminal extension and binds N-CoR/SMRT, and Pbx1b, 
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which lacks the C-terminal extension and does not bind N-CoR/SMRT (Asahara 

et al., 1999). Regulation of Pbx itself appears to be at the level of nuclear access. 

In order to access the nucleus, Pbx proteins often must bind other factors, such 

as Prep proteins, or undergo phosphorylation by PKA (Abu-Shaar et al., 1999; 

Aspland & White, 1997; Berthelsen et al., 1999; Kilstrup-Nielsen et al., 1998; 

Rieckhof et al., 1997; Vlachakis et al., 2001; Waskiewicz et al., 2001). 

 

The Prep/Meis family 

 

 The other subgroup comprising the TALE family is the prep/meis family.  

Like the pbx family, the prep/meis family is well conserved across species, with 

vertebrates having two prep genes and three meis genes (except for zebrafish, 

which have four meis genes) (Imoto et al., 2001; Nakamura et al., 1996; 

Waskiewicz et al., 2001). Orthologous genes also exist in C. elegans and 

Drosophila, known as unc-62 and homothorax (hth), respectively (Bürglin, 1997; 

Rieckhof et al., 1997; Van Auken et al., 2002). Like Exd, Hth disruption causes 

homeotic phenotypes typically associated with Hox proteins but without any 

disruption to Hox expression (Rieckhof et al., 1997). Like pbx, the discovery of 

meis genes came through investigation of leukemia as proto-oncogenes co-

activated with Hox (Moskow et al., 1995; Nakamura at al., 1996). The discovery 

of prep genes came from a different study of transcription factors that regulated 

the urokinase plasminogen activator gene (Berthelsen et al., 1998). In terms of 
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expression patterns, hth and the prep genes are ubiquitously expressed, and in 

zebrafish Prep1 is maternally deposited (Ferretti et al., 1999; Imoto et al., 2001; 

Rieckhof et al., 1997; Waskiewicz et al., 2001). Conversely, the meis genes turn 

on later in development and are tissue restricted (Nakamura et al., 1996; 

Waskiewicz et al., 2001). Although some research suggests unique functions for 

specific Prep and Meis proteins, others suggest that the two are generally 

interchangeable (Choe et al., 2002). In addition to their roles as Hox cofactors, 

Prep/Meis proteins can also serve as cofactors for other transcription factors 

such as Engrailed and MyoD (Berkes et al., 2004; Kobayashi et al., 2003). 

 Like pbx mutants, loss of Prep1 or Meis1 function leads to death of mice in 

utero, with hematopoietic, angiogenic, and hypoplastic organ defects. Similarly, 

loss of Meis2 results in death in utero due to hemorrhaging. More selective loss 

of function experiments, such as hypomorphic mutation of Prep1 and conditional 

loss of Meis2 function in neural crest cells, display more localized effects. These 

result in a reduction of Pbx and Meis levels and defects in the cranial and cardiac 

neural crest cell lineages, respectively (Azcoitia et al., 2005; Cai et al., 2012; 

Ferretti et al., 2006; Hisa et al., 2004; Machon et al., 2015). 

 Pbx and Prep/Meis dysfunction causes many human deformities and 

diseases. As previously mentioned, the discovery of Pbx came in the context of 

human leukemia, where a (1:19) chromosomal translocation created a chimeric 

fusion protein containing the Pbx1 homeodomain and E2A transactivation 
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domain, leading to pre-B acute lymphoblastic leukemias (Nourse et al., 1990). 

Indeed, both Pbx and Prep/Meis are implicated in many cancers and oncogenic 

capacities, including breast, lung, liver, and ovarian cancers (Morgan et al., 

2017). Other research points to Pbx dysregulation as playing a role in cleft lip 

and palate deformities as well as diabetes (Ferretti et al., 2011; Kim et al., 2002; 

Losa et al., 2018; Welsh et al., 2018). 

 

Figure 1.2: Schematics of TALE proteins. Representative Pbx (blue) and Prep/Meis (orange) 
proteins. N-termini are represented by N and C-termini by C. The homeodomains (HD) are 
represented in green and the interacting domains in yellow. Other significant factor interacting 
sites are pointed out above each schematic. In the case of Pbx, some proteins have elongated C-
termini, indicated by the dashed line. 

 

TALE transcription factor dynamics 

 

 The TALE factors are mostly studied in the context of their role as 

cofactors for Hox proteins. Hox can form complexes with just Pbx, just 

Prep/Meis, or both Pbx and Prep/Meis proteins (Berthelsen et al., 1998; Choe et 

al., 2009; Ferretti et al., 2000; Jacobs et al., 1999; Penkov et al., 2013; Pöpperl et 

al., 1995; Ryoo & Mann, 1999; Shen et al., 1997; Vlachakis et al., 2000). By 
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themselves, Hox proteins have moderate DNA affinity and sequence specificity. 

Pbx proteins enhance the affinity of Hox proteins for DNA and also increase the 

specificity of the sequences they bind, perhaps by altering the conformation of 

the region N-terminal to the Hox homeodomain to a state allowing greater minor 

groove contacts (Pöpperl et al., 1995). Indeed, many Pbx binding sites are 

characterized as Pbx/Hox half-sites, generally with the sequence TGATNNAT 

(Grieder et al., 1997; Ryoo & Mann, 1999). Prep/Meis factors, on the other hand, 

appear to have little effect on Hox DNA binding specificity, though they do have 

indirect effects that include stabilization and nuclear localization of Pbx proteins 

and mediating Hox/Pbx interactions (Hudry et al., 2012; Vlachakis et al., 2001; 

Waskiewicz et al., 2001). Although Prep/Meis proteins do not appear to have 

direct effects on Hox complex DNA binding, they do alter the composition of Hox 

complexes. For example, Meis competes with HDACs for binding to Pbx, helping 

to maintain more active chromatin profiles near Hox complex binding sites (Choe 

et al., 2009). Prep/Meis proteins bind a DNA motif known as the HEXA motif on 

account of its six nucleotides with the sequence TGACAG. HEXA sites are often 

located a short distance from Pbx/Hox sites (Amin et al., 2015; Ferretti et al., 

2005; Ferretti et al., 2000; Jacobs et al., 1999; Tümpel et al., 2007). 

In addition to the Pbx/Hox hybrid sites and HEXA sites, Pbx and 

Prep/Meis proteins can bind the so-called DECA motif, a ten-nucleotide motif 

composed of Pbx and Prep/Meis half-sites with the sequence TGATTGACAG. 

Originally identified in vitro as a binding site for TALE dimers, the DECA motif 
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also appeared in ESCs and the mouse trunk (Chang et al., 1997; De Kumar et 

al., 2017; Knoepfler & Kamps, 1997; Laurent et al., 2015; Penkov et al., 2013). 

Further study of the DECA motif in zebrafish revealed that Pbx4 and Prep1 

bound the DECA motif early in development, occupying other binding sites such 

as Pbx/Hox and HEXA sites later. Pbx4 and Prep1 bound to DECA sites 

persisted later into development, but their early occupancy relative to that of the 

more traditional Pbx/Hox and HEXA motifs suggests an alternative function for 

these motifs (Ladam et al., 2018). 

 Oftentimes, TALE factors will bind DNA well before recruiting binding 

partners such as Hox. A prime example is the zebrafish hoxb1a gene. In 

zebrafish, Pbx4 and Prep1 are maternally deposited and bind target enhancer 

regions within the first few hours post-fertilization. These factors assemble poised 

transcription complexes by recruiting factors to create a permissive chromatin 

landscape with modifications such as H3K27ac and H3K4me3 as well as RNA 

polymerase II. Transcription does not begin, however, until Hoxb1b, the earliest 

expressed hox gene in zebrafish, binds the complex. Once transcription at 

hoxb1a is started, Hoxb1a can drive its own transcription in the fourth 

rhombomere region of the hindbrain (Choe et al., 2014; Choe et al., 2009). 
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Figure 1.3: Transcriptional activation at hoxb1a. Formation of the transcription complex at 
hoxb1a exemplifies the classical model of TALE function. The process begins with the binding of 
the TALE factors Pbx4 and Prep1 to the hoxb1a enhancer, with Prep1 binding the HEXA 
(TGACAG) motif and Pbx4 binding the TGAT portion of a composite Pbx/Hox motif (TGATNNAT). 
Pbx4 and Prep1 recruit general transcription factors such as RNA polymerase II and P-TEFb, and 
the transcription complex remains poised until Hoxb1b binds, initiating transcription. 

 

The CCAAT box and Nuclear Factor Y 

 

 Recently, our lab conducted ChIP-seq experiments for Prep1 in zebrafish 

embryos. These ChIP-seq experiments took place at 3.5 hpf, which is around 

ZGA, and 12 hpf, which is during segmentation when tissue differentiation is 

underway. These ChIP-seq experiments revealed that Prep1 was predominantly 

bound to DECA sites at 3.5 hpf. After this point, Prep1 bound other motifs such 

as HEXA sites through 12 hpf. DREME, a sequence motif recognition program, 

identified another sequence motif near these Prep1-bound DECA sites with the 

sequence CCAAT. This motif, known as the CCAAT box, consistently appeared 
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within about 20 base pairs (bp) of the DECA sites bound by Prep1, suggesting a 

potential biological relevance (Ladam et al., 2018). 

The CCAAT box is one of the most frequently observed DNA sequence 

motifs at eukaryotic promoters, found preferentially at the -80 region. For many 

years the CCAAT box was considered a core promoter element. It correlates well 

with CpG islands and is present at many well-studied promoters. Advances in 

high-throughput sequencing technology, however, showed that the CCAAT box 

is only present in about 30% of eukaryotic promoters. Furthermore, the CCAAT 

box counter-correlates with other well-known core promoter elements, such as 

the TATA box. While it is not unheard of for a promoter to have both a CCAAT 

box and a TATA box, they are uncommon (Dolfini et al., 2009). 

A protein complex known as nuclear factor Y (NFY) recognizes and binds 

to the CCAAT box. NFY, also referred to as CCAAT Binding Factor (CBF) or 

CCAAT Protein 1 (CP1), is a heterotrimeric transcription factor comprising the 

subunits Nfya, Nfyb, and Nfyc. The first description of NFY was as the nuclear 

factor binding the Y box at promoters of MHC Class II genes, providing its 

predominant moniker. At these promoters, NFY interacts with RFX and CREB to 

form a functional unit capable of recruiting the master MHC Class II coactivator 

CIITA and drive transcription of genes involved in antigen presentation. To 

investigate the wider regulatory targets of NFY, gene ontology (GO) analysis of 

the genes associated with promoters containing a CCAAT box revealed an 
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enrichment for basic cellular functions. Cell cycle ontologies were the top result, 

with others including DNA metabolism, chromatin, and endoplasmic reticulum. At 

these promoters, NFY is a key factor, playing a significant role in the recruitment 

of RNA polymerase II and general transcription factors (Dolfini et al., 2009). 

As with the CCAAT box, advances in high-throughput sequencing 

provided new insight into NFY function. A ChIP-seq experiment in mouse 

embryonic stem cells (ESCs) revealed that only about half of NFY peaks were 

present within 500 bp of a transcription start site, demonstrating that NFY binding 

was not limited to promoters. Further study on the surrounding characteristics of 

the distal peaks suggested that they were bound to enhancers. GO analysis of 

these distal peaks revealed that they were enriched for functions related to ESC 

maintenance and neuronal function. Indeed, NFY is present in all transformed 

and immortalized cell lines but absent in many terminally differentiated cells such 

as myocytes, circulating monocytes, and cells undergoing senescence, 

suggesting a role in maintaining pluripotency (Oldfield et al., 2014). 

At the protein level, all three NFY subunits are conserved from yeast 

through humans. They are maternally deposited and, initially, ubiquitously 

expressed (reviewed in (Dolfini et al., 2012)). Although there are two isoforms of 

Nfya and Nfyc, they have no known functional differences (Ceribelli et al., 2009; 

Chen et al., 2002; Li et al., 1992). In Saccharomyces cerevisiae (yeast), the 

genes HAP2, HAP3, and HAP5 are orthologous to Nfya, Nfyb, and Nfyc, 
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respectively. Yeast also have a fourth subunit, HAP4, which provides activating 

activity to the complex (Forsburg & Guarente, 1989; Hahn et al., 1988; McNabb 

et al., 1995; McNabb & Pinto, 2005; Pinkham et al., 1987). In higher eukaryotes, 

the activating properties of HAP4 have been incorporated into Nfya and Nfyc in 

the form of two large glutamine- and hydrophobics-rich domains. The HAP 

complex binds the upstream activating sequence of many cytochrome genes, 

making it a master regulator of respiratory metabolism (Buschlen et al., 2003). 

 

NFY in embryonic development 

 

While the majority of NFY functions relate to basic cell functions, NFY also 

plays roles in embryonic development. In Drosophila, increasing or decreasing 

Nfya expression leads to embryonic death. Furthermore, Nfyc is a target of 

Dorsal, which is a vital transcription factor in early embryogenesis. It is involved 

in a variety of roles, including activation of mesodermal genes, R7/R8 

photoreceptor axonal guidance, and the JNK pathway (Stathopoulos et al., 2002; 

Yoshioka et al., 2007). The roles for NFY in development continue into the 

planarian Schmidtea mediterranea, where male germ cell development relies on 

NFY (Wang et al., 2010). Finally, in C. elegans, NFY targets a CCAAT box in the 

promoter of the abdominal-B hox ortholog egl-5. Egl-5 controls patterning in the 

tail, and mutation of nfya-1 results in ectopic expression of egl-5 as well as 

myriad developmental abnormalities. Although generally accepted to be a 
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transcriptional activator, this suggests that NFY may also be able to function as a 

repressor. Further evidence of a repressive role for NFY is its interaction with 

MES-2 and MES-6, subunits of the Polycomb repressive complex in worms. 

(Deng et al., 2007). 

In vertebrates, NFY’s roles grow even more complex. In zebrafish, Nfyb is 

maternally deposited but at later stages of development becomes restricted to 

the head cartilage and notochord. Knockdown by MOs results in smaller heads, 

sharpened Meckel’s cartilage, loss of ceratobranchial cartilage, and enlarged 

angles of ceratohyal cartilage due to apoptosis of neural crest cells. (Chen et al., 

2009). Mutations in zebrafish nfyc resulted in eye defects between the outer and 

inner nuclear layers due to a loss of photoreceptor and breakdownin lamination 

(Gross et al., 2005). In mice, NFY is essential for embryonic development. nfya 

knockout mice die by e8.5 thanks to rampant apoptosis and defects in s-phase 

progression (Bhattacharya et al., 2003). NFY expression is relatively high in the 

inner cell mass of the mouse blastocyst and there is evidence that it is required 

for maintenance of pluripotency, which may explain this phenotype (Yoshikawa 

et al., 2006). 
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Table 1.1: Phenotypes caused by TALE and NFY disruption. Summary of phenotypes 
associated with disruption of key TALE and NFY factors in zebrafish. NC stands for neural crest. 

 

NFY transcription factor dynamics 

 

All three subunits of NFY are required for DNA binding, and all three 

subunits contact the DNA when bound. In order to form a complex, Nfyb and 

Nfyc must first associate. This often happens in the cytoplasm, as Nfyc requires 

Nfyb to enter the nucleus while Nfya can enter on its own (Frontini et al., 2004). 

Once inside, the Nfyb/Nfyc heterodimer can bind Nfya, which is the least 

Factor Morpholino Dominant Negative Germline

pbx4

Reduced head and eye size, pericardial 

edema/ swollen pericardium, hindbrain 

mispatterning (loss of r3) (Ladam et al., 

2018; Waskiewicz et al., 2002)

Reduced head and eye size, pericardial 

edema/ swollen pericardium, hindbrain 

mispatterning (loss of r3) (Choe et al., 

2002)

Hindbrain mispatterning anterior to r4/r5 

boundary, loss of Mauthner neurons, 

loss or reduction of NC-derived 

cartilages, reduced jaw, loss of aortic 

arch vasculature, poor circulation, 

swollen pericardium, thin and weak 

heart, loss of pectoral fins, death by 6-7 

dpf (Pӧpperl et al., 2000)

prep1

Hindbrain mispatterning, improper 

reticulospinal neuron migration (except 

Mauthner neurons), cell death/ 

degeneration of neuroectoderm and 

hindbrain,  impaired motor coordination, 

reduced head and eye size, loss or 

reduction of NC-derived cartilages due 

to inability of NC cells to properly 

differentiate, loss of jaw and swim 

bladder, pericardial edema, atrophy of 

pectoral fins, abnormal distribution of 

melanocytes, death by 6-7 dpf 

(Deflorian et al., 2004)

N/A N/A

nfya N/A

Reduced head and eye size, pericardial 

edema/ swollen pericardium (Mantovani 

et al., 1994; Ladam et al., 2018)

N/A

nfyb

Reduced head size, loss of branchial 

arc, sharpened Meckel’s cartilage, loss 

of ceratobranchial cartilage, enlarged 

angles of ceratohyal cartilage, 

apoptosis of NC cells (Chen et al., 

2009)

N/A N/A

nfyc N/A N/A

Loss of photoreceptor and breakdownin 

lamination between outer and inner 

nuclear layers (Gross et al., 2005)
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abundant of the three subunits, to form the complete heterotrimer. Nfya is the 

subunit that recognizes the CCAAT box and provides the factor’s sequence 

specificity while Nfyb and Nfyc interact with DNA, as well as one another, through 

their histone fold domains (HFD). In total, there are 41 points of contact between 

NFY and DNA, making the complex extraordinarily stable (Nardini et al., 2013; 

Romier et al., 2003). 

Sequence-specific recognition of the CCAAT box by Nfya is managed by 

its α2 helix, which inserts into the minor groove of DNA, making contact via a 

GxGGRF motif and inducing a bend of about 80° in the DNA. This bend could 

promote the binding of other transcription factors in the exposed major grooves. 

The initial DNA contacts of NFY are likely made via the HFDs of the Nfyb/Nfyc 

heterodimer, allowing Nfya to interact with those subunits via is α1 helix and 

search for a CCAAT box with its α2 helix (Nardini et al., 2013). 

The HFDs of Nfyb and Nfyc are key components to NFY’s function. Nfyb 

and Nfyc are related to the histone proteins H2B and H2A, respectively 

(Baxevanis et al., 1995). Despite only 15%-18% sequence similarity, the 

structure of the interaction of Nfyb and Nfyc with the DNA sugar-phosphate 

backbone mimics that of the H2B/H2A heterodimer as well as several other well-

characterized factors such as TATA-binding protein (TBP)-associated factors 

(TAFs), the TBP/TATA-binding negative cofactor 2 (NC2a/b), and the 

CHRAC15/CHRAC17 subunits of the nucleosome remodeling complex CHRA 
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(Kamada et al., 2001; Poot et al., 2000; Romier et al., 2003). Furthermore, NFY 

can undergo many post-translational modifications, many of which appear to 

mirror modifications made to histone proteins. For example, H2B-K120 

monoubiquitination is one of the earliest chromatin marks associated with active 

genes. Nfyb-K138 monoubiquitination could be a paralogous modification that 

plays a role in establishing permissive chromatin environments around NFY 

binding sites by mimicking H2B-K120 monoubiquitination, as RNAi of NFY 

reduces H2B-K120 monoubiquitination and a Nfyb-K138R mutant reduces 

transcription (Nardini et al., 2013). Indeed, loss of NFY leads to a loss of many 

chromatin marks associated with transcription activation and elongation, 

including H3K4me3, H3K36me3, and H3K79me2 (Donati et al., 2008; Gurtner et 

al., 2008). For example, NFY contacts the hASH2L subunit of the MLL complex, 

which deposits H3K4me3 (Fossati et al., 2011). NFY also recruits the lysine 

demethylase KDM1 and its cofactor coREST, which demethylate H3K4me2 into 

H3K4me1 (Qureshi et al., 2010). 

A growing body of evidence suggests that NFY could be a PTF. NF-YC 

interacts with OCT4, and knockdown of NFY can reduce OCT4 binding at co-

occupied sites. This apparent dependency on NFY suggests that NFY could be a 

PTF or that it could promote the binding of other PTFs, such as OCT4, by 

mimicking nucleosomes (Oldfield et al., 2014). Research into the mammalian 

zygotic genome activation demonstrated that the process happened in several 

steps, with large increases in open chromatin regions at the 2-cell stage and 8-
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cell stage. The factor responsible for the increase in open chromatin at the 8-cell 

stage was OCT4 while the factor responsible for the increase in open chromatin 

at the 2-cell stage was NFY, lending credence to the notion that NFY possesses 

PTF capabilities (Lu et al., 2016). 

 

NFY in disease 

 

Like many transcription factors, NFY is a suspect in several pathologies. 

There are no significant examples of mutant or grossly abnormal NFY subunits 

implicated in disease, but deviation from normal functions, such as expression 

pattern or DNA binding, do implicate NFY in some pathologies. At the top of the 

list is cancer, where the role of NFY in driving the expression of many cell cycle 

genes makes it a frequent suspect. Although evidence of a direct link between 

NFY and cancer remains elusive, changes in the transcriptome during 

transformation of oncogenic cells require the activation of many genes that 

contain CCAAT boxes in their promoters (reviewed in (Dolfini et al., 2012)). 

Polyglutamine diseases, such as Huntington disease, spinocerebellar 

ataxia type 17 (SCA17), and spinal and bulbar muscular atrophy (SBMA), are 

another group of pathologies in which NFY may play a role. In particular, the 

glutamine-rich activations domains of Nfya and Nfyc can aggregate in the 

cytoplasm of affected neurons, leading to a loss of NFY function in the nucleus. 

Among its target genes are several chaperones, such as HSP40 and HSP70, 
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which are crucial to sequestering misfolded proteins that would otherwise 

contribute to the aggregates. The result is a feedback loop in which NFY 

subunits, entangled in the aggregates, are unable to activate the genes required 

for controlling the aggregates, allowing the progression of these polyglutamine 

diseases (Huang et al., 2011; Katsuno et al., 2010; Yamanaka et al., 2008). In 

addition to cancer and polyglutamine diseases, NFY is a target in Leigh 

syndrome, schizophrenia, and diabetes, though its role in these is not well 

characterized. Despite evidence that conditional deletion of Nfya in postmitotic 

mouse neurons induces progressive neurodegeneration, there is no link between 

NFY and neurodegenerative diseases (reviewed in (Dolfini et al., 2012)). 

 

Dominant negatives: a method to study TALE and NFY 

 

Dominant negative constructs provide a unique method for studying the 

function of both the TALE and NFY complexes. In the case of the TALE factors, 

the dominant negative factor is a truncated Pbx4 known as PBCAB. PBCAB 

contains the PBC-A and PBC-B domains required for binding Prep/Meis proteins 

but lacks the C-terminal domain responsible for interacting with Hox proteins and 

nuclear localization (Choe et al., 2002). The PBCAB protein competes with 

endogenous Pbx4 for interactions with Prep/Meis proteins, which lack a nuclear 

localization signal and cannot enter the nucleus on their own (Berthelsen et al., 

1999). When present in excess, PBCAB shifts the equilibrium of TALE factors in 
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the nucleus versus the cytoplasm drastically to the cytoplasm, causing the TALE 

factors to become scarce in the nucleus and unable to affect their target genes. 

The dominant negative NFY, Nfya-DN, works with a similar mechanism to 

PBCAB. This construct is a mutant Nfya containing an α2 helix in which is unable 

to recognize the CCAAT box. The result is a non-functional Nfya subunit which, 

like PBCAB, competes with endogenous Nfya for binding to the Nfyb/Nfyc dimer. 

When present in saturating amounts, the equilibrium shifts drastically in favor of 

the non-functional Nfya subunit, preventing functional Nfyb/Nfyc dimers from 

binding to DNA and resulting in a loss of NFY function (Mantovani et al., 1994). 

 

 

Figure 1.4: Mechanism of action for dominant negative Pbx (PBCAB) and Nfya (Nfya-DN). 
PBCAB is a truncated zebrafish Pbx4, lacking its C-terminus containing a Hox interacting domain 
and nuclear localization sequence. PBCAB is still able to bind Prep/Meis proteins in the 
cytoplasm but unable to enter the nucleus, and when present in saturating quantities sequesters 
both factors in the cytoplasm and prevents them from activating their target genes. Nfya-DN 
contains a mutated α2 helix, preventing its recognition of the CCAAT box, but can still interact 
with the Nfyb/Nfyc dimer. In saturating amounts, Nfya-DN outcompetes endogenous Nfya for 
Nfyb/Nfyc trimerization, preventing the complete complex from binding its target genes. 
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In this project, I investigated cooperation between NFY and the TALE 

factors Pbx4 and Prep1 in driving gene expression at ZGA in zebrafish embryos. 

Through co-immunoprecipitation of epitope-tagged zebrafish proteins followed by 

western blotting, I find that Nfya and Nfyb interact with Pbx4 and Prep1 on a 

protein level. I show that disruption of TALE and NFY function by injecting the 

dominant negative constructs into zebrafish embryos at the 1-cell stage leads to 

similar phenotypes, including smaller heads, smaller eyes, and deformed anterior 

cartilage. In addition, RNA-seq at 12 hpf on embryos injected with the dominant 

negatives shows that the two factors co-regulate many genes involved in 

transcription regulation and embryonic development but also independently 

regulate other processes, including homeobox genes for the TALE factors and 

cilia for NFY. 

Using ChIP-seq at 3.5 hpf, just before ZGA, I find that 94% of Pbx-

occupied sites are also occupied by Prep1 (TALE sites), whereas only 37% of 

regions occupied by Prep1 are also occupied by Pbx4. These Pbx4- and TALE-

bound sites are located at DECA motifs. I also find that 17% of TALE sites are 

co-occupied by Nfya at a motif comprising a DECA site and a CCAAT box. The 

genes nearest these TALE/NFY regions are largely involved in transcription 

regulation, while genes downregulated by the dominant negatives and near 

TALE/NFY ChIP peaks are involved in transcription and development. 
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To determine whether the TALE factors and NFY work together to drive 

transcription, I created stable zebrafish lines containing putative enhancer 

regions with CCAAT boxes and DECA sites upstream of GFP. These lines 

showed that TALE and NFY could drive GFP expression. In addition, I made 

stable zebrafish lines containing mutant versions of these enhancers with 

scrambled CCAAT boxes and DECA sites driving RFP expression. These mutant 

lines lacked RFP expression, showing that TALE and NFY are required to drive 

transcription. Taken together, this research demonstrates new roles for the TALE 

factors and NFY in early embryogenesis. 

  



CHAPTER II: MATERIALS AND METHODS 
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Experimental Model and Subject Details 

 

Care of zebrafish 

 

The Institutional Animal Care and Use Committee (IACUC) of the University of 

Massachusetts Medical School approved all procedures involving zebrafish. 

Adult EkkWill zebrafish were maintained at 28°C in groups at a maximum density 

of 12 individuals per liter with constant flow. To collect embryos for timing-

sensitive experiments, one adult male fish and one adult female fish were placed 

in separate chambers of a 500mL tank overnight then placed together the 

following morning for no more than 30 minutes. For experiments that were not 

timing-sensitive, both adults were placed in the same chamber overnight. Eggs 

were collected in 10cm dishes, immersed in egg water (60µg/mL Instant Ocean, 

0.0002% methylene blue), and maintained in an incubator at 29°C. Dead and 

unfertilized eggs were manually removed after two hours. 

 

HEK293T cells 

 

HEK293T cells were maintained in growth medium (Dulbecco’s Modified Eagle 

Medium + 10% heat-inactivated fetal bovine serum (FBS) + 0.5% penicillin/ 

streptomycin) in a humidified incubator with 5% CO2 at 37°C. Frozen stocks were 

stored submerged in liquid nitrogen in freezing medium (FBS + 10% DMSO). 
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Method Details 

 

Transfection for co-immunoprecipitation 

 

HEK293T cells were seeded on 10cm dishes and grown overnight in growth 

medium. Transfection mixes with Lipofectamine 2000 (ThermoFisher) were 

prepared according to the manufacturer’s instructions with 2µg of total plasmid 

DNA in Opti-MEM medium. The HEK293T cells were rinsed twice with PBS then 

immersed in growth medium 10X the volume of transfection mix. The transfection 

mix was then added to the growth medium, swirled gently to mix, and the dishes 

were returned to the incubator overnight. 

 

Co-immunoprecipitation 
 

Aliquots of 50µL and 40µL of agarose protein A/G beads (Roche) were rinsed in 

PBS and then blocked in chilled Blocking Solution (1% bovine serum albumin 

(BSA) in Co-IP Buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 0.2mM EDTA 1mM 

DTT 0.5% Triton X100, 1X C0mplete Protease Inhibitor (Roche)) for at least one 

hour. The growth medium was aspirated from the transfected cells, which were 

then rinsed in chilled PBS on ice. The PBS was aspirated and 4mL of Co-IP 

Buffer was added to each dish of cells. The cells were scraped into a conical 

tube, incubated on a rotating rack at 4°C for 30 minutes, and centrifuged at 2,000 

RPM for 10 minutes at 4°C. The supernatant was transferred to a new conical 
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tube and 1% was set aside as Input. The blocked pre-clearing beads (50µL) were 

added to the remainder and incubated on a rotating rack for 2 hours at 4°C. The 

pre-cleared samples were centrifuged at 2,000 RPM for 3 minutes at 4°C and the 

supernatant divided into two new tubes. Control antibody was added to one tube 

and target antibody to the other, then the tubes were incubated on a rotating rack 

overnight at 4°C. The next morning, the blocked IP beads (40µL) were added to 

the lysate and incubated on a rotating rack for 4 hours at 4°C. The samples were 

centrifuged at 2,000 RPM for 3 minutes at 4°C, the supernatant removed, and 

the beads washed five times in 1mL of Co-IP Buffer each time. The beads were 

then resuspended in 40µL of Laemmli Buffer (Bio-Rad) + 5% β-mercaptoethanol 

and incubated at 95°C for 5 minutes. 

 

Western Blot 

 

Samples were run on 4%-20% polyacrylamide gels at 200 V. When complete, 

the gels were equilibrated in Transfer Buffer (Bio-Rad) for 15 minutes and then 

the samples were transferred to an activated PVDF membrane at 100 V for 1 

hour. The membranes were then blocked in blocking solution (5% nonfat 

dehydrated milk in TBST (20mM Tris-HCl pH 7.6, 150mM NaCl, 0.1% Tween20) 

at room temperature on a rocker for 1 hour. The membranes were then 

transferred to their respective primary antibody solution (5% BSA in TBST) and 

incubated on a rotating rack overnight at 4°C. The next day, the membranes 
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were washed four times in TBST for at least 10 minutes each time. The 

membranes were then placed in 20mL of secondary antibody solution and 

incubated for 2 hours at 4°C. The membranes were then washed four more times 

in TBST for at least 10 minutes each time, developed in ECL solution 

(ThermoFisher), and imaged. 

 

Generation of mRNA for injection 
 

Capped messenger RNAs encoding the dominant negative Nfya (Nfya-DN; 

(Mantovani et al., 1994)), dominant negative Pbx4 (PBCAB; (Choe et al., 2002)) 

proteins were generated from 2µg of NotI-digested linearized pCS2+ plasmids 

using the mMessage mMachine SP6 Transcription Kit (ThermoFisher Scientific) 

according to the manufacturer’s guidelines. The RNA was purified using the 

RNeasy column with DNase treatment (Qiagen) according to the manufacturer’s 

guidelines. RNA quality was assessed on a 1% agarose gel and its concentration 

was measured on a NanoDrop instrument. 300pg of RNA injection mix containing 

water and 0.1% phenol red was injected into zebrafish embryos at the 1-cell 

stage. Injected embryos were raised to the proper stage according to animal care 

guidelines. 
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Characterization of TALE and NFY phenotypes 

 

For gross phenotype assessment, 24 hpf zebrafish embryos were placed on 

glass slides in 80% glycerol. For Alcian blue staining, all incubations and washes 

took place on a nutator. 5 dpf zebrafish embryos were fixed overnight in 4% 

phosphate-buffered paraformaldehyde. Following fixation, the embryos were 

washed in 0.1% phosphate-buffered Tween-20 (PBST) and bleached in 30% 

hydrogen peroxide for 2 hours. Once bleached, the embryos were rinsed twice in 

PBST and then stained overnight in Alcian blue solution (1% hydrochloric acid 

(HCl), 70% ethanol, 0.1% Alcian blue). After staining, the embryos were washed 

five times in acidic ethanol (HCl-EtOH; 5% HCl, 70% ethanol) with the final wash 

lasting 20 minutes. The embryos were then rehydrated in a series of 10-minute 

incubations of 75% HCl-EtOH/25% water, 50% HCl-EtOH/50% water, 25% HCl-

EtOH/75% water, and 100% water and imaged. For in situ hybridizations, all 

incubations and washes took place on a nutator. 24 hpf zebrafish embryos were 

fixed overnight in 4% phosphate-buffered paraformaldehyde. Following fixation, 

the embryos were washed in a 1:1 methanol:PBST solution, then PBST, and 

then treated with 1 µg/mL Proteinase K in PBST for 2 minutes. The embryos 

were washed once with -20°C acetone and twice with PBST then incubated at 

70°C for 1 hour in Hyb+tRNA Buffer (50% formamide, 5X saline sodium citrate 

(SSC), 9.2mM citric acid, 0.5% Tween-20, 50 µg/mL heparin, 500 µg/mL tRNA). 

Next, the embryos were transferred to pax2/krox20/hoxd4a probe solution and 

incubated at 70°C overnight. After probe incubation, the embryos were washed 
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sequentially for 10 minutes each at 70°C in Hyb Wash Buffer (50% formamide, 

5X saline sodium citrate (SSC), 9.2mM citric acid, 0.5% Tween-20, 50 µg/mL 

heparin), 2:1 Hyb:2xSSC, 1:2 Hyb:2xSSC, 2xSSC, 0.2xSSC, and 0.1xSSC, then 

blocked in Blocking Solution (2% lamb serum and 2 µg/µL bovine serum albumin 

in PBST) at 4°C for 1 hour. The embryos were then incubated with 0.01% α-DIG 

antibody at 4°C overnight. Following antibody treatment, the embryos were 

washed four times with PBST and two times with Staining Buffer (0.1M Tris pH 

9.5, 50mM MgCl2, 125mM NaCl, 0.5% Tween20) then stained with Staining 

Solution (100 mg/mL polyvinyl alcohol, 0.35% 5-Bromo-4-chloro-3-indolyl 

phosphate, 0.45% 4-Nitro blue tetrazolium) at 37°C until the color developed. 

The embryos were then washed four times in PBST and scored. Sample size for 

phenotypic analyses was based on previous published reports that these 

dominant negative constructs produce phenotypes in >85% of injected embryos 

(Choe et al., 2002; Deflorian et al., 2004; Ladam et al., 2018; Waskiewicz et al., 

2001). Embryos were randomly selected for inclusion in injected or control pools. 

No animals were excluded, and experiments were not blinded. 

 

RNA extraction 

 

Zebrafish embryos were injected with either PBCAB, Nfya-DN, GFP, or antisense 

Nfya-DN mRNA as described above. At the desired timepoint, embryos were 

collected into three biological replicates of 50-100 embryos per condition. Dead 
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animals were counted but excluded from RNA extraction procedures. No other 

animals were excluded, and selection was not blinded. Each sample was placed 

in 1mL of Trizol and frozen at -80°C to help break up embryos. Once thawed, the 

embryos were broken up by pipette and 250µL of chloroform was added to each 

sample followed by vigorous shaking and a 3-minute incubation at room 

temperature. The samples were then centrifuged at 12,000*g for 15 minutes at 

4°C and the aqueous phase was transferred to a new tube with 500mL of 

isopropanol and 10µg of GlycoBlue (ThermoFisher Scientific). The samples were 

vortexed, incubated at room temperature for 10 minutes, and then centrifuged at 

12,000*g for 15 minutes at 4°C. The supernatant was removed, and the pellet 

washed in 75% ethanol then centrifuged at 7,500*g for 5 minutes at room 

temperature. The supernatant was once again removed, and the pellet was air-

dried at room temperature for 10 minutes before resuspension in 50µL of water. 

The samples were then further purified and treated with DNase using the 

RNeasy Column kit (Qiagen) and eluted in 30µL of water.  

 

RNA-seq library preparation and deep sequencing 

 

The concentration and quality of each sample was assessed on a Bioanalyzer 

(Agilent), with all samples having a minimum RNA Quality Number of 8.0 and 

28S/18S ratio of 1.0. 4µg of each sample of RNA was shipped to BGI for library 

preparation and sequencing. Polyadenylated RNAs were selected using oligo dT 
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beads and then fragmented. N6 random primers were then used to reverse 

transcribe the library into double-stranded cDNA. A minimum of 20 million single-

end 50 bp reads were then generated with the BGISEQ-500 platform. 

 

RT-qPCR 

 

The concentration of each sample was assessed on a NanoDrop instrument. 1µg 

of RNA was reverse transcribed using the High Capacity cDNA Reverse 

Transcription Kit (ThermoFisher Scientific). To measure the quantity of select 

mRNAs, 25µL samples were prepared using 2µL of cDNA, 0.2mM of forward and 

reverse primer for each pair, and SYBR Green qPCR Master Mix (Bimake) 

according to the manufacturer’s guidelines. Measurements were made on a 7300 

Real-Time PCR System (Applied Biosystems). 

 

Generation of Nfya Antiserum 

 

Zebrafish Nfya antiserum was prepared by ABClonal Technology. DNA encoding 

amino acids 1-328 of zebrafish Nfya was cloned into the vector pET-28a-SUMO, 

containing a 12aa SUMO tag and a 6aa His tag. The vector was transformed into 

the E. coli Rosetta strain and the antigen peptide was induced with 0.8mM IPTG 

at 37°C for 4 hours. Small-scale antigen expression was confirmed by Western 

blot, showing a band at about 58 kDa corresponding to the peptide. The peptide 
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was purified, appearing in both the supernatant and inclusion bodies. The 

concentration in the supernatant was 2mg/mL, which was deemed appropriate 

for immunization. Two rabbits were used for immunization and serum was 

collected on Day 52. The antiserum was tested by ELISA and deemed of 

sufficient quality with an OD450 > 0.4 at a 1:64,000 dilution. The antibody was 

purified via antigen affinity purification, with the polyclonal antibody concentration 

from animal #E7260 at 4.25mg/mL and from animal #E7621 at 4.66mg/mL. The 

antibodies were tested via Western blot at a 1:1000 dilution with 10, 5, 1, and 

0.5ng of antigen. Bands of about 60 kDa were observed for antibodies from both 

animals at all four antigen concentrations. 

 

ChIP-seq 

 

Groups of about 5,000 embryos (for Pbx4) and of about 10,000 embryos (for 

Nfya) were collected at 3.5 hpf and dechorionated in 1X pronase. The embryos 

were then dissociated by pipette, fixed in 2% formaldehyde in PBS for 10 

minutes at room temperature, quenched with 125mM glycine, and flash-frozen in 

liquid nitrogen. Processing of cell pellets followed the protocol previously 

described (Amin et al., 2015). Nuclei were isolated in L1 Buffer (50mM Tris-HCl 

pH 8.0, 2mM EDTA, 0.1% NP-40, 10% glycerol, 1mM PMSF) then lysed in SDS 

Lysis Buffer (50mM Tris-HCl pH 8.0, 10mM EDTA, 1% SDS). Chromatin was 

sheared to an average length of 300 bp using a Palmer immersion sonicator 
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(Three 1-minute rounds of 10s on/2s off at 40% amplitude) and diluted 1:10 in 

ChIP Dilution Buffer (50 mM Tris-HCl pH8.0, 5 mM EDTA, 200 mM NaCl, 0.5% 

NP-40, 1 mM PMSF). The samples were pre-cleared with 50µL of Protein A 

Dynabeads (ThermoFisher Scientific) at 4°C for 3 hours, then Input samples 

were set aside and stored at -80°C. Next, 10µL of the appropriate antiserum was 

added (α-Pbx4 or α-Nfya) and the samples were incubated rotating at 4°C 

overnight. The immune complexes were precipitated onto 50µL of Protein A 

Dynabeads, which were washed five times with Wash Buffer (20 mM Tris-HCl 

pH8.0, 2 mM EDTA, 500 mM NaCl, 1% NP-40, 0.1% SDS, 1 mM PMSF), three 

times with LiCl Buffer (20 mM Tris-HCl pH8.0, 2 mM EDTA, 500 mM LiCl, 1% 

NP-40, 0.1% SDS, 1 mM PMSF), and three times with TE Buffer (10 mM Tris-

HCl pH8.0, 1 mM EDTA, 1 mM PMSF). To elute chromatin, the beads were 

incubated in 50µL of fresh Elution Buffer with shaking at 1,500 RPM for 15 

minutes at 25°C then 15 minutes at 65°C. To reverse crosslinks, 2µL of 5M 

sodium chloride was added to the samples, which were then incubated at 65°C 

overnight. Purification of the DNA was accomplished using the MicroChIP Dia 

Pure Column kit (Diagenode) according to the manufacturer’s guidelines with an 

11µL elution. To quantify the concentration of DNA, 1µL of each sample was 

passed through the dsDNA HS Assay (ThermoFisher Scientific) according to the 

manufacturer’s guidelines and quantified on a Qubit device. 
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ChIP-seq library preparation and deep sequencing 

 

ChIP-seq libraries were prepared using the MicroPlex Library Preparation Kit v2 

(Diagenode) according to the manufacturer’s guidelines. The entirety of each 

ChIP sample was used, and Input samples were either diluted to the same 

concentration as their corresponding ChIP sample or, if the concentration of the 

corresponding ChIP sample was below the Qubit’s range, diluted to 0.2 ng/µL. 

Following library synthesis, an Illumina HiSeq4000 Sequencer was used to 

sequence the libraries. 

 

E1b-GFP-Tol2 cloning 

 

Putative enhancers of about 500 bp centered on Prep1 peaks near DECA sites 

and CCAAT boxes were amplified via PCR from 24 hpf wild-type zebrafish 

genomic DNA using specific primers with XhoI sites (tcf3a, tle3a, dachb, fgf8a, 

pax5, her6, prdm14) or BglII sites (yap1) flanking either end (Table S1). The 

fragments were ligated into the E1b-GFP-tol2 (Birnbaum et al., 2012; Li et al., 

2010) empty backbone digested with XhoI or BglII and transformed into 

competent DH5alpha E. coli cells (New England Biolabs). The amplified vector 

was validated by Sanger sequencing and purified using the Plasmid Maxi Kit 

(Qiagen). 
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Generation of pTransgenesis donor vectors 

 

Mutant enhancers were generated by changing DECA sites contained within 

each enhancer to the sequence CGGTTGGTGC, which has been shown to 

prevent TALE binding (Vlachakis et al., 2000), and CCAAT boxes to the 

sequence ATGCG. Both mutant and wild-type versions of each enhancer were 

generated using gBlock technology (Integrated DNA Technologies). Due to 

limitations in gBlock synthesis, a 34 bp AT-rich region at the 3’ end of the tcf3a 

enhancer could not be included compared to the E1b-GFP-tol2 version. A-tails 

were added to each end of the gBlock fragments using OneTaq Hot Start DNA 

Polymerase (NEB) (50ng of gBlock DNA, 1 unit of OneTaq Hot Start DNA 

Polymerase, 1X OneTaq Standard Reaction Buffer, 0.05mM dATP, 1.5mM 

MgCl2) and incubating the samples at 70°C for 30 minutes. 1µL of A-tailed 

gBlock fragment solution was then cloned into the pCR8 vector using the 

pCR8/GW/TOPO TA Cloning Kit (ThermoFisher Scientific) according to the 

manufacturer’s guidelines. The product was transformed into TOP10 chemically 

competent cells, validated by Sanger sequencing, and then purified using the 

Plasmid Midi Kit (Qiagen). 
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Generation of pTransgenesis vectors 

 

pTransgenesis vectors were assembled using the LR Clonase II Plus enzyme 

mix (ThermoFisher Scientific). Four cassettes were assembled in one reaction, 

with ɤ-crystallin:venusGFP as the p1 cassette (European Xenopus Resource 

Center (EXRC)), gBlock enhancers in pCR8 as the p2 cassette and Tol2/I-SceI-

CH4-SAR/I-SceI/Tol2/P-element (EXRC) as the pDest-4 cassette. The p3.13 

cassette was generated by ligating a BamHI/Bglll-digested gBlock (containing the 

SV40 minimal promoter) into BamHI-digested p3.13 Katushka-RFP plasmid 

(EXRC). 10fmol of each of the p1, p2, and p3 cassettes were combined with 

20fmol of p4 cassette and 2µL of LR Clonase II Plus enzyme mix for the LR 

reaction in 10µL. The reaction was incubated at 25°C for 16 hours then treated 

with Proteinase K at 37°C for 10 minutes. 2µL of LR reaction product was 

transformed into Top10 chemically competent cells, validated by Sanger 

sequencing, and then purified using the Plasmid Maxi Kit (Qiagen). 

 

Generation and observation of transgenic animals 

 

Injection mixes containing 100ng/µL of E1b-GFP-Tol2 or pTransgenesis vector, 

100ng/µL of Tol2 mRNA, and 0.1% phenol red were injected into wild-type 

zebrafish embryos at the 1-cell stage. The animals were observed for transient 

fluorescence for the first week, then raised to adulthood. Mature fish were 
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crossed with wild-type fish and the offspring were observed for fluorescence. For 

E1b-GFP-Tol2 fish, GFP was observed as early as 18 hpf. For pTransgenesis 

fish, RFP expression and GFP expression overlap was best observed at 32 hpf, 

with RFP being apparent sooner and disappearing by about 48 hpf while GFP 

persisted after that time. Thus, any fish that appeared to be RFP+/GFP- were 

separated and observed for GFP expression at a later timepoint. 

 

Quantification and Statistical Analysis 

 

RNA-seq analysis 

 

RNA-seq analysis was performed using the University of Massachusetts Medical 

School Dolphin web interface. Ribosomal RNA reads were filtered out and 

FastQC was used to assess the quality of the remaining reads. RSEM_v1.2.28 

with parameters -p4 --bowtie-e 70 --bowtie-chunkmbs 100 (Li & Dewey, 2011) 

was used to align the reads to the DanRer10 zebrafish transcriptome and 

normalize gene expression to transcripts per million (TPM). This revealed that 

PBCAB replicate 2 underperformed relative to the other samples and was 

excluded from further analysis. DeSeq2 (Anders & Huber, 2010) was used to 

identify differentially-expressed genes between three independent biological 

replicates of 12 hpf embryos injected with GFP and three independent biological 

replicates of 12 hpf embryos injected with Nfya-DN or between three 
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independent biological replicates of 12 hpf embryos injected with GFP and two 

independent biological replicates of 12 hpf embryos injected with PBCAB. 

DEBrowser was used to identify outliers among the replicates. To compensate 

for the exclusion of one replicate in GFP versus PBCAB analysis, only 

differentially expressed genes with a p-adj ≤ 0.01 (Benjamini and Hochberg FDR) 

were considered for analysis. 

 

ChIP-seq Data Processing 

 

All eight ChIP-seq fastq files (two independent 3.5 hpf Pbx4 biological replicates, 

two independent 3.5 hpf Nfya biological replicates, and matched input DNA 

controls for each) contained 76 bp paired-end sequences. The raw sequence 

quality was assessed with FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Fastq-screen 

(https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Next, 

remaining adapter reads were filtered out and poor-quality 3’ end sequences 

were trimmed with Trimmomatic version 0.36 (Bolger et al., 2014) using default 

parameters for ILLUMINACLIP and SLIDINGWINDOW and MINLENGTH set to 

50 bp. Using Bowtie2 version 2.2.3 (Langmead & Salzberg, 2012), the processed 

reads were then mapped to UCSC browser zebrafish genome release GRCz10 

(danRer10/September 2014) (Tyner et al., 2017), and the mapped reads were 

further filtered with SAMtools view version 0.1.19 (Li et al., 2009) (with flags used 
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-f 2 -q30) to remove reads with poor mapping quality and discordant mapped 

read pairs. To call peaks, the data, excluding reads that mapped to the 

mitochondrial genome and unassembled contigs in the assembly, was next 

passed through MACS2 version 2.1.0.20140616 (Zhang et al., 2008) with the q-

value threshold set to 0.05 and default parameters except that the effective 

genome size was set to 1.03e9 (this equates to 75% of the total genome 

sequence, excluding ‘N’ bases). 

 

ChIP-seq Analysis 

 

Since the biological replicates for each factor demonstrated robust overlap, the 

sum of the two replicates was used for all subsequent analyses, by including all 

peaks meeting the selected cutoff in at least one of the biological replicates. 

Three different cutoffs were considered: all peaks with a fold enrichment (FE) ≥ 

10, all peaks with a FE ≥ 4, and the top 10% of all peaks in each data set. The 

FE ≥ 10 cutoff showed the highest overlap between Pbx4 and Prep1 peaks as a 

percentage of the total Pbx4 peaks and was selected as the best cutoff for ChIP-

seq analysis (Table 3.7). For a larger set of peaks, FE ≥ 4 peaks were 

considered for comparison to RNA-seq data (Figure 3.12; Table 3.8). 
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ChIP peak overlap analysis 

 

In the text, we use the term ‘overlap’ to indicate peaks identified as follows: ChIP 

peaks shared between different data sets were identified with the Intersect tool 

and exclusive peaks were identified using the Subtract tool in Galaxy (Goecks et 

al., 2010). All coordinates used were 200 bp in length centered on peak summits 

and considered overlapping if they shared one or more base pairs.  

 

qPCR Analysis 

 

ddCt values were calculated from raw Ct values according to the formula 0.5Ct. 

Average ddCt values were then calculated by taking the mean of all three 

biological replicates. The ddCt of each GFP replicate was then normalized to the 

average gapdh ddCt according to the formula ddCtgfp/average ddCtgapdh and then 

the mean of the normalized values was determined. Error bars were calculated 

based on the standard deviation of the three normalized GFP replicates in Excel. 

To determine whether the dominant negative conditions were significantly 

different from the control condition, an unpaired t-test was used in Excel, with p-

values < 0.05 considered significant. 
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Determination of nearest genes to ChIP peaks 

 

The number of Ensembl zebrafish transcription start sites within 5 kb or 30 kb of 

the summit of ChIP peaks was determined using the bedtools suite (Quinlan & 

Hall, 2010) in the Galaxy toolshed (Goecks et al., 2010). ChIP peak coordinates 

in danrer10 were converted to danrer7 (Zv9) using the LiftOver tool in the UCSC 

browser. The identities of genes near ChIP peaks were determined by the 

GREAT software version 3.0.0 (Hiller et al., 2013; McLean et al., 2010) using the 

default settings of basal plus extension with proximal set to 5 kb upstream and 1 

kb downstream and distal set to 1,000 kb. 

 

GO term analysis 

 

Gene ontology (GO) terms enriched within different sets of genes were 

determined using DAVID version 6.8 (Huang et al., 2009a, 2009b). GO terms 

were ranked according to the EASE score, which was calculated based on a 

modified Fisher’s exact p-value and graphed as the -log10 of that value. 

 

DNA binding motif analysis 

 

Significantly enriched binding motifs were identified using MEME and DREME 

within the MEME-Suite version 4.11.1 (Bailey et al., 2009; Machanick & Bailey, 



52 
 

2011). Both MEME and DREME were run according to their default settings. 

CENTRIMO was also run with default settings to determine the distribution of 

discovered motifs relative to ChIP peaks. 

 

Chromatin feature analysis 

 

Version 2.0 of the Deeptools (Ramírez et al., 2014) toolset in the Galaxy toolshed 

was used to create mean score profiles and heatmaps. Using the computeMatrix 

tool with region inputs of BED files containing ChIP coordinates and sample 

inputs of wiggle files from previously published data sets downloaded from GEO 

(Key Resources Table), signal matrices were generated in reference-point mode 

with the center set as the reference point. The distance upstream of the start 

sites and downstream of the end sites were set to 1000 bp with a bin size of 25 

bp and ranked by mean signal when necessary. Heatmaps and profiles were 

generated from the matrices using the plotHeatmap and plotProfile tools 

respectively. The previously published H3K27ac, H3K4me1, and H3K4me3 data 

sets were all performed at 4.5 hpf, which is somewhat later than the Pbx4, Nfya, 

and Prep1 ChIP-seq experiments performed at 3.5 hpf; however, asynchronous 

development in zebrafish embryos and large sample sizes make considerable 

overlap likely. 
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Data and Code Availability 

 

RNA-seq data is available in GEO under accession number GSE133459. ChIP-

seq data is available in ArrayExpress under accession number E-MTAB-8137. 

 

Key Resources Table 

 

Reagent or Resource Source/ 
Reference 

Identifier 

Antibodies   

Rabbit polyclonal α-
zebrafish Pbx 

(Choe et al., 
2009) 

N/A 

Rabbit polyclonal α-
zebrafish Nfya 

This paper N/A 

Bacterial and Virus 
Strains 

  

Subcloning Efficiency 
DH5α competent cells 

Thermo 
Fisher 

18265-017 

OneShot Top10 chemically 
competent cells 

Thermo 
Fisher 

C404003 

Chemicals, Peptides, and 
Recombinant Proteins 

  

Protein-A Dynabeads Thermo 
Fisher 

10001D 

NotI New 
England 
Biolabs 

R0189S 

XhoI New 
England 
Biolabs 

R0146S 

BglII New 
England 
Biolabs 

R0144S 

Critical Commercial 
Assays 

  

mMESSAGE mMACHINE 
SP6 Transcription Kit 

Thermo 
Fisher 

AM1340 
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RNeasy Mini Kit Qiagen 74104 

DIG DNA Labeling Mix Millipore 
Sigma 

11277065910 

Trizol Thermo 
Fisher 

15596026 

GlycoBlue Thermo 
Fisher 

AM9515 

MicroPure DiaChIP 
Columns 

Diagenode C03040001 

dsDNA HS Assay Thermo 
Fisher 

Q32851 

MicroPlex Library 
Preparation Kit v2 

Diagenode C05010012 

OneTaq Hot Start DNA 
Polymerase 

New 
England 
Biolabs 

M0481L 

pCR8/GW/TOPO Thermo 
Fisher 

45-0642 

Plasmid Midi/Maxi Kit Qiagen 12143/12163 

LR Clonase II Plus Enzyme 
Mix 

Thermo 
Fisher 

12538-120 

High Capacity cDNA 
Reverse Transcription Kit 

Thermo 
Fisher 

4368814 

SYBR Green qPCR Master 
Mix 

Bimake B21203 

Deposited Data   

Pbx4 ChIP-seq and Inputs 
in 3.5 hpf zebrafish 
embryos 

This paper E-MTAB-8137 

Nfya ChIP-seq and Inputs 
in 3.5 hpf zebrafish 
embryos 

This paper E-MTAB-8137 

PBCAB and GFP RNA-seq 
in 12 hpf zebrafish embryos 

This paper GSE133459 

Nfya DN and GFP RNA-
seq in 12 hpf zebrafish 
embryos 

This paper GSE133459 

Prep1 ChIP-seq and Inputs 
in 3.5 hpf zebrafish 
embryos 

(Ladam et 
al., 2018) 

E-MTAB-5967 

H3K27ac ChIP-seq in 
dome zebrafish embryos, 
WIG files 

(Bogdanović 
et al., 2012) 

GSM915197 
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H3K4me1 ChIP-seq in 
dome zebrafish embryos, 
WIG files 

(Bogdanović 
et al., 2012) 

GSM915193 

H3K4me3 ChIP-seq in 
dome zebrafish embryos, 
WIG files 

(Bogdanović 
et al., 2012) 

GSM915189 

H3K27ac ChIP-seq in 80% 
epiboly zebrafish embryos, 
WIG files 

(Bogdanović 
et al., 2012) 

GSM915198 

H3K4me1 ChIP-seq in 80% 
epiboly zebrafish embryos, 
WIG files 

(Bogdanović 
et al., 2012) 

GSM915194 

H3K4me3 ChIP-seq in 80% 
epiboly zebrafish embryos, 
WIG files 

(Bogdanović 
et al., 2012) 

GSM915190 

Experimental Models: 
Organisms/Strains 

  

Strain EKW EkkWill 
breeders 

http://www.ekkwill.com/ 

Oligonucleotides   

gapdh forward primer 
TGCTGGTATTG 
CTCTCAACG 

 N/A 

gapdh reverse primer 
AACAGCAAAGG 
GGTCACATC 

 N/A 

gfp forward primer 
ATGGTGAGCAA 
GGGCGAGGAG 

 N/A 

gfp reverse primer 
TTACTTGTACA 
GCTCGTCCATG 

 N/A 

Recombinant DNA   

Nfya-DN in pCS2+ (Ladam et 
al., 2018) 

N/A 

PBCAB in pCS2+MT (Choe et al., 
2002) 

N/A 

tcf3a element in E1b-GFP-
Tol2 

This paper N/A 

tle3a element in E1b-GFP-
Tol2 

This paper N/A 

dachb element in E1b-
GFP-Tol2 

This paper N/A 
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fgf8a element in E1b-GFP-
Tol2 

This paper N/A 

yap1 element in E1b-GFP-
Tol2 

This paper N/A 

pax5 element in E1b-GFP-
Tol2 

This paper N/A 

her6 element in E1b-GFP-
Tol2 

This paper N/A 

prdm14 element in E1b-
GFP-Tol2 

This paper N/A 

tcf3a element in pCR8 This paper N/A 

tle3a element in pCR8 This paper N/A 

Mutant tcf3a element in 
pCR8 

This paper N/A 

Mutant tle3a element in 
pCR8 

This paper N/A 

pTransgenesis p1 ɤ-
crystallin::VenusGFP 

(Love et al., 
2011) 

N/A 

pTransgenesis p3 sv40 
minimal promoter:: 
Katushka RFP 

This paper N/A 

pTransgenesis pDest4 
Tol2/ I-SceI-CH4-SAR/I-
SceI/ Tol2/P-element 

(Love et al., 
2011) 

N/A 

Software and Algorithms   

FastQC Babraham 
Institute 

https://www.bioinformatics. 
babraham.ac.uk/projects/fastqc/ 
RRID:SCR_014583 

FastQ Screen Babraham 
Institute 

https://www.bioinformatics. 
babraham.ac.uk/projects/ 
fastq_screen/ 
RRID:SCR_000141 

Trimmomatic v0.32 (Bolger et 
al., 2014) 

http://github.com/timflutre/ 
trimmomatic 
RRID:SCR_011848 

Bowtie v2.2.3 (Langmead 
& Salzberg, 
2012) 

http://github.com/BenLangmead/ 
bowtie2 
RRID:SCR_005476 

SAMtools v0.1.19 (Li et al., 
2009) 

http://github.com/samtools/ 
samtools 
RRID:SCR_002105 

MACS v2.1.0.20140616 (Zhang et 
al., 2008) 

http://github.com/taoliu/MACS 
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RSEM v1.2.28, Dolphin, 
Biocore, University of 
Massachusetts Medical 
School 

(Li & Dewey, 
2014) 

http://www.umassmed.edu/ 
biocore/introducing-dolphin/ 
RRID:SCR_013027 

DESeq2, Dolphin, Biocore, 
University of 
Massachusetts Medical 
School 

(Anders & 
Huber, 2010) 

http://www.umassmed.edu/ 
biocore/introducing-dolphin/ 
RRID:SCR_015687 

DEBrowser v1.12.2 (Kucukural 
et al., 2019) 

http://github.com/ 
UMMS-Biocore/debrowser 

Galaxy web interface (Goecks et 
al., 2010) 

http://usegalaxy.org 
RRID:SCR_006281 

BedTools, Galaxy (Quinlan & 
Hall, 2010) 

http://usegalaxy.org 
RRID:SCR_006646 

DeepTools, Galaxy (Ramírez et 
al., 2014) 

http://usegalaxy.org 

MEME-ChIP (Bailey et al., 
2009; 
Machanick & 
Bailey, 2011) 

http://meme-suite.org/ 
tools/meme-chip 
RRID:SCR_00178 

DAVID v6.8 (Huang et 
al., 2009a, 
2009b) 

http://david.ncifcrf.gov/ 
RRID:SCR_001881 

GREAT v3.0.0 (Hiller et al., 
2013; 
McLean et 
al., 2010) 

http://bejerano.stanford.edu/ 
great/public/html 
RRID:SCR_005807 

 

A: tcf3a-WT enhancer 

TACTGCGTTAATCGCGCGTTTACTTTGATATTTAATCCACAACCAACACAATT

AAAACGCCAAACATCAGCGACGACAGTATATGTAACTTTATCCTGATATTTC

CCGATTGTGCTTTAAATCACGCAGTACTAGACTCGCGCGCGGAATGACACG

ACGCACTGTTGAAGAGCGATGGACTGAGAAAAAGTGCGAGATGGCACGATA

GACCCACTGAGCGGACCAATAGCGATCGGGGAAAGTTTGATTGACGTATTC

GGTGGCCAATCGAAGATCGTGTTAACACGAAAGCCAAGCCTCTCTTCCATG

CACACCCTAGCCAGGTTTTAAAAGAATGGCAACAGGAAGCCATGGAATACT

GTTGTGTTTTGTTGTTTGGTAAATGCTAATGTTTACCGCTAACCGCTCAAACT

AACTTCAAATGAATTCGACTCGAAACATAACATTGTTATTATTACATTTAGAC 
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B: tcf3a-mut enhancer 

TACTGCGTTAATCGCGCGTTTACTTTGATATTTAATCCACAACCAACACAATT

AAAACGCCAAACATCAGCGACGACAGTATATGTAACTTTATCCTGATATTTC

CCGATTGTGCTTTAAATCACGCAGTACTAGACTCGCGCGCGGAATGACACG

ACGCACTGTTGAAGAGCGATGGACTGAGAAAAAGTGCGAGATGGCACGATA

GACCCACTGAGCGGAATGCGAGCGATCGGGGAAAGTTCGGTTGGTGCATT

CGGTGGATGCGCGAAGATCGTGTTAACACGAAAGCCAAGCCTCTCTTCCAT

GCACACCCTAGCCAGGTTTTAAAAGAATGGCAACAGGAAGCCATGGAATAC

TGTTGTGTTTTGTTGTTTGGTAAATGCTAATGTTTACCGCTAACCGCTCAAAC

TAACTTCAAATGAATTCGACTCGAAACATAACATTGTTATTATTACATTTAGA

C 

 

C: tle3a-WT enhancer 

ATAGATGACATTACCAGGACTGTATTGTTATATGGGTAACATGCGATTATGA

GTGAGGGCTTTTTTTAATGTTATTAAGTGTTTGCATGCTCCTTTGCTCCTTTG

TTTTATGTAAGGCTCTCATTACCACGTGGTAGTAACAGATTGTTTGAACTGG

AAAGAAAAGCCATTCGAAGCTAATTAAGCAGCCATTCCAGGCACTATTCACG

GGCAGAAGAGCGAGAAGCACAGGCATTTGTCAGCGCTTGACCCCGCGTGG

TATTGATTGACAACAAACCTTCTTGAATGACAGCCTTAACCTTTCCCGTCCAA

TTGCAGTCGAGAGAATATAGATGCTGCTCTGCGATTGGCTGAGAAGCTGTA

AAGCCGCAAAGGGATCCCACGTGGGTGCAGCAGAAGAAACGGCACAGGAT

TGGCCGCTTCTTCTGAGTTCAGACATGGCCGTTGTTCACGGAGATCAAACC

TGAACAATCATCGTATTCCCAGCGCTAGC 
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D: tle3a-mut enhancer 

ATAGATGACATTACCAGGACTGTATTGTTATATGGGTAACATGCGATTATGA

GTGAGGGCTTTTTTTAATGTTATTAAGTGTTTGCATGCTCCTTTGCTCCTTTG

TTTTATGTAAGGCTCTCATTACCACGTGGTAGTAACAGATTGTTTGAACTGG

AAAGAAAAGCCATTCGAAGCTAATTAAGCAGCCATTCCAGGCACTATTCACG

GGCAGAAGAGCGAGAAGCACAGGCATTTGTCAGCGCTTGACCCCGCGTGG

TATTGATTGACAACAAACCTTCTCGGTTGGTGCCCTTAACCTTTCCCGTATG

CGTGCAGTCGAGAGAATATAGATGCTGCTCTGCGCGCATCTGAGAAGCTGT

AAAGCCGCAAAGGGATCCCACGTGGGTGCAGCAGAAGAAACGGCACAGCG

CATCCCGCTTCTTCTGAGTTCAGACATGGCCGTTGTTCACGGAGATCAAACC

TGAACAATCATCGTATTCCCAGCGCTAGC 

 

E: sv40 minimal promoter 

AAAGATCTGCGATCTGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTA

ACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCC

CATCGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCT

CTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTT

GCAAAAAGCTTGGCATTCCGGTACTGTTGGTAAAGGATCCAA 

 



CHAPTER III: Results 

 

 

This chapter includes material that was published in (Ladam et al., 2018) as well 
as material from the manuscript “Combinatorial Action of NF-Y and TALE at 
Embryonic Enhancers Defines Distinct Gene Expression Programs during 

Zygotic Genome Activation in Zebrafish,” which has been submitted to eLife and 
is currently under review. 
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The TALE factors form complexes with NFY 

 

 Sequence motif analysis of 3.5 hpf Prep1 ChIP-seq data using the MEME 

Suite showed that Prep1 predominantly bound the DECA motif at that timepoint. 

Further, it identified the CCAAT box as appearing near about 30% of those 

DECA sites bound by Prep1. CCAAT boxes near DECA sites consistently 

appeared a set distance from the DECA site of roughly 20 bp. This raised the 

possibility that the TALE factors and NFY formed protein complexes at these 

regions. To test this, I performed pairwise co-immunoprecipitation analyses with 

Pbx4, Prep1, Nfya, and Nfyb. I transfected different combinations of epitope-

tagged versions of the proteins into HEK293T cells, immunoprecipitated one of 

the factors, and performed a western blot for the other. In this context, I found 

that both Pbx4 and Prep1 co-immunoprecipitated with both Nfya and Nfyb. I 

conclude that the TALE factors and NFY form protein complexes at genomic loci 

containing a DECA motif and CCAAT box. 
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Figure 3.1: The TALE factors and NFY form protein complexes. HA::Pbx4, Myc::Prep1, 
FLAG::Nfya, and FLAG::Nfyb were transfected into HEK293T cells in pairwise combinations of 
FLAG::Nfyb and Myc::Prep1 (A), FLAG::Nfyb and HA::Pbx4 (B), FLAG::Nfya and Myc::Prep1 (C), 
or FLAG::Nfya and HA::Pbx4 (D). FLAG was then immunoprecipitated with HA or Myc as a 
positive control, followed by western blotting with α-HA or α-Myc. HC indicates heavy chain, LC 
indicates light chain, and asterisks indicate non-specific signal. 
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TALE and NFY are required for formation of anterior embryonic structures  

 

 In order to assess the roles of TALE and NFY during embryogenesis, I 

first set out to disrupt their function. Previous work demonstrated that the TALE 

factors are required for formation of anterior embryonic structures, such that loss 

of various combinations of TALE factors results in animals with smaller heads, 

small (or absent) eyes, swollen pericardium/cardiac edema, and hindbrain 

defects (Choe et al., 2002; Deflorian et al., 2004; Pöpperl et al., 2000; Pöpperl et 

al., 1995; Waskiewicz, et al., 2002; Waskiewicz et al., 2001). This similarity in 

phenotypes is likely due to the fact that multiple TALE factors frequently act 

together in larger protein complexes, which are rendered ineffective when one or 

more TALE factors are disrupted (reviewed in (Ladam & Sagerström, 2014; 

Merabet & Mann, 2016)). In preliminary experiments, we recently observed 

abnormal anterior development also upon disruption of NFY function (Ladam et 

al., 2018). Here, I extend this analysis to directly compare disruption of TALE 

factors (using the dominant negative PBCAB construct reported previously; 

(Choe et al., 2002)) to disruption of NFY function (using the previously reported 

Nfya dominant negative construct (Nfya-DN); (Mantovani et al., 1994)) and find 

smaller heads in both cases (Figure 3.2 A-D). A more detailed examination 

revealed abnormal head cartilage formation (53% of animals with disrupted NFY 

and 79% of animals with disrupted TALE function; Figure 3.3 A-H and Table 3.1) 

as well as loss of eyes (28% of animals with disrupted NFY and 19% of animals 

with disrupted TALE function; Table 3.2). Using in situ hybridization to detect 
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expression of pax2 (at the midbrain-hindbrain boundary), krox20 (in 

rhombomeres 3 and 5 of the hindbrain), and hoxd4 (in the spinal cord) in 24 hpf 

embryos, I observed loss of r3 krox20 expression upon TALE disruption (52% of 

embryos; as reported previously; (Choe et al., 2002; Deflorian et al., 2004; 

Pöpperl et al., 2000; Waskiewicz et al., 2002; Waskiewicz et al., 2001)), but did 

not detect any effects of NFY disruption (Figure 3.4 A-H and Table 3.3). I 

conclude that both the TALE factors and NFY function in formation of the anterior 

embryo and that the TALE factors have a distinct role in hindbrain patterning. 

 

Figure 3.2: Disruption of TALE or NFY function affects anterior embryonic development. 
Zebrafish embryos at the 1-cell stage were either left uninjected (A) or injected with mRNA 
encoding a control (GFP; B), dominant negative TALE (PBCAB; C), or dominant negative Nfya 
(Nfya-DN; D) and raised to 28 hpf. White arrows highlight differences in eye morphology. 
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Figure 3.3: Disruption of TALE or NFY function affects anterior cartilage development. 
Zebrafish embryos at the 1-cell stage were either left uninjected (A, B) or injected with mRNA 
encoding a control (GFP; C, D), dominant negative TALE (PBCAB; E, F), or dominant negative 
Nfya (Nfya-DN; G, H). The embryos were then raised to 5 dpf and stained with Alcian blue. White 
arrows highlight differences in eye morphology and black arrows highlight differences in cartilage 
morphology. 
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Figure 3.4: PBCAB disrupts hindbrain segmentation. Zebrafish embryos at the 1-cell stage 
were either left uninjected (A, B) or injected with mRNA encoding a control (GFP; C, D), dominant 
negative TALE (PBCAB; E, F), or dominant negative Nfya (Nfya-DN; G-J). The embryos were 
then raised to 24 hpf and processed for detection of pax2 (at the mid/hindbrain boundary), krox20 
(in rhombomeres 3 and 5) and hoxd4 (in the spinal cord) transcripts by in situ hybridization. 
Orange arrows highlight differences in krox20 rhombomere 3 expression. Panels I and J show 
representative images of embryos scored as having gross abnormalities in Table 3.3. 
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Table 3.1: Dominant negatives cause abnormal cartilage development. Embryos were either 
left uninjected or injected with mRNA encoding GFP (control), PBCAB, or Nfya-DN. Embryos 
were raised to 5 dpf, stained with Alcian blue, and scored as having normal or abnormal cartilage 
development. 

 

 

Table 3.2: Dominant negatives cause abnormal anterior development. Embryos were either 
left uninjected or injected with mRNA encoding GFP (control), PBCAB, or Nfya-DN. Embryos 
were raised to 24 hpf, processed for detection of pax2, krox20, and hoxd4 transcripts by in situ 
hybridization, and scored as having two eyes, no eyes/an anterior truncation, or grossly abnormal 
development. 

 

 

Table 3.3: PBCAB causes loss of r3. Embryos were either left uninjected or injected with mRNA 
encoding GFP (control), PBCAB, or Nfya-DN. Embryos were raised to 24 hpf, processed for 
detection of pax2, krox20, and hoxd4 transcripts by in situ hybridization, and scored as having 
normal hindbrain development, lacking r3, or having too poor signal to score. 

  

Uninjected GFP PBCAB Nfya-DN

Normal 77 (100%) 54 (100%) 11 (21.2%) 26 (47.3%)

Abnormal 0 (0%) 0 (0%) 41 (78.8%) 29 (52.7%)

Total 77 54 52 55

Uninjected GFP PBCAB Nfya-DN

Two Eyes 65 (100%) 48 (78.7%) 46 (73.0%) 18 (50.0%)

No Eye/Anterior 

Truncation
0 (0%) 0 (0%) 12 (19.0%) 10 (27.8%)

Grossly Abnormal 0 (0%) 13 (21.3%) 5 (8.0%) 8 (22.2%)

Total 65 61 63 36

Uninjected GFP PBCAB Nfya-DN

Normal 59 (90.8%) 48 (78.7%) 13 (20.6%) 28 (77.7%)

Missing r3 0 (0%) 0 (0%) 33 (52.4%) 0 (0%)

Poor Signal 6 (9.2%) 13 (21.3%) 17 (27.0%) 8 (22.2%)

Total 65 61 63 36
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TALE and NFY have both shared and independent transcriptional targets  

 

 In order to identify shared and separate functions of the TALE factors and 

NFY, I carried out RNA-seq at 12 hpf of zebrafish development (Figure 3.5 A-C; 

Figure 3.6 A, B, and Table 3.4). I selected the 12 hpf timepoint for RNA-seq 

analysis in order to ensure that I would broadly capture gene expression changes 

resulting from disruption of TALE and NFY function. I find that disruption of TALE 

function affects the expression of 1,500 genes (646 downregulated, 854 

upregulated; FC > 1.5, p-adj < 0.01; Figure 3.5 B, D; Figure 3.8 A) at 12 hpf. 

Since TALE factors are thought to act primarily as activators of transcription, I 

focused on genes downregulated upon disruption of TALE function. Applying the 

DAVID functional annotation tool, I find that TALE-dependent genes are enriched 

for functions related to transcription (particularly hox genes) as well as for factors 

controlling embryogenesis (Figure 3.7 A; GO terms for genes upregulated upon 

disruption of TALE function are shown in Figure 3.8 B). Accordingly, an 

examination of individual TALE-dependent genes identified members of several 

classes of transcription factors and developmental control genes (Figure 3.7 B). 

This result agrees with our previous analysis of gene expression changes in 

response to loss of TALE function (using antisense morpholino oligos targeting 

pbx2, pbx4, and prep1.1; (Ladam et al., 2018)) – confirming that disruption of 

various combinations of TALE factors produces similar phenotypes. The 

downregulation of transcriptional and developmental control genes upon TALE 

disruption is also consistent with the phenotype observed in Figures 3.2, 3.3, and 
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3.4. I next examined the effect of disrupting NFY function and find that 902 genes 

are affected (325 downregulated, 577 upregulated; Figure 3.5 C, D; Figure 3.8 A) 

at 12 hpf. An analysis of the GO terms associated with NFY-dependent genes 

revealed high enrichment in functions related to cilia and, to a lesser extent, in 

genes broadly controlling transcription and development (Figure 3.7 C; GO terms 

for upregulated genes are shown in Figure 3.8 C). Different classes of 

transcription factors, as well as both structural and motor proteins found in cilia, 

are downregulated upon disruption of NFY function (Figure 3.7 D). 

Since disruption of either the TALE factors or NFY produces embryos with 

shared phenotypes, I next identified genes whose expression is dependent on 

both TALE and NFY function. I find that there are 201 such genes (74 

downregulated, 127 upregulated; Figure 3.5 E). Strikingly, the annotation of 

genes downregulated upon disruption of both TALE and NFY function identifies 

transcriptional and developmental roles, but not roles associated with cilia, 

though several terms associated with tubulin function are retained (Figure 3.7 E, 

F; GO terms for upregulated genes are shown in Figure 3.8 D). I refer to this set 

of genes as ‘TALE/NFY co-regulated genes’ and note that it is a relatively small 

population, such that about 23% (74/325) of the NFY-dependent genes are also 

dependent on TALE function (Figure 3.5 E). These results indicate that TALE 

and NFY co-regulate a set of genes with functions that are distinct from those of 

genes regulated by either TALE or NFY. Accordingly, a GO term analysis of 

genes regulated exclusively by NFY revealed strong enrichment for cilia genes 
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(Figure 3.9 B), while genes exclusively dependent on TALE function return GO 

terms enriched for transcriptional regulation such as hox genes (Figure 3.9 A). 

Hence, in addition to TALE and NFY co-regulating a subset of transcriptional and 

developmental control genes, NFY controls expression of cilia-related genes 

independently of the TALE factors. 
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Figure 3.5: Dominant negatives disrupt gene expression. (A) Schematic of RNA-seq 
experiments. (B-C) Scatterplots of gene expression in PBCAB- vs GFP-injected (B) and Nfya-DN- 
vs GFP-injected (C) zebrafish embryos (expression presented as log2 of average TPM for 
multiple replicates; see methods). Expression of genes highlighted in orange is significantly 
different at 12 hpf (p-adj ≤ 0.01; Wald test in DESeq2). (D) Number of genes differentially 
expressed in PBCAB- (left) or Nfya-DN-injected (right) embryos relative to GFP-injected embryos 
(p-adj ≤ 0.01; fold-change ≥ 1.5). (E) Breakdown of downregulated (left) and upregulated (right) 
genes exclusive or common to each experimental condition. 
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Table 3.4: RNA-seq read counts. RNA-seq library read counts, ribosomal RNA reads, rRNA 
percentage, read counts after rRNA filtering, and reads aligned. 

 

 

Figure 3.6: Comparison of RNA-seq biological replicates. Histograms, scatter plots, and 
Spearman's rank correlation coefficient comparing each biological replicate of PBCAB with GFP 
(A) or Nfya-DN with GFP (B). 

  

Library Total Reads rRNA Reads % rRNA Reads - rRNA Reads Aligned (RSEM)

NFYA DN1 25,570,095 118,566 0.46% 25,451,529 15,618,541

NFYA DN2 25,627,400 90,013 0.35% 25,537,387 15,884,091

NFYA DN3 25,648,288 103,952 0.41% 25,544,336 15,847,491

PBCAB1 22,951,454 6,211 0.03% 22,945,243 14,084,935

PBCAB2 25,649,514 7,074 0.03% 25,642,440 15,668,814

PBCAB3 25,660,266 7,991 0.03% 25,652,275 15,605,294

GFP1 25,565,467 4,756 0.02% 25,560,711 16,034,166

GFP2 25,488,663 4,725 0.02% 25,483,938 15,765,669

GFP3 25,696,572 6,392 0.02% 25,690,180 15,980,155
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Figure 3.7: The TALE factors and NFY occupy genomic sites associated with 
developmental and transcriptional control genes. (A, C, E) DAVID analyses showing the 25 
most significant GO terms (EASE Score) associated with genes downregulated by PBCAB (A), 
Nfya-DN (C), and common to both (E). Blue bars correspond to transcription-related, green to 
embryogenesis-related, orange to homeodomain-related, yellow to cilia-related, and gray to other 
ontologies. (B, C, F) Selected genes downregulated by PBCAB (B), Nfya-DN (D), or both (F). 
Color coding is the same as in (A, C, E). 
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Figure 3.8: Genes upregulated by disruption of TALE and NFY function. (A) Venn diagram 
showing upregulated genes (p-adj ≤ 0.01; FC ≥ 1.5) in embryos injected with PBCAB or Nfya-DN. 
(B-D) GO terms associated with genes upregulated (p-adj ≤ 0.01, FC ≥ 1.5) by PBCAB (B), 
upregulated by Nfya DN (C), or upregulated by both PBCAB and Nfya-DN (D). Blue bars 
correspond to transcription-related, green to embryogenesis-related, orange to homeodomain-
related, yellow to cilia-related, and gray bars to other ontologies. 
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Figure 3.9: PBCAB and Nfya-DN disrupt genes independently. (A-B) GO terms of genes 
downregulated exclusively by PBCAB (A) or Nfya-DN (B). Blue bars correspond to transcription-
related, green to embryogenesis-related, orange to homeodomain-related, yellow to cilia-related, 
and gray bars to other ontologies. 
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TALE and NFY occupy genomic sites associated with developmental and 

transcriptional control genes  

 

 Given that the TALE factors and NFY appear to have both shared and 

independent functions, I next examined binding of these transcription factors 

across the zebrafish genome. In order to determine if these transcription factors 

have a role during the onset of zygotic gene expression, I focused our analysis at 

3.5 hpf, when zygotic genes are becoming active in zebrafish embryos. We 

previously used ChIP-seq to characterize Prep1 occupancy and found that this 

transcription factor is bound at many genomic elements at maternally controlled 

stages (3.5 hpf and earlier; (Choe et al., 2014; Ladam et al., 2018)), consistent 

with previous reports that the TALE factors are maternally transmitted in 

zebrafish (Choe et al., 2002; Deflorian et al., 2004; A. J. Waskiewicz et al., 2002). 

Specifically, our analysis identified a 10 bp motif (TGATTGACAG; termed the 

‘DECA motif’) as the predominant element occupied by Prep1 in 3.5 hpf zebrafish 

embryos. The DECA motif contains two half-sites: one for Pbx proteins (TGAT) 

and one for Prep proteins (TGACAG). Pbx proteins form dimers with Prep 

proteins (reviewed in (Ladam & Sagerström, 2014)) and, using ChIP-qPCR, we 

previously demonstrated that zebrafish Pbx4 occupied 11 of 12 tested DECA 

sites in 3.5 hpf zebrafish embryos (Ladam et al., 2018). We have now extended 

this analysis to the entire zebrafish genome by performing ChIP-seq for Pbx4 at 

3.5 hpf (Figure 3.10 A, B; Figure 3.11 A; Table 3.5). We find that the majority of 
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Pbx4 peaks overlap with a Prep1 peak (94% overlap at FE > 10; Figure 3.10 A, 

B; Figure 3.11 D; Table 3.6; Table 3.7) and that the predominant sequence motif 

at Pbx4 binding sites is indistinguishable from the DECA motif observed at 

Pbx4:Prep1 co-occupied sites (Figure 3.11 C, F). We also find that the 

distribution of Pbx4 peaks relative to TSSs is similar to that for Prep1 (Figure 

3.10 C), with about 50% of all binding sites located within 30 kB of an annotated 

promoter element (Nepal et al., 2013) in both cases. Accordingly, sites co-

occupied by both Pbx4 and Prep1 show a similar distribution (Figure 3.10 C). GO 

term analyses revealed that genes associated with Pbx4 binding sites are 

enriched for functions related to transcriptional regulation and embryogenesis 

(Figure 3.11 B). This is similar to the functions we previously identified for genes 

associated with 3.5 hpf Prep1 bound sites (Ladam et al., 2018). As expected, 

genes associated with Prep1 and Pbx4 co-occupied sites return essentially the 

same GO terms (Figure 3.11 E). Notably, many Prep1 binding sites do not 

overlap with Pbx4 peaks (Figure 3.11 D). While this could indicate that Prep1 has 

functions independent of Pbx4, it may also reflect different affinities of the two 

antisera. Nevertheless, my observations indicate that Pbx4 binds primarily at 

DECA sites in the context of Pbx:Prep heterodimers at this stage of 

embryogenesis. I will focus on these Prep and Pbx co-occupied sites and will 

refer to them as ‘TALE sites.’ 

We previously reported that approximately 30% of Prep1-occupied DECA 

sites observed at 3.5 hpf have a CCAAT motif nearby – usually at a distance of 



78 
 

about 20 bp (Ladam et al., 2018). In other systems, such CCAAT boxes serve as 

binding sites for the heterotrimeric NFY transcription factor. Since NFY is 

maternally deposited in zebrafish (Chen et al., 2009), we previously used ChIP-

qPCR to test 15 CCAAT boxes located near DECA sites and found that nine 

were occupied by NFY (Ladam et al., 2018). However, the commercial antiserum 

we used for the ChIP-qPCR experiment is too low affinity for ChIP-seq. 

Therefore, in order to examine NFY binding genome-wide, we raised antiserum 

to zebrafish Nfya, which is the sequence-specific DNA binding component of the 

NFY heterotrimer, and carried out ChIP-seq for NFY on 3.5 hpf zebrafish 

embryos (Figure 3.10 A and B; Figure 3.11 G; Table 3.5). As expected, NFY-

occupied genomic sites are highly enriched for the CCAAT box sequence motif 

(Figure 3.11 I), but I find that the distribution of NFY peaks in the genome is 

somewhat different than the distribution of TALE peaks, such that NFY appears 

to be preferentially bound closer to promoters (Figure 3.10 C). Further, I find that 

NFY-bound genomic elements are also associated with genes enriched for 

functions related to transcriptional regulation and embryogenesis (Figure 3.11 H). 

These functions are similar to those observed for genes associated with TALE-

occupied elements, in support of the idea that NFY functions together with TALE 

transcription factors at this stage of development. 

To further address the potential cooperation between the TALE factors 

and NFY, I next examined co-localization of TALE and NFY proteins in the 

zebrafish genome. I find that approximately 22% of the NFY-occupied sites 
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overlap with a TALE-occupied site (corresponding to 17% of the TALE-bound 

sites; Figure 3.10 A, B; Figure 3.11 J; Table 3.6; Table 3.7). Strikingly, motif 

analyses identified a roughly 27 bp sequence motif encompassing both a DECA 

motif and a CCAAT box (Figure 3.11 L) associated with the TALE/NFY co-

occupied sites, while sites occupied by TALE alone display a DECA motif (Figure 

3.11 M) and those occupied by NFY alone contain a CCAAT box (Figure 3.11 N). 

GO terms for genes associated with co-occupied sites are again enriched for 

functions related to transcriptional control, but less so for functions controlling 

embryogenesis (Figure 3.11 K). Lastly, sites co-occupied by TALE and NFY 

factors show high association with promoters (Figure 3.10 C). I conclude that, in 

3.5 hpf zebrafish embryos, the TALE factors and NFY individually occupy 

genomic regions associated with both developmental and transcriptional 

regulators, but also co-occupy an extended binding motif that appears more 

selectively associated with transcriptional control genes. 
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Table 3.5: ChIP-seq read counts. Data for Pbx4 and Nfya ChIP-seq biological replicates with 
Prep1 ChIP-seq data (Ladam et al., 2018) included as reference. 

 

 

Table 3.6: ChIP-seq peak overlaps. Number of peaks that overlap (at least 1 bp shared 
between 200 bp fragments centered on peaks) between Prep1, Pbx4 and Nfya ChIP-seq data 
sets. Only peaks with a 10-fold or greater enrichment over input are considered.  

 

 

Table 3.7: ChIP-seq fold enrichment cutoffs. Extent of overlap of Pbx4 peaks with Prep1 
peaks and TALE peaks with Nfya peaks at three different cutoffs (FE ≥ 4, FE ≥ 10 and top 10% of 
peaks). 

  

Replicate
Total 

Peaks

FE≥10 

Peaks

Common 

Peaks

FE≥10 Sum 

Peaks

Associated 

Genes (GREAT)

Pbx4-1 21,104 5,021

Pbx4-2 34,119 3,640

Prep1-1 12,256 2,058

Prep1-2 47,831 13,328

NF-YA1 21,784 3,056

NF-YA2 22,196 3,252

9,798

5,955

4,398

13,3422,058

5,2343,427

3,7202,588

ChIP-seq Data Sets
Overlapping 

Peaks

Associated 

Genes (GREAT)

Pbx4/Prep1 4,907 5,701

Pbx4/NF-YA 834 1,183

Prep1/NF-YA 937 1,332

Pbx4/Prep1/NF-YA 820 1,161

ChIP-seq 

Overlap
FE≥4 FE≥10 Top 10%

Pbx4/Prep1 74.8% (13,836/18,508) 93.8% (4,907/5,234) 85.7% (2,960/3,455)

TALE/NF-YA 13.2% (2,014/15,270) 22.0% (820/3,720) 23.5% (612/2,599)
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Figure 3.10: The TALE factors and Nfya occupy genomic sites near promoters. (A-B) 
Representative UCSC Genome Browser tracks for Nfya, Pbx4 and Prep1 ChIP-seq analyses at 
3.5 hpf. (C) Chart showing percent of ChIP-seq peaks found within 5 kb or 30 kb of a promoter. 
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Figure 3.11: The TALE factors and NFY occupy genomic sites associated with 
developmental and transcriptional control genes. (A, D, G, J) Venn diagrams showing the 
overlap (at least 1 bp shared between 200 bp fragments centered on peaks) of two Pbx4 ChIP-
seq replicates (A), the overlap of Pbx4 and Prep1 ChIP-seq peaks (D), the overlap of two Nfya 
ChIP-seq replicates (G) and the overlap of TALE and NFY ChIP-seq peaks (J). (B, E, H, K) The 
top sequence motif returned by MEME for Pbx4-occupied sites (B), Pbx4/Prep1 co-occupied sites 
(E), Nfya occupied sites (H) and TALE/Nfya co-occupied sites (K). (C, F, I, L) The top 25 gene 
ontology (GO) terms returned by the GREAT analysis tool for genes associated with Pbx4-
occupied sites (C), Pbx4/Prep1 co-occupied sites (F), Nfya occupied sites (I) and TALE/Nfya co-
occupied sites (L). (M, N) Top sequence motif returned by MEME for peaks bound by TALE, but 
not Nfya (M) and peaks bound by Nfya, but not TALE (N). Only peaks with a 10-fold or greater 
enrichment over input (FE ≥ 10) were considered for the analyses. 
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TALE and NFY co-regulate a subset of early-expressed transcriptional 

regulators  

 

 While my RNA-seq analysis identified genes regulated by the TALE 

factors and NFY, it is neither clear how direct this regulation might be nor evident 

whether some of these genes are activated at the ZGA. To begin addressing 

these questions, I first examined whether TALE-dependent genes are associated 

with genomic elements bound by the TALE factors. I find that, of the 646 genes I 

identified as being TALE-dependent, 52% (335/646) are found near (as defined 

using default parameters in GREAT; see Chapter II: Materials & Methods) a 

TALE occupied element (Table 3.8; Figure 3.12 A), and these genes are 

enriched for functions related to embryonic development and transcriptional 

regulation with a specific emphasis on hox genes (Figure 3.12 B). Similarly, of 

the 325 genes my RNA-seq analysis showed to be downregulated upon 

disruption of NFY function, I find that 61% (199/325) are near an NFY-occupied 

element (Table 3.8; Figure 3.12 A). The GO terms for these genes are enriched 

for functions related to transcriptional regulation, as well as for cilia structure and 

function (Figure 3.12 C). Thus, 50-60% of TALE- and NFY-dependent genes are 

associated with a binding site for the corresponding transcription factor and the 

functional annotations of these genes show specific enrichment for the same 

terms as I observed in my RNA-seq analysis, which include Hox transcription 

factors for TALE-dependent genes and cilia structure and function factors for 
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NFY-dependent genes. Since initial cilia formation and Hox activity occurs at 

gastrula and segmentation stages in zebrafish (Essner et al., 2002; Prince et al., 

1998a; Prince et al., 1998b), these results indicate that the TALE factors and 

NFY control separate gene expression programs by 12 hpf of zebrafish 

development. 

In order to begin assessing co-regulation by the TALE factors and NFY, I 

carried out the reciprocal analysis. In doing so, I find that 55% of the 646 TALE-

dependent genes are associated with an NFY occupied site (358/646) and 49% 

of the 325 NFY dependent genes are associated with a TALE-occupied element 

(158/325), indicating that the TALE factors and NFY co-regulate a subset of their 

target genes (Table 3.8; Figure 3.12 A). To examine this co-regulation further, I 

next focused specifically on the TALE/NFY co-regulated genes defined in Figure 

3.5 E and Figure 3.7 E and F. I find that of the 74 genes in this category, 70% are 

associated with an NFY- (52/74) occupied site and 50% (37/74) with a TALE-

occupied site (Table 3.8; Figure 3.12 A). Indeed, 49% of co-regulated genes are 

found near both TALE- and NFY-occupied sites (36/74). Strikingly, the GO terms 

of co-regulated genes associated with both TALE- and NFY-occupied elements 

converge on functions related to transcriptional regulation and embryonic 

development (Figure 3.12 D). Further, if I specifically focus on genes that are 

near regulatory elements with overlapping TALE/NFY peaks (as defined in Figure 

3.11 J, K), I find that they function in transcription and regulation of development, 

but the categories related to cilia and homeobox functions are no longer 
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represented (Figure 3.12 E). Importantly, broad expression of transcriptional and 

developmental control genes is the first event to take place after MZT. 

Accordingly, by analyzing RNA-seq data collected at 6 hpf, which is shortly after 

the MZT, I find that genes associated with both TALE- and NFY-occupied 

elements are expressed at higher levels than genes that lack such an association 

(Figure 3.12 F). Hence, my results indicate that genes co-regulated by TALE and 

NFY act uniquely in transcriptional control of embryogenesis shortly after MZT, 

while TALE and NFY each controls a distinct gene expression program at later 

stages. 

 

 

Table 3.8: Overlap of TALE- and NFY-dependent genes with ChIP peaks. Summary of the 
correlation between TALE and/or NFY-dependent genes and binding by the corresponding 
transcription factor at a nearby site. (ChIP peaks enriched by 4-fold or greater over input were 
considered). 
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Figure 3.12: TALE and NFY co-regulate a subset of early-expressed transcriptional 
regulators. (A) Graphical breakdown of TALE and/or NFY occupancy near TALE and/or NFY-
dependent genes. (B-E) Top GO terms returned by DAVID for TALE-dependent genes 
associated with TALE peaks (B), NFY dependent genes associated with Nfya peaks (C), 
TALE/NFY-dependent genes associated with both TALE and Nfya peaks (D), and TALE/NFY- 
dependent genes associated with overlapping TALE and Nfya peaks (E). Blue bars correspond to 
transcription-related, green to embryogenesis-related, orange to homeodomain-related, yellow to 
cilia-related, and gray bars to other ontologies. (F) Box chart showing expression levels as 
log2(average TPM) for TALE/NFY-dependent genes with and without nearby TALE/Nfya peaks. 
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Genomic elements co-occupied by TALE and NFY act as enhancers in vivo  

 

 Although my data show that many genomic elements co-occupied by 

TALE and NFY are found near promoters, the TALE factors often act at 

enhancers (Ferretti et al., 2005; Ferretti et al.,2000; Grieder et al., 1997; Jacobs 

et al., 1999; Pöpperl et al., 1995; Ryoo & Mann, 1999; Tümpel et al., 2007). 

Further, while NFY was originally identified as acting at promoters (reviewed in 

(Maity & de Crombrugghe, 1998)), more recent work revealed an important role 

for NFY at tissue-specific enhancers (Oldfield et al., 2014). To explore these 

relationships in greater detail, I examined the chromatin state at TALE/NFY co-

occupied elements and found that both H3K4me1 and H3K27ac, which mark 

enhancers and promoters, are highly enriched already at 4.5 hpf (at ZGA) and 

persist at 9 hpf (Figure 3.13 A-D). I note that elements bound by NFY alone and, 

to a lesser extent, TALE alone have the same characteristics. In agreement with 

TALE/NFY co-occupied elements driving gene expression at this stage of 

development, I also find a dramatic increase in H3K4me3 modifications (a mark 

of active promoters) between 4.5 hpf and 9 hpf (Figure 3.13 E, F). 
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Figure 3.13: Genomic elements co-occupied by the TALE factors and NFY contain 
enhancer chromatin marks. Average histone mark signals at genomic regions containing only 
TALE peaks (dark blue), only Nfya peaks (light blue), or TALE/Nfya peaks (yellow) for H3K27ac 
at 4.5 hpf (A) and 9 hpf (B), H3K4me1 at 4.5 hpf (C) and 9 hpf (D), or H3K4me3 at 4.5 hpf (E) 
and 9 hpf (F). 
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To directly test if TALE/NFY co-occupied elements act as enhancers in 

vivo, I used a previously published enhancer assay (Li et al., 2010) and inserted 

individual genomic elements upstream of the E1b minimal promoter and the GFP 

reporter gene. I selected eight genomic elements that contain adjacent 

TALE/NFY motifs (as in figure 3.11 K) and that are associated with genes 

expressed in the anterior embryo (Figure 3.14 A, C, E, G, I; Figure 3.15 A-C) and 

used these to generate transgenic zebrafish. Of the eight constructs, named for 

the identity of the nearest gene, five showed expression in the F0 generation and 

GFP-positive embryos were raised to generate stable lines (summarized in Table 

3.9). The remaining three constructs did not show F0 expression and I did not 

consider them further. In stable lines for each of the five constructs, I detected 

tissue-restricted GFP expression with each construct producing a distinct pattern 

(Figure 3.14 B, D, F, H, J). I screened at least two independent founders for each 

stable line and find that GFP expression is indistinguishable between founders 

carrying the same construct (Figure 3.16 C, D; Table 3.9), indicating that each 

element imparts a unique tissue specificity to the basal E1b-GFP reporter that is 

independent of its integration site. In some instances, the observed expression 

pattern is comparable to that of the nearest gene (e.g. fgf8a; Figure 3.14 H), 

suggesting that it represents an enhancer element controlling expression of the 

nearby gene. In other instances, the enhancer drives expression in a novel 

pattern (e.g. yap1; Figure 3.14 J), suggesting that it may control a gene further 

away, or that the enhancer element tested, which is about 500 bp in length, lacks 
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some inputs required for proper expression of the nearby gene. These results 

indicate that TALE/NFY co-occupied elements act as enhancers in vivo. 

 

 

Table 3.9: Putative enhancer details. Summary of information about each putative enhancer 
element. 

  

Element Coordinates Size NF-YA Peak Pbx4 Peak Prep1 Peak Cloned in E1b::GFP GFP+ Founders GFP+ F1 0 hpf GFP+ F1 24 hpf

♀ #3 11/26 (42.3%) 11/24 (45.8%)

♂ #4 0/84 (0.0%) 20/84 (23.8%)

♂ #7 0/333 (0.0%) 13/185 (7.0%)

tle3a chr18:20235689-20236181 493 bp Strong Strong Strong Yes

♂ #6 0/364 (0.0%) 26/308 (8.4%)

♂ #8 0/390 (0.0%) 12/359 (3.3%)

♀ #15 25/198 (12.6%) 25/174 (14.4%)

♀ #17 64/451 (14.2%) 64/436 (14.7%)

♀ #1 59/92 (64.1%) 59/88 (67.0%)

♂ #10 0/77 (0.0%) 31/72 (43.1%)

♂ #4 0/221 (0.0%) 33/156 (21.2%)

♂ #5 0/313 (0.0%) 47/218 (21.6%)

♂ #11 0/25 (0.0%) 3/21 (14.3%)

pax5 chr1:21037015-21037514 500 bp Moderate Strong Strong Yes 0

her6 chr6:36600313-36600812 500 bp Weak Moderate Strong Yes 0

prdm14 chr24:14342429-14342928 500 bp None Weak Moderate Yes 0

dachb

YesModerateModerateWeak500 bpchr18:37345724-37346223yap1

tcf3a

fgf8a 500 bp YesModerateModerateModeratechr13:28356309-28356808

YesStrongchr2:57244797-57245296

Yes

StrongStrong500bp

500 bpchr1:9669399-9669898 StrongStrongModerate
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Figure 3.14: Genomic elements co-occupied by the TALE factors and NFY act as 
enhancers in vivo. (A, C, E, G, I) UCSC Genome Browser tracks showing Nfya, Pbx4, and 
Prep1 ChIP-seq data for the tcf3a (A), tle3a (C), dachb (E), fgf8a (G) and yap1 (I) loci. The 
diagrams above the tracks show the putative enhancer region in green, DECA sites in orange, 
and CCAAT boxes in blue. (B, D, F, H, J) GFP expression in 24 hpf F1 tcf3a::E1b-GFP (H), 
tle3a::E1b-GFP (J), dachb::E1b-GFP (L), fgf8a::E1b-GFP (N) and yap1::E1b-GFP (P) transgenic 
embryos resulting from crosses between male founders and wild-type females. 
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I next took two approaches to confirm that the observed expression 

patterns are dependent on TALE and NFY function. First, I expressed the 

dominant negative TALE and NFY constructs in embryos from a cross of the F1 

offspring of the tcf3a::E1b-GFP transgenic line (Figure 3.18 A). I find that GFP 

expression is dramatically reduced in embryos expressing either dominant 

negative construct (Figure 3.18 B-E), indicating that expression from the tcf3a 

genomic element requires both TALE and NFY function. This observation was 

further confirmed by RT-qPCR analysis (Figure 3.18 F). Second, I made use of a 

distinct transgenesis strategy that allows me to test the effect of mutating the 

TALE and NFY binding sites in a given enhancer element. Specifically, my 

transgenic construct includes the ɤ-crystallin promoter driving GFP along with the 

candidate enhancer element driving RFP. I find that the wild-type tcf3a and tle3a 

enhancers drive tissue-specific RFP expression (Figure 3.19 A, E), as expected 

based on my results in Figure 3.14. However, when I test mutated versions of 

these elements (where the TALE and NFY binding sites have been disrupted), I 

find that transgenic animals (defined by GFP expression in the eye; Figure 3.19 

D, H) lack RFP expression (Figure 3.19 C, G). I conclude that TALE/NFY co-

occupied elements possess enhancer activity and that this activity requires TALE 

and NFY function. 
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Figure 3.15: ChIP peaks at inactive putative enhancers. UCSC Genome Browser tracks 
showing Nfya, Pbx4, and Prep1 ChIP-seq data for the pax5 (A), her6 (B) and prdm14 (C) loci. 
The diagrams above the tracks show the putative enhancer region in green, DECA sites in 
orange, and CCAAT boxes in blue. 

 

 

Figure 3.16: Characterization of TALE/NFY-regulated enhancers in zebrafish. (A-B) Side-by-
side comparison of a 24 hpf tcf3a::E1b-GFP GFP-positive (A) and GFP-negative (B) embryo. (C-
D) Side-by-side comparison of a 24 hpf yap1::E1b-GFP embryo from male founder #11 (C) and 
male founder #5 (D). 
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Figure 3.17: The GFP transgene is maternally deposited. GFP-positive offspring from female 
transgenic fish for tcf3a::E1b-GFP (A, B), tle3a::E1b-GFP (C, D), dachb::E1b-GFP (E, F), fgf8a:: 
E1b-GFP (G, H), and yap1::E1b-GFP (I, J) at 3.5 hpf (A, C, E, G, I) and 24 hpf (B, D, F, H, J). 
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Figure 3.18: Disruption of TALE and NFY function reduces enhancer activity. (A) Schematic 
showing workflow for dominant negative disruption of tcf3a::E1b-GFP. (B-D) Representative 
images showing no GFP (B), weak GFP (C), and strong GFP (D) of dominant negative-injected 
embryos. (E) Distribution of GFP expression in uninjected embryos and embryos injected with 
PBCAB, Nfya- DN or control RNA. (F) RT-qPCR-based detection of GFP expression in embryos 
injected with PBCAB, Nfya-DN, or control RNA. Data are shown as mean +/- SEM. Statistical 
test: unpaired t-test. 
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Figure 3.19: Mutation of DECA and CCAAT sites reduces enhancer activity. Representative 
examples of RFP (A, C, E, G) and GFP (B, D, F, H) signal in tcf3a-WT::sv40 (A, B), tcf3a-
mut::sv40 (C, D), tle3a-WT::sv40 (E, F) and tle3a-mut::sv40 (G, H) embryos at 32 hpf. Insets in 
panels D, F, and H show higher magnification of GFP expression in the lens. Note that the 
embryo in panels A and B is at a later stage than embryos in panels C-H. 
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Table 3.10: Quantification of RFP-positive and GFP-positive offspring. Total number of RFP-
positive and GFP-positive offspring from transgenic founders. 

 



CHAPTER IV: DISCUSSION 
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 This research reveals a novel mechanism for the regulation of a subset of 

genes at zygotic genome activation (ZGA) in zebrafish. In addition, it provides 

insight into many other processes related to TALE and NFY function. This data 

shows that the TALE factors and NFY drive the expression of distinct sets of 

genes at different developmental stages, demonstrating that these factors are 

critical to ensuring not only the activation of genes involved in key processes but 

also the proper timing of the expression of these genes which is essential to 

proper embryonic development. I also show that NFY plays a role in activating 

cilia-related genes, a process in which its role was previously unknown. Finally, I 

show that the TALE factors and NFY bind a novel DNA sequence motif prior to 

ZGA which is essential to the transcription-activating activity of the DNA 

elements in which it is present, suggesting that they may cooperate to drive 

many of the earliest-expressed genes in zebrafish. 

 

NFY Drives the Expression of Cilia-Related Genes 
 

 An unexpected result obtained in this work was a role for NFY in cilia-

related processes. To date, no other research has implicated NFY in the 

development of cilia. However, several aspects of this work support such a role 

for NFY. Analysis of the GO terms of the genes downregulated upon disruption of 

NFY at 12 hpf shows significant enrichment for cilia-related processes (Figure 

3.7 C). As NFY predominantly acts as a transcriptional activator, this suggests 
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that NFY is responsible for directly activating genes required for proper cilia 

development. The ChIP-seq data provides further evidence of a direct role for 

NFY in cilia development, with several cilia-related GO terms appearing among 

genes which are both near Nfya ChIP peaks and downregulated upon disruption 

of NFY function (Figure 3.12 C). As cilia formation in zebrafish takes place 

beginning at late gastrula and segmentation stages, it is likely that a greater 

number of Nfya peaks would appear near cilia-related genes in embryos 

collected at those stages. Alternatively, it is possible that NFY drives a smaller 

number of master transcription factors which in turn activate larger gene 

regulatory networks that include many genes involved in cilia development. This 

finding warrants further research, which could include ChIP-seq of Nfya at 12 hpf 

and more detailed examination of the specific genes downregulated upon 

disruption of NFY function and near Nfya peaks. 

In addition to the genes downregulated upon disruption of NFY and near 

Nfya peaks, the phenotypes of embryos injected with Nfya-DN also support a 

role for NFY in cilia development. Cilia fit into two predominant categories: motile 

cilia, which beat rhythmically to move fluids throughout the body, and sensory 

cilia, which send and receive signals between cells (reviewed in (Drummond, 

2012; Sreekumar & Norris, 2019)). There are also modified cilia, such as the 

outer segments of photoreceptor cells, which are different from true cilia but 

nonetheless appear to share a common origin and rely on many of the same 

genes as true cilia for their proper development (Wolfrum & Schmitt, 2000). 
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Interestingly, one of the phenotypes observed upon disruption of NFY function is 

smaller eyes (Figure 3.2 D; Figure 3.3 G, H). It is possible that disruption of NFY 

results in the downregulation of cilia genes which photoreceptor cells rely upon 

for proper development, and abnormal photoreceptor development causes the 

smaller eyes observed in these injected fish.  

Regarding true cilia, both motile and sensory cilia play roles in 

development. Motile cilia in the Kupfer’s vesicle of fish embryos beat to form a 

leftward flow of fluid which is critical for proper development along the left-right 

body axis. This work shows that disruption of NFY function causes left-right 

asymmetry, which could stem from a defect in motile cilia development. 

Disruption of NFY could downregulate genes required for proper cilia 

development, resulting in defective motile cilia. This would prevent the leftward 

flow of fluid in the Kupfer’s vesicle and lead to abnormal development along the 

left-right body axis. Sensory cilia also play a critical role in embryonic 

development, including in sonic hedgehog (shh) signaling. In mice, knockout of 

shh signaling pathway components results in a variety of developmental defects, 

including skeletal abnormalities (reviewed in (Sreekumar & Norris, 2019)). This 

work shows that disruption of NFY function causes abnormal anterior cartilage 

development (Figure 3.3 G, H). This phenotype could manifest in neural crest 

cells, which migrate to compose the anterior skeleton in fish. Shh plays a role in 

guidance of neural crest cell migration, so it is possible that defective 

development of sensory cilia impedes the ability of neural crest cells to detect 
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Shh and migrate to the proper location in skeletal formation. Alternatively, 

defective development of the anterior skeleton could also be due to a joint role of 

the TALE factors and NFY. Previous research indicates that disruption of the 

TALE factors or NFY results in apoptosis and an inability to differentiate among 

neural crest cells, suggesting that the two factors may play additional roles in the 

lineage between neural crest cells and cartilage development (Chen et al., 2009; 

Ferretti et al., 2006). Of course, a combinatorial effect is also possible in which 

survival, differentiation, and migration of neural crest cells are all disrupted in the 

absence of the TALE factors or NFY. 

 

The TALE Factors and NFY Regulate Different Processes at Different 

Developmental Stages 

 

Both the TALE factors and NFY appear to have distinct roles at different 

stages of development. This makes a great deal of sense since accurate timing 

of gene expression is crucial to proper embryonic development. At 12 hpf, the 

RNA-seq data shows that disruption of TALE function results in downregulation 

of genes involved with transcription and embryonic development as well as 

homeodomain-containing genes, the latter of which includes many tissue-specific 

transcription factors (Figure 3.7 A). Comparing this data to the ChIP-seq data for 

overlapping Pbx4 and Prep1 loci at 3.5 hpf shows increased enrichment of genes 

involved with transcription and embryonic development while homeodomain-
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containing genes become less enriched, suggesting that at 3.5 hpf the TALE 

factors are predominantly driving the expression of genes involved with 

transcription and development (Figure 3.12 B). In terms of developmental timing, 

this makes a great deal of sense, as the developing embryo’s earliest needs 

include transcription factors and developmental proteins to spur it into the next 

stages of development (Aanes et al., 2011; Lee et al., 2013). Conversely, many 

of the homeodomain-containing factors are not only not essential at ZGA but 

could be detrimental to proper embryonic development. Were they to be 

expressed at ZGA, tissue-specific homeodomain-containing factors could cause 

premature differentiation of cells, resulting in incorrect tissue types in abnormal 

regions. This could then cause surrounding tissues to take on incorrect identities 

and prevent correct tissue types from appearing in the right location. 

A similar pattern emerges upon disruption of NFY. At 12 hpf, the RNA-seq 

data shows that disruption of NFY causes downregulation of genes involved with 

transcription, embryonic development, and cilia-related processes (Figure 3.7 C). 

Comparison of the RNA-seq data to the 3.5 hpf Nfya ChIP-seq data shows 

increased enrichment of genes involved in transcription and development while 

enrichment of cilia-related genes declines (Figure 3.12 C). As before, genes 

involved with transcription and development are likely to be the most critical at 

ZGA while cilia-related functions are less critical than at later stages of 

development. Signaling molecules such as shh are not yet active at ZGA and 

organs such as Kupfer’s vesicle have yet to develop, making cilia extraneous. 



108 
 

Consistent with this explanation, cilia development in zebrafish does not begin 

until the late gastrulation and segmentation stages. 

 

The TALE Factors and NFY Cooperate to Drive Transcription at ZGA 

 

 The TALE factors and NFY appear to cooperate at ZGA to drive the 

expression of genes involved with transcription and embryonic development. The 

factors form a protein complex and bind a DNA sequence motif containing a 

DECA motif spaced about 20 bp from a CCAAT box (Figure 3.1 A-D; Figure 3.11 

L). Examination of our previously published Prep1 ChIP-seq data shows that 

Prep1 preferentially binds the DECA motif prior to ZGA and that about 30% of 

Prep1-bound DECA motifs are within the 20 bp spacing, suggesting that they are 

binding the DECA/CCAAT motif I identified in this work (Ladam et al., 2018). 

Since almost 95% of Pbx4 sites at 3.5 hpf overlap with a Prep1 site, it is safe to 

assume that both Prep1 and Pbx4 are bound to these DECA sites (Figure 3.11 

D). The DECA/CCAAT motif appears to be a unique motif which allows the TALE 

factors and NFY to have distinct functions at different stages of development. As 

Prep1 binds the DECA motif preferentially prior to ZGA, this suggests that the 

DECA motif has a unique role at ZGA which is distinct from the roles of other 

TALE and NFY binding sites. The data collected in this work supports this notion. 

Analysis of the GO terms associated with genes which are both downregulated 

upon disruption of TALE function at 12 hpf and near TALE peaks at 3.5 hpf 
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reveals enrichment for transcription, embryonic development, and homeodomain-

containing genes (Figure 3.12 B). These same GO terms, as well as cilia-related 

GO terms, appear among the genes which are both downregulated upon 

disruption of NFY at 12 hpf and near Nfya peaks at 3.5 hpf (Figure 3.12 C). 

However, examination of the genes which are downregulated upon disruption of 

both the TALE factors and NFY at 12 hpf and are near overlapping TALE and 

Nfya binding sites at 3.5 hpf shows a complete loss of all GO terms related to 

homeodomain-containing and cilia-related genes, suggesting that prior to ZGA 

the TALE factors and NFY bound to the DECA/CCAAT motif are only driving 

genes related to these functions (Figure 3.12 E). Consequently, it is probable that 

the role of the TALE factors in driving homeodomain-containing genes and the 

role of NFY in driving cilia-related genes happen later and independently. 

 In addition to the distinct set of genes that the DECA/CCAAT motif 

appears to regulate, it is also essential to the ability of the enhancers it is a part 

of to activate transcription. Five distinct DNA elements containing the 

DECA/CCAAT motif were capable of driving expression of GFP in vivo with two 

different minimal promoters (Figure 3.12 B, D, F, H, J; Figure 3.19 A, E). 

Furthermore, each enhancer displayed a unique expression pattern, which was 

consistent across independent lines of the same enhancer. These expression 

patterns were also consistent with different minimal promoters. Taken together, 

this confirms that the activity observed from each enhancer was specific to the 

enhancer itself and not to some other facet such as integration site. 
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A Model for Transcription Activation by the TALE Factors and NFY at ZGA 

 

Interestingly, each enhancer element displays a unique, tissue-restricted 

expression pattern (Figure 3.14 B, D, F, H, J). As the TALE factors and NFY are 

maternally deposited and ubiquitously expressed in embryonic tissues, this 

suggests that the factors themselves are not solely responsible for the activity of 

the enhancer elements. In the event that the TALE factors and NFY were solely 

responsible for driving the reporter gene expression, the reporter gene should 

also be ubiquitously expressed. This observation suggests that the role of the 

TALE factors and NFY at the DECA/CCAAT motif is broader. This fits a model in 

which the TALE factors and NFY possess pioneer transcription factor (PTF) 

activity. PTFs can recognize and attach to their binding sites in non-permissive 

chromatin environments, often subsequently recruiting enzymes that alter 

chromatin structure and form a more permissive chromatin state. This open 

chromatin state exposes binding sites for other transcription factors, allowing 

them to bind and carry out their functions. Other research suggests that both the 

TALE factors and NFY possess PTF activity, although whether they do is far from 

a consensus. 

In the model I propose, the DECA/CCAAT motif possesses PTF activity, 

allowing the TALE factors and NFY to recognize and bind their DNA sequence 

motifs in the non-permissive chromatin environment of the zygotic genome prior 

to ZGA. This agrees with data from our previous publication, in which Prep1 
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preferentially binds the DECA motif prior to ZGA and then the HEXA motif later in 

development. It could be that Prep1 on its own lacks PTF activity and therefore 

cannot bind the HEXA motif in non-permissive chromatin. A complex of Prep1, 

Pbx4, and NFY, however, gains PTF activity, allowing all three factors to bind the 

DECA/CCAAT motif. Once bound, the TALE factors and NFY recruit histone 

modifying enzymes which open the chromatin around them and expose binding 

sites for other transcription factors, including, perhaps, the HEXA motif. Each of 

the DECA/CCAAT enhancer elements tested contains a unique sequence and 

thus binds a unique set of transcription factors. This is the likely explanation for 

the unique tissue-restricted patterns of each enhancer element, where reporter 

gene expression is present only in those tissues where the necessary 

transcription factors are expressed. It also explains the observation that the 

TALE factors and NFY are essential to the activity of these elements. Upon 

disruption of TALE or NFY activity, or mutation of the DECA and CCAAT box 

sequences, the enhancers lose their ability to drive reporter gene expression. In 

the model, this is because the TALE factors and NFY are unable to form a 

complex and recognize the DECA/CCAAT motif, which prevents the opening of 

the chromatin around the DECA/CCAAT site and exposure of binding sites for 

other transcription factors (Figure 4.1). This model represents a novel function for 

the TALE factors and NFY and provides insight into a new mechanism which 

spurs zygotic genome activation in zebrafish. 
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Figure 4.1: The TALE factors and NFY cooperate at ZGA to open chromatin at 
DECA/CCAAT enhancers. At ZGA, the TALE factors and NFY identify enhancers containing 
adjacent DECA/CCAAT motifs in dense chromatin occupied by nucleosomes (gray spheres) and 
modified by repressive chromatin marks (red triangles). The TALE factors and NFY bind there, 
forming a protein complex that causes the chromatin to take on a more open state marked by 
permissive marks such as H3K27ac (green triangles) and drives transcription of nearby early-
expressed genes involved with transcription and development. As the chromatin decondenses, 
binding sites for other transcription factors become exposed, such as TALE/Hox sites, further 
activating transcription throughout the genome. 
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APPENDIX A: SUPPLEMENTARY DISCUSSION 
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 The goal of this project was to expand upon previous research which 

suggested a cooperative role for the TALE factors and NFY. In this previous 

research, ChIP-seq experiments showed where Prep1 bound in the zebrafish 

genome at 3.5 hours post-fertilization (hpf). DNA sequence motif analysis of 

these binding sites using the MEME and DREME tools showed that Prep1 bound 

a motif with the sequence TGATTGACAG, known as the DECA motif (Ladam et 

al., 2018). The DECA motif comprises adjacent Pbx and Prep binding half-sites, 

with Pbx recognizing the TGAT portion and Prep recognizing the TGACAG 

portion (Chang et al., 1997; Knoepfler & Kamps, 1997). Previous in vitro studies 

of TALE binding had identified the DECA motif as a sequence recognized by the 

TALE factors, but it had no assigned biological function. 

 About 30% of the DECA sites bound by Prep1 appeared within about 20 

bp of a well-characterized DNA sequence motif known as the CCAAT box 

(Ladam et al., 2018). Originally considered a core promoter element, 

technological advances such as high throughput sequencing later showed that 

the CCAAT box was only present at about 30% of eukaryotic promoters. 

Furthermore, it was also present at many enhancers (Dolfini et al., 2009; Oldfield 

et al., 2014). The fact that the CCAAT box appeared such a consistent distance 

away from such a sizeable fraction of DECA sites raised the possibility that the 

arrangement had a biological significance. 
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The majority of Prep1 association with DECA sites takes place around 3.5 

hpf in zebrafish, coinciding with zygotic genome activation (ZGA). This bound 

Prep1 persists to 12 hpf, but Prep1 binds few additional DECA sites between 3.5 

hpf and 12 hpf. Although many new Prep1 binding sites appear between 3.5 hpf 

and 12 hpf, the vast majority of these sites fit the more classically understood 

arrangement of Prep1 binding (Figure 1.3) (Ladam et al., 2018). In this 

arrangement, Prep1 binds the HEXA motif containing the sequence TGACAG 

(Amin et al., 2015; Ferretti et al., 2000; Ferretti et al., 2005; Jacobs et al., 1999; 

Tümpel et al., 2007). This sequence is frequently located a short distance from a 

composite binding site for Pbx and a tissue-specific transcription factor such as 

Hox (Grieder et al., 1997; Pöpperl et al., 1995; Ryoo & Mann, 1999). 

Furthermore, the fact that Prep1 and Pbx4 are bound to DECA sites at 3.5 hpf 

indicates that the proteins originate from a maternal source. Indeed, previous 

research has shown that the TALE factors bind as early as 2 hpf, well before 

ZGA (Choe et al., 2014). Taken together, these observations suggest that TALE 

factors bound to the DECA motif have a separate biological function from those 

bound to the more classically understood arrangement. 

Like the TALE factors, the literature shows that NFY is maternally 

deposited across species (Dolfini et al., 2009). Besides its well understood role 

as a promoter-binding factor regulating housekeeping genes related to processes 

such as the cell cycle, recent research implicates NFY in a role in embryonic 

development. Specifically, this research describes it as an enhancer-binding 
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pioneer transcription factor (PTF) essential to ZGA in mice (Dolfini et al., 2012; 

Lu et al., 2016). The association of CCAAT boxes with DECA sites and the fact 

that the TALE factors and NFY interact on a protein level suggests a potential 

cooperative role for the two factors in ZGA at enhancers (Ladam et al., 2018). 

 

The TALE Proteins Pbx4 and Prep1 Interact with NFY 

 

The co-immunoprecipitation experiment demonstrated that Nfya and Nfyb 

both immunoprecipitated with Pbx4 and Prep1 (Figure 3.1). The selection of 

these proteins for this experiment, as well as subsequent ones, stems from the 

fact that all of them are maternally deposited in zebrafish (Choe et al., 2002; 

Deflorian et al., 2004; Dolfini et al., 2009; Ferretti et al., 2000; Vlachakis et al., 

2000). Our previous Prep1 ChIP-seq data at 3.5 hpf and 12 hpf showed that 

Prep1 preferentially bound DECA motifs prior to ZGA (Ladam et al., 2018). As 

the DECA site comprises immediately adjacent Pbx4 and Prep1 half-sites and 

Pbx4 forms protein complexes with Prep1, Pbx4 seemed the obvious choice to 

complete the set of potential TALE factor interactors with the NFY subunits. 

The finding that the TALE factors and NFY form a protein complex is 

significant since it implies that the two factors work together in some capacity. A 

great deal of the TALE factors’ function derives from their ability to form 

complexes with unique compositions of proteins that will have specific effects at 

different genes (reviewed in (Ladam & Sagerström, 2014)). Thus, it is possible 
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that forming a complex with NFY allows the formation of yet another class of 

TALE complexes which fulfill this role at a key subset of genes. Alternatively, the 

formation of a TALE/NFY complex may impart some new function which the 

proteins lack independently. The TALE factors bind DNA very early in 

development and previous research implicates NFY as an essential factor for 

proper ZGA in mice (Choe et al., 2014; Lu et al., 2016). Due to this early genomic 

binding, many reports have suggested that the TALE factors and NFY possess 

PTF activity, but this is far from a consensus. Given the early association of the 

TALE factors with the DECA motif and the association of the CCAAT box with the 

DECA motif, it is possible that by associating with one another the TALE factors 

and NFY gain PTF ability which each factor lacks independently. 

Although this experiment showed that the TALE factors and NFY do 

indeed interact on a protein level, the determination of the exact basis of the 

interaction will require more work. The fact that the proteins are well conserved 

leaves open the possibility that the fish proteins can form complexes with the 

human proteins endogenous to the HEK293T cells. It is possible, for example, 

that Nfyb and Pbx4 physically interact, but tagged Prep1 co-immunoprecipitates 

with tagged Nfyb on account of endogenous human PBX1 mediating the 

interaction between the two tagged proteins. The choice of system is another 

potential caveat to these results; there is no guarantee that the fish proteins will 

fold correctly in human cells due to the presence of different chaperones and 

environments between the two species. This is of particular concern on account 
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of the activation domains of Nfya and Nfyc, which are rich in glutamine and 

hydrophobic residues and can form pathological aggregations (reviewed in 

(Dolfini et al., 2012)). Finally, the epitope tagged versions of the proteins used for 

this experiment introduce the possibility of non-specific interactions or 

aggregation caused by the tags themselves. With the creation of the nfya 

antiserum used for ChIP-seq, it would be possible to repeat the co-

immunoprecipitation in fish embryos to confirm the interaction. In addition, it 

would be useful to repeat the experiment with a tagged version of Nfyc to 

determine whether that subunit can also interact with Prep1 and Pbx4. 

 

Disruption of TALE or NFY function causes developmental abnormalities 

 

With the knowledge that the TALE factors and NFY form a protein 

complex at DECA/CCAAT sites during ZGA, I disrupted each factor’s function to 

determine whether they caused similar defects in early embryonic development. 

To this end, I injected dominant negative versions of Pbx4 (PBCAB) or NFY 

(Nfya-DN) into zebrafish embryos at the 1-cell stage. PBCAB disrupts TALE 

function by sequestering endogenous Prep1 in the cytoplasm, and Nfya-DN 

disrupts NFY function by eliminating recognition of the CCAAT box, trapping 

endogenous Nfyb and Nfyc in a non-functional complex (Choe et al., 2002; 

Mantovani et al., 1994). Each of these dominant negative factors causes gross 

developmental defects. Compared to uninjected or GFP-injected animals, 
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PBCAB- and Nfya-DN-injected embryos displayed small or missing heads and 

small or missing eyes by 28 hpf (Figure 3.2). By 5 days post-fertilization (dpf), 

surviving embryos displayed gross deformities in anterior cartilage development 

(Figure 3.3). Although PBCAB and Nfya-DN cause many similar phenotypes, the 

affected animals are not identical. Most obviously, about half of the PBCAB-

injected embryos lacked the third rhombomere of the hindbrain (r3) as indicated 

by krox20 staining in situ (Figure 3.4 E, F). None of the Nfya-DN-injected 

embryos displayed this loss of r3, nor did they display any abnormalities in the 

midbrain-hindbrain boundary, r3, r5, or the spinal cord. (Figure 3.4 G, H). Based 

on these results, hindbrain development likely falls under the purview of a TALE 

function independent of NFY, while cooperation between the TALE factors and 

NFY affects the development of more anterior structures. 

 

Dominant negatives versus morpholinos and germline mutants 

 

The phenotypes caused by the dominant negatives fit with those 

previously described (Chen et al., 2009; Choe et al., 2002; Deflorian et al., 2004; 

Mantovani et al., 1994; Heike Pöpperl et al., 2000; Waskiewicz et al., 2002). In 

addition to the dominant negatives, prior experiments have disrupted TALE and 

NFY function using antisense Morpholino oligos (MO) and germline mutants. 

MOs bind specific mRNAs to block their translation or splicing. Recent research 

calls the specificity of MOs into question, however, observing that morphant 
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phenotypes are not always identical to the phenotypes observed in germline 

mutants (Kok et al., 2015). This research posits that many observed phenotypes 

are due to off-target effects, such as activation of p53 in response to MO 

injection. Proponents of MOs suggest that genes with redundant function can 

compensate for the loss of gene function in germline mutants, which could 

explain the discrepancy between morphant and germline mutant phenotypes 

(Rossi et al., 2015). This potential lack of specificity calls for careful consideration 

of morphant phenotypes. 

The dominant negative constructs appear to be a superior alternative to 

MOs for hindering TALE and NFY function in zebrafish. Outwardly, the dominant 

negative and morphant phenotypes compare favorably. Like PBCAB, TALE MOs 

cause smaller heads and smaller eyes as well as a loss of r3. For a more in-

depth analysis of PBCAB versus the TALE MOs, see Appendix B, Figure B.1. In 

addition, the phenotype caused by PBCAB mirrors that of the pbx4 germline 

mutant (Pöpperl et al., 2000; Waskiewicz et al., 2002), indicating that the effects 

are specific. The same is true of Nfya-DN and NFY MOs, which both display 

similar phenotypes in zebrafish (Chen et al., 2009; Ladam et al., 2018). 

 

The TALE factors and NFY are essential for proper head cartilage formation 

 

Cartilage deformities are one of the chief similarities shared between the 

TALE and NFY phenotypes. Previous research using NFY MOs in zebrafish 
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described sharper Meckel’s cartilage, loss of ceratobranchial cartilage, and 

enlarged angles of ceratohyal cartilage. This report attributed the cartilage 

abnormalities to apoptosis of neural crest cells (Chen et al., 2009). Interestingly, 

prep1.1 MOs cause a similar dysfunction, with prep1.1 morphants losing neural 

crest-derived cartilages in the anterior skeleton. Among the possible reasons for 

the loss of this cartilage was an inability of these cells to properly differentiate, 

causing them to undergo apoptosis (Deflorian et al., 2004). In addition, lazarus 

(pbx4) mutants also demonstrate anterior cartilage deformities (Pöpperl et al., 

2000). Just as the prep1.1 and pbx4 abnormalities may be related to the intimate 

cooperation between those proteins, it is possible that the deformities observed 

in NFY MOs are related as well. It is also possible that, among other early 

development roles, the TALE factors and NFY cooperate in neural crest cell 

differentiation and migration. This finding is significant as it suggests a direct 

cooperative role for the TALE factors and NFY, although confirming it will require 

further research. 

The abnormalities in anterior cartilage, as well as the apoptosis and 

differentiation deficiencies of neural crest cells, of TALE and NFY disruption 

make sense in the context of each gene’s expression pattern. In zebrafish, pbx4, 

prep1.1, and nfyb expression transitions from a ubiquitous expression pattern 

early in development to a tissue-restricted pattern, becoming limited to the 

anterior part of the embryo (Deflorian et al., 2004; Dolfini et al., 2012; Pöpperl et 

al., 2000). Furthermore, in the case of NFY, its role in regulating cell cycle genes 
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is well documented (Dolfini et al., 2012). Thus, it makes sense that disruption of 

NFY with MOs could cause apoptosis of cells in a region to which an essential 

subunit is restricted. Although I did not look for apoptosis with Nfya-DN, the 

similarity of the phenotypes suggests similar mechanisms for it and MOs. 

 

Severity of TALE and NFY phenotype 

 

 While disruption of the TALE factors and NFY results in substantial 

deformity, one might expect factors involved in activation of the zygotic genome 

to lead to more severe abnormalities. For example, the pluripotency factors Oct4/ 

Pou5f3, SoxB1, and Nanog also play roles in ZGA in zebrafish (Lee et al., 2013; 

Leichsenring et al., 2013). Disruption of these factors causes embryos to stall 

during blastula stages. I do not observe such a severe phenotype in response to 

the dominant negatives, but there are several potential explanations as to why 

this is the case. As I will explain further in the next section, the function of the 

dominant negatives has a lag time while the injected mRNA is translated. This, 

as well as maternally deposited proteins, allows the formation of functional TALE 

complexes, meaning that the dominant negatives do not cause a complete loss 

of TALE function. Furthermore, the developmental arrest observed in the 

pluripotency factors requires disruption of all three proteins, and recent evidence 

suggests that the effect of one, Nanog, may be due to its role in extraembryonic 

tissue formation (Gagnon et al., 2018). This same principle applied to DUX, 
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which is implicated in mammalian ZGA. Like the individual pluripotency factors, 

disruption of DUX does not lead to developmental stalling (Chen & Zhang, 2019). 

Thus, the lack of a more severe phenotype in the disruption of the TALE factors 

and NFY may be because vertebrate ZGA requires the activity of several 

transcription factors and no single one can block the process. 

 

Potential caveats of the dominant negatives 

 

Although the dominant negatives appear to be superior to MOs in terms of 

mitigating off-target effects while still showing phenotypic changes associated 

with the disruption of their target factors, they are not ideal substitutes for 

knockout mutants. In the case of Pbx and NFY, both factors are maternally 

deposited. Although mRNA encoding the dominant negatives is injected at the 1-

cell stage within about 45 minutes after fertilization, time is still required for these 

factors to undergo translation and begin to disrupt TALE and NFY function. 

During this initial lag time, endogenous TALE and NFY factors are forming 

normal complexes and carrying out their normal functions. In this way, the 

dominant negatives may more accurately portray hypomorphic mutations than 

knockouts and may be inconsistent between individual embryos depending on 

which genomic loci normal endogenous complexes are able to bind. 

Nonetheless, they are a remarkably useful tool in studying the disruption of the 

TALE factors and NFY. 
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Whatever the selected method of gene disruption, it is important to bear in 

mind that I extracted total RNA for the RNA-seq from whole embryos, which at 12 

hpf have differentiating tissues with distinct gene expression profiles. Therefore, 

while the direct effects of the TALE factors or NFY disruption may be very large 

in specific tissues, they are diluted out by the inclusion of other tissues where the 

effect is not as drastic or not present at all. For example, the dominant negatives 

seem to have a drastic effect on anterior development, suggesting that much of 

their activity is in that region of the embryo. However, genes whose expression is 

restricted to the anterior region, or whose expression is only affected in the 

anterior region, may have this effect diluted by the inclusion of the posterior 

region. This could result in the expression fold change not meeting the 1.5-fold 

cutoff. This effect could be corrected by dissecting the embryos before preparing 

the RNA libraries and only including anterior regions for RNA-seq analysis. 

 

The TALE factors and NFY have cooperative and independent functions 

 

The results of the previous experiments added support to the notion that 

the TALE factors and NFY cooperate to regulate genes involved in early 

embryogenesis. To ascertain which genes these factors may co-regulate, I 

performed RNA-seq on zebrafish embryos injected with PBCAB or Nfya-DN 

mRNA normalized to embryos injected with GFP mRNA (Figure 3.5 A). Since the 

TALE factors and NFY are mostly described as transcriptional activators, I 
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focused on the downregulated genes when analyzing the RNA-seq data, as 

those effects are more likely to be direct attributable to the loss of TALE or NFY 

function. For transcriptional activators, upregulation of genes is more likely 

caused by indirect effects; for instance, a transcriptional activator could drive 

transcription of a gene that represses the expression of another, and thus 

disrupting the activator results in indirect upregulation of this final gene. However, 

there are reports that both the TALE factors and NFY possess repressor activity. 

In the case of the TALE factors, Pbx4 can recruit HDACs and N-CoR/SMRT to 

remove acetyl groups from histones and create a less permissive chromatin 

environment for transcription (Saleh et al., 2000). In C. elegans, NFY can also 

create restrictive chromatin environments, interacting with the Polycomb 

repressive complex which deposits the repressive H3K27me3 mark. 

Furthermore, in C. elegans, the loss of NFY leads to ectopic expression of the 

egl-5 gene, suggesting that NFY is responsible for repressing egl-5 in areas it is 

not supposed to be expressed (Deng et al., 2007). 

Since the TALE factors and NFY can possess repressor activity, it is 

possible that some of the genes upregulated by the dominant negatives are due 

to direct effects. Fitting with this possibility, many of the GO terms of the 

upregulated genes fit into the same categories as the downregulated genes, 

particularly transcription related ontologies (Figure 3.8 B-D). It is possible to 

dismiss some of these GO terms as indirect; for instance, upregulation of the p53 

pathway is often seen with MOs and is considered an off-target effect due more 
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to the injection of foreign material than any specific effects. There are other GO 

terms, however, which are interesting enough to bear mentioning and perhaps 

further research. In the genes upregulated by both PBCAB and Nfya-DN, the GO 

terms CCAAT/enhancer binding and CCAAT/enhancer binding protein appear 

(Figure 3.8 D). The genes in these terms are cebpa, cebpb, and cebpd, which 

stand for CCAAT/enhancer binding proteins A, B, and D, respectively. These 

proteins are not the same as NFY; however, CEBPA interacts with NF-YA in 

humans. Despite their name, the members of the CEBP family bind the DNA 

consensus sequence RTTGCGYAAY and do not compete with NFY for CCAAT 

box binding. Nonetheless, the category is still an interesting one as the CEBP 

genes are transcriptional activators that play roles in animal organ development 

and hematopoietic stem cell migration. Finally, Nfya-DN upregulates genes 

involved in histone-related GO terms. This is interesting since Nfyb and Nfyc 

contact DNA via histone-fold domains, and many researchers have posited that 

this facilitates the pioneer activity of NFY. If due to a direct effect, this data 

suggests that NFY represses histone expression, perhaps further facilitating the 

ability of itself and other transcription factors to compete with nucleosomes for 

DNA binding. Indeed, saturation with histones appears to be a strategy in 

zebrafish and Xenopus to prevent premature ZGA (Joseph et al., 2017; Pálfy et 

al., 2017); thus, it is possible that NFY represses histones as an additional 

mechanism to ensure efficient ZGA. 
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The TALE factors drive transcription, development, and homeobox genes 

 

The fact that genes disrupted by PBCAB are predominantly involved in 

transcription, embryonic development, and homeobox genes agrees with 

previous data (Figure 3.7 A, B) (reviewed in (Ladam & Sagerström, 2014)). Much 

of the research into the TALE factors relates to their roles as cofactors for tissue-

specific transcription factors such Hox and Engrailed. These proteins, as well as 

many other TALE cofactors, are master transcription factors. For example, Pbx4 

and Prep1 bind the hoxb1a locus in zebrafish to activate its transcription in 

cooperation with Hoxb1b (Figure 1.3) (Choe et al., 2014). hoxb1a fits all three 

major categories of TALE-regulated genes: it is a homeodomain-containing 

transcription factor that plays a role in central nervous system development, 

particularly that of r4. In addition, GO terms of the genes downregulated by only 

PBCAB (and not Nfya-DN; Figure 3.9 A) include many of the same GO terms as 

the whole set of genes downregulated by PBCAB, indicating that their unique 

functions are not very different from their coordinated functions with NFY. Taken 

together, this data adds evidence that the TALE factors play vital roles in 

transcription regulation and development, particularly of homeobox genes. 
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NFY drives transcription, development, and cilia genes 

 

The GO terms of genes downregulated by Nfya-DN reveal new insight into 

the role of NFY in zebrafish. Cilia-related genes compose a large part of the most 

highly downregulated genes by Nfya-DN (Figure 3.7 C, D). Cilia are small 

projections contiguous with the plasma membrane of cells which can have motile 

and sensory functions. They are significant signaling centers, coordinating many 

cellular signaling pathways such as sonic hedgehog (shh). Cilia play a significant 

role in development, particularly left-right body and neural patterning, but also in 

the cell cycle and differentiation (reviewed in (Drummond, 2012; Sreekumar & 

Norris, 2019)). In addition, cilia play significant roles in the eye, where the outer 

segment of photoreceptor cells is a specialized cilium (Wolfrum & Schmitt, 2000). 

The regulation of cilia-related genes by NFY could explain many of its proposed 

functions. The role of NFY in the cell cycle is well studied thanks to the presence 

of CCAAT boxes in many cell cycle genes but the notion that NFY plays an 

additional part in this process by regulating cilia, which sense extracellular 

signals related to the cell cycle, provides new insight into NFY’s role in this 

process. Interestingly, yap1, one of the TALE/NFY enhancers capable of driving 

GFP expression (Figure 3.14 J), plays a role in cilia assembly. 

Many studies implicate NFY in embryonic development but its role in this 

process is less well understood than its role in the cell cycle. The notion that NFY 

activates cilia genes may be a link to its role in development. For example, many 



129 
 

embryos injected with Nfya-DN displayed left-right asymmetry, and cilia are 

implicated in left-right body patterning (reviewed in (Drummond, 2012)). 

Furthermore, the smaller eyes of the Nfya-DN-injected embryos could be related 

to the fact that outer segments of photoreceptor cells are modified cilia in that 

downregulation of cilia genes could alter eye morphology (Wolfrum & Schmitt, 

2000). Finally, the role of NFY in activating cilia genes could disrupt shh 

signaling. Knockout mice for various components of the shh signaling pathway 

display, among other phenotypes, improper brain and skeletal development. As 

cilia are an important part of shh signaling, their loss could explain some of the 

more severe anterior phenotypes observed. One limitation of Nfya-DN was that 

many of the most severely affected embryos died too early in development for 

inclusion in the Alcian blue stain, which could not take place until cartilage 

formed at 5 dpf. Additionally, the normal patterning posterior to the midbrain-

hindbrain boundary suggests that any central nervous system abnormalities must 

occur anterior to that region. Better characterization of the role of NFY in early 

anterior development will necessitate additional in situ experiments using early 

anterior markers such as pax6a. 

In addition to cilia genes, Nfya-DN downregulates many genes involved in 

transcription regulation and development (Figure 3.7 C, D). All of the cilia-related 

GO terms disappear in the set of genes downregulated by both PBCAB and 

Nfya-DN (Figure 3.7 E, F), suggesting that they are independently regulated by 

NFY but not the TALE factors. Further supporting this conclusion is the set of GO 
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terms for genes downregulated by Nfya-DN alone, which include many cilia-

related ontologies (Figure 3.9 B). The genes downregulated by both PBCAB and 

Nfya-DN are predominantly related to transcription regulation and development, 

although there are also some homeobox genes (Figure 3.7 E, F). Interestingly, 

there are also many cytoskeleton-related GO terms among the genes 

downregulated by both factors. The cytoskeleton plays a prominent role in cilia 

formation, providing the organelle’s structure and a means of transporting signals 

between the cilium and cell (reviewed in (Drummond, 2012; Sreekumar & Norris, 

2019)). Although these GO terms are too broad to attribute to cilia with any 

certainty, they could be related to that function. 

These findings are significant as they shed new light on the roles of both 

the TALE factors and NFY during early embryonic development. While the TALE 

factors are widely understood to play roles in transcription regulation, embryonic 

development, and regulation of homeobox genes, the role for NFY in cilia-related 

processes is far less well characterized. Furthermore, these results demonstrate 

that, although the TALE factors and NFY only cooperate to regulate a subset of 

their total target genes, the genes that they do cooperate to regulate are involved 

in transcription regulation and development. Thus, this data supports a model in 

which the TALE factors and NFY are versatile transcription factors which regulate 

many genes on their own but also work together during ZGA, where they are 

critical to the activation of many of the earliest genes which the embryo needs to 

continue its development and drive new sets of genes. 



131 
 

The TALE factors and NFY bind near differentially expressed transcription 

and development genes 

 

Having identified genes that are differentially expressed following 

disruption of the TALE factors or NFY, I next performed ChIP-seq for Pbx4 and 

Nfya at 3.5 hpf. Together with previously collected ChIP-seq data, I intended to 

use this data to establish which genes affected by the dominant negatives were 

also near a TALE or NFY binding site, since this would suggest that these factors 

directly regulated these genes. In general, about 50%-60% of the genes 

downregulated by a dominant negative have the corresponding factor’s peak 

nearby (Figure 3.12 A; Table 3.8). This is significant because it provides further 

evidence that the gene is directly regulated by either TALE, NFY, or both. At 3.5 

hpf, genes with TALE and NFY peaks nearby and downregulated by PBCAB and 

Nfya-DN are involved with transcription regulation and development (Figure 3.12 

D, E). This makes sense since genes involved with these processes are a major 

part of the first wave of zygotic gene expression. Genes downregulated by 

PBCAB or Nfya-DN only with a ChIP peak of the corresponding factor nearby fit 

into the same sets of GO terms as the whole sets of genes downregulated in the 

RNA-seq (Figure 3.12 B, C). Genes downregulated by PBCAB and near TALE 

peaks (defined as overlapping Pbx4/Prep1 peaks) regulate transcription, 

development, and homeoboxes (Figure 3.12 B), while genes downregulated by 

Nfya-DN and near Nfya peaks regulate transcription, development, and cilia 
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(Figure 3.12 C). Interestingly, several homeobox GO terms also appeared among 

the genes downregulated by Nfya-DN and near Nfya peaks. This suggests that 

the TALE factors and NFY begin binding their target genes by 3.5 hpf. This 

makes sense for the TALE factors based on the aforementioned example at 

hoxb1a, where the TALE factors bind as early as 2 hpf despite transcription not 

beginning until around 6 hpf (Figure 1.3). It appears that NFY exhibits similar 

binding behavior although further study would be necessary to determine 

whether transcription at these genes also begins later. 

There are several potential explanations as to why the remaining 

downregulated genes lack a nearby peak. The most conspicuous is the 

discrepancy between the stages of the embryos in the RNA-seq and ChIP-seq. 

Ideally, the samples from both the RNA-seq and ChIP-seq data would come from 

the same timepoints, but this is technically difficult. Performing RNA-seq at 3.5 

hpf would only reveal maternally deposited transcripts, as ZGA has yet to occur, 

and the levels of these transcripts would be unchanged as their expression does 

not depend on the dominant negatives. Additionally, an earlier RNA-seq at 6 hpf 

found very few differentially expressed genes. Therefore, we are not able to 

assess changes in expression of genes with TALE of Nfya peaks at 3.5 hpf. 

Previous work with Prep1 indicates that many new Prep1 binding sites 

appear between 3.5 hpf and 12 hpf (Ladam et al., 2018), and the same may be 

true for Pbx4 and Nfya. Thus, a gene downregulated by a dominant negative at 
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12 hpf may have a TALE or NFY peak, but that peak is simply not present at 3.5 

hpf. To try to determine whether this could be the case, I used the 6 hpf RNA-seq 

data to examine whether downregulated genes near ChIP-seq peaks were 

expressed more highly at 6 hpf than downregulated genes without ChIP-seq 

peaks. Although this appears to be the case for neither the TALE factors nor NFY 

individually (data not shown), genes downregulated by PBCAB and Nfya-DN that 

were also near both TALE and NFY peaks do appear to be more highly 

expressed at 6 hpf than genes downregulated by PBCAB and Nfya-DN without 

those peaks nearby (Figure 3.12 F). This suggests that the discrepancy in 

timepoints between the RNA-seq and ChIP-seq data causes some genes that 

would otherwise have a corresponding ChIP-seq peak nearby at 12 hpf to appear 

not to have one, perhaps because those peaks appear between 3.5 hpf and 12 

hpf. To shed further light on this possibility, it would be best to collect ChIP-seq 

data at 12 hpf for Pbx4 and Nfya and repeat the comparison to see whether a 

larger subset of genes downregulated by PBCAB and Nfya-DN are near TALE 

and Nfya ChIP-seq peaks. 

Another potential reason for the apparent disparity between the RNA-seq 

data and ChIP-seq data is that some of the genes downregulated by the 

dominant negatives are not directly regulated by the TALE factors or NFY. A 

good indication that a gene is directly regulated by a factor is that it is both 

downregulated upon disruption of the factor and is near a corresponding peak, 

whereas a gene downregulated upon disruption of the factor but lacking a 
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corresponding peak may be indirectly regulated. Alternatively, as with the RNA-

seq data, the ChIP-seq data was conducted in whole embryos, which may have 

diluted some peaks below the fold-enrichment cutoff. Although this effect would 

not be as pronounced as in the RNA-seq data since the embryos are far less 

differentiated at 3.5 hpf, there is bound to be some variability in precise stage of 

development among the embryos collected and this could account for the 

apparent absence of some peaks near a directly regulated gene. 

These findings are significant in that they demonstrate a direct role for the 

TALE factors and NFY in driving expression of transcription- and development-

related genes early in embryogenesis. This research identifies many genes 

which are near TALE and NFY binding sites and differentially expressed in 

response to disruption of the TALE factors and NFY. In support of the well-

characterized functions of the TALE factors and NFY in driving gene expression, 

genes downregulated by PBCAB and near TALE peaks or downregulated by 

Nfya-DN and near Nfya peaks regulate genes involved in transcription regulation 

and development. Independently, the former also regulate homeobox genes and 

the latter cilia-related genes. The role of NFY in regulation of cilia-related genes 

is a new finding that warrants further study. Finally, genes downregulated and 

bound by both the TALE factors and NFY are involved predominantly in 

transcription regulation and development, consistent with the hypothesis that 

these factors cooperate to activate genes involved with these processes at ZGA. 
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The TALE factors and NFY bind near transcription and development genes 

early in development 

 

In addition to their relationship with the differentially expressed genes, the 

ChIP-seq data reveals a great deal of other insight into the behavior of the TALE 

factors and NFY at 3.5 hpf. One particularly interesting observation is that nearly 

all (93.8%) of the Pbx4 peaks overlap a Prep1 peak while only 36.8% of Prep1 

peaks overlap a Pbx4 peak (Table 3.7; Figure 3.11 D). Several possibilities could 

account for this observation. One potential explanation is that the Prep1 

antiserum is more sensitive than the Pbx4 antiserum, resulting in more Prep1 

peaks meeting the 10-fold enrichment cutoff. Alternatively, it is possible that 

Prep1 binds more regions of the genome at 3.5 hpf than Pbx4. Pbx4 may bind 

these regions later in development, or it may never bind at these regions. 

Collecting Pbx4 ChIP-seq data at 12 hpf could help shed light on the nature of 

the TALE overlap. 

 

TALE and NFY co-bind a subset of genomic loci 

 

Similar to the Pbx4/Prep1 binding observation, there are fewer Nfya peaks 

at 3.5 hpf than TALE peaks. Once again, this could be due to a less sensitive 

antiserum in the case of Nfya, or it could be because at 3.5 hpf Nfya binds fewer 

genomic loci than the TALE factors. The overlap of TALE/Nfya peaks is not huge, 
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consisting of just 22% of the total Nfya peaks and 16.7% of the total TALE peaks 

(Table 3.7; Figure 3.11 J). It is worth noting that about 30% of DECA sites in the 

zebrafish genome overlap with a CCAAT box (Ladam et al., 2018). This is not too 

different from the totals observed in the ChIP-seq data, especially considering 

that the observation that 30% of DECA sites are near a CCAAT box came from 

Prep1 ChIP-seq data which contained many more peaks than either the Pbx4 or 

Nfya ChIP-seq data. However, if the discrepancy holds true it suggests that even 

at 3.5 hpf the TALE factors and NFY could have independent functions. Further 

research into the non-overlapping TALE and NFY regions could reveal deeper 

insights into other mechanisms for the TALE factors and NFY during ZGA. 

Although the TALE factors and NFY could have independent functions at 

3.5 hpf based on the exclusive genomic regions they bind, the functions of these 

genes appear to fall within the same ontologies of transcription and development. 

For Pbx4 alone and overlapping TALE peaks (Figure 3.11 B, E), this is not 

terribly surprising on account of the large percentage of Pbx4 peaks that overlap 

with Prep1 peaks. It is worth noting that the homeobox GO terms disappear, 

suggesting that either the TALE factors bind these regions later in development 

or regulation of these genes happens from more distal enhancers. A similar 

pattern holds true for Nfya, which binds near genes involved with transcription 

and development but lacks any cilia- or homeobox-related functions, perhaps for 

the same reasons (Figure 3.11 H). Based on these GO terms, it is not surprising 

that the genes near overlapping TALE and NFY peaks are involved in 
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transcription and development (Figure 3.11 K). This, along with the RNA-seq 

data (Figure 3.12 D, E), strengthens the notion that the TALE factors and NFY 

cooperate to drive genes in these functions at the ZGA. 

 

TALE and NFY bind DECA/CCAAT sites at 3.5 hpf 

 

Not surprisingly, sequence motif analysis with the MEME tool revealed 

that the top sequence motif at 3.5 hpf for both Pbx4 alone, overlapping 

Pbx4/Prep1 sites, and sites bound by TALE but not NFY was the DECA motif 

(Figure 3.11 C, F, M). This agrees with Prep1 only data at 3.5 hpf, where the 

DECA site was also one of the top sequence motifs (Ladam et al., 2018). In 

addition, the CCAAT box was the top sequence motif at 3.5 hpf for sites bound 

by Nfya and sites bound by Nfya but not the TALE factors (Figure 3.11 I, N). 

Strikingly, MEME detected a well-defined sequence motif at overlapping 

TALE/Nfya sites consisting of a DECA site and CCAAT box separated by nine 

base pairs (Figure 3.11 L). The nine base pairs between the DECA site and 

CCAAT box do not appear to have any sort of consensus sequence identity, but 

the spacing agrees with the 3.5 hpf Prep1 data in which we originally identified 

the association of the CCAAT box with the DECA motif. 

In our previous publication, Prep1 ChIP-seq data at 3.5 hpf and 12 hpf 

shows that Prep1 binds many new sites between 3.5 hpf and 12 hpf. 

Furthermore, many of the Prep1 sites bound at 3.5 hpf are at the DECA motif, 
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and Prep1 binds very few new DECA sites between 3.5 hpf and 12 hpf (Ladam et 

al., 2018). Instead, many of these sites are in the more classical composition of a 

HEXA site near a composite Pbx/tissue-specific transcription factor site, such as 

Hox (Figure 1.3). While we cannot yet be sure that Pbx will mirror such a pattern, 

the Prep1 ChIP-seq data suggests it may. The hoxb1a genomic locus, for 

example, is a more classical arrangement of Pbx4 and Prep1 binding sites. Here, 

Pbx4 and Prep1 bind very early in development, detected as early as 2 hpf 

(Figure 1.3). Transcription at this locus, however, does not begin until Hoxb1b 

binds around 6 hpf (Choe et al., 2014). Thus, Pbx4 may bind many of its sites at 

these more classical enhancer regions just like Prep1. 

In addition to the expected sequences, MEME and DREME consistently 

identify GC boxes near both TALE and NFYA peaks at 3.5 hpf (Figure A.1). This 

observation is not new, as previous research has noted a strong positional bias 

of GC boxes relative to CCAAT boxes (Dolfini et al., 2009). Further research into 

this relationship will be challenging as myriad factors of the Sp and Klf families 

bind GC boxes. One potential way to identify protein interactions here would be 

to use a mass spectroscopy technique such as MudPIT. Here, one could use 

immunoprecipitate Prep1, Pbx4, or Nfya, which would bring any interacting 

proteins with them. One could then use mass spectroscopy to identify the 

proteins in the sample and perhaps elucidate which GC box binding factors are 

present in the complex. In addition, this technique would identify other interacting 

proteins, lending insight into the composition of these complexes. 
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Figure A.1: GC boxes appears near DECA and CCAAT motifs. (A-B) MEME identifies the GC 
box motif near DECA sites co-bound by Pbx4/Prep1 (A) and near DECA/CCAAT motifs bound by 
Pbx4/Prep1/Nfya (B). (C-D) DREME identifies the GC box near CCAAT boxes bound by Nfya (C) 
and DECA motifs bound by Pbx4 (D). 

 

TALE and NFY bind near transcription start sites 

 

Co-bound TALE/NFY regions are generally close to transcription start 

sites, with about 55% occurring within 5 kB of one and more than 70% occurring 

within 30 kB of one (Figure 3.10 C). These number are higher than those for any 

of the individual factors, but of the individual factors Nfya alone is closest. This 

agrees with previous research, which has identified many CCAAT boxes close to 

promoters (Dolfini et al., 2009). Despite their original description, new insights 
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into CCAAT boxes are revealing that they exist beyond promoter regions and in 

enhancers (Oldfield et al., 2014). This appears to be the case for co-bound 

TALE/NFY regions based on chromatin marks. At 4.5 hpf, co-bound TALE/NFY 

regions are enriched for H3K27ac, which marks active enhancers (Figure 3.13 

A). This remains consistent through 9 hpf (Figure 3.13 B). H3K4me1 levels, 

which mark active enhancers, are low at 4.5 hpf but increase substantially by 9 

hpf (Figure 3.13 C, D). H3K4me1 levels decline back to baseline levels at 24 hpf 

(data not shown). This is consistent with a “window of opportunity” associated 

with H3K4me1 in which an enhancer initially opens for binding before stabilizing. 

Finally, H3K4me3 levels are low at 4.5 hpf but very high by 9 hpf (Figure 3.13 E, 

F). H3K4me3 marks active transcription, suggesting that by 9 hpf these regions 

are transcriptionally active. The presence of these chromatin marks suggests that 

they are enhancers and furthermore make sense in the context of chromatin 

modifying enzymes associated with each factor. Pbx4 recruits CBP (Choe et al., 

2009), which deposits H3K27ac. NFY recruits the MLL complex, which deposits 

H3K4me3. NFY also recruits KDM1/coREST, which demethylates H3K4me2 into 

H3K4me1 (Fossati et al., 2011; Qureshi et al., 2010). This also provides an 

explanation for why these marks are higher at co-bound TALE/NFY regions than 

those bound by either TALE or NFY alone. 

These observations are significant in several ways. It expands previous 

research to a genome-wide scale, demonstrating that at 3.5 hpf Pbx4 binds 

together with Prep1 at enhancers near genes involved in transcription regulation 
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and embryonic development (Figure 3.11 B, E). As transcription and 

development genes are among the earliest genes expressed following ZGA, this 

data implies that the TALE factors play a role in activating such genes at the 

ZGA. Further, this data shows that NFY, which is generally accepted to bind 

promoter regions associated with housekeeping functions, also binds enhancer 

regions associated with transcription regulation and early development and plays 

a role in activating these genes at ZGA (Figure 3.13 H). Finally, this data reveals 

a DNA motif containing a DECA motif adjacent to a CCAAT box (Figure 3.13 L), 

showing that at co-regulated genes the TALE factors and NFY bind together. 

 

Enhancers bound by the TALE factors and NFY drive transcription 

 

The ChIP-seq and RNA-seq data both support the notion that the TALE 

factors and NFY cooperate to drive transcription from co-bound enhancers. To 

test this theory, I made stable transgenic zebrafish lines in which TALE/NFY co-

bound enhancers would drive the expression of GFP. Although most of these 

putative enhancers were indeed able to drive GFP expression (Figure 3.14), not 

all of them could. This is likely due in part to the selection process for these DNA 

elements. The putative enhancer selection happened prior to the collection of 

Pbx4 or Nfya ChIP-seq data, relying instead on Prep1 ChIP-seq binding profiles 

at 3.5 hpf, composition of binding sites, and the expression pattern of the nearest 

gene. Selected putative enhancers contained strong Prep1 peaks, a DECA motif, 
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a CCAAT box, and an anterior expression pattern for the nearest gene. 

Furthermore, they were all roughly 500 bp in length and centered on the DECA 

motif with no regard for other potential binding sites nearby. Of the three DNA 

elements that were not able to drive GFP expression, two (her6 and prdm14) 

lacked any Nfya peak and displayed only weak Pbx4 peaks (Figure 3.15 B, C). 

The inability of these DNA elements to drive gene expression seems to be 

because they lacked all three factors (Prep1, Pbx4, and Nfya) that appear to be 

necessary to activate transcription. In the case of the third DNA element, pax5, 

all three factors appeared to be present (Figure 3.15 A); however, this element 

lacked the ability to drive GFP expression. A potential explanation for this is that 

the element lacked other essential sequence information required to assemble a 

functional transcription complex. As the element was cut off at 500 bp, it is 

possible that the DNA recognition motif of another essential transcription factor 

normally in the endogenous enhancer was cut out of the DNA element tested, 

resulting in an incomplete, and therefore non-functional, transcription complex. 

This fits with our proposed mechanism of cooperative TALE/NFY action, in which 

the TALE and NFY factors use PTF activity to access their binding sites in 

compact chromatin and recruit chromatin modifying enzymes to form a more 

permissive chromatin environment and allowing other transcription factors to 

access their binding sites and begin to build transcription complexes (Figure 4.1). 

It’s worth mentioning once again here that NFY has been implicated as one of 

the essential factors in ZGA in mice (Lu et al., 2016). 
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Enhancer activity correlates with ChIP peak strength 

 

All five of the enhancer elements able to drive GFP expression (Figure 

3.14 B, D, F, H, J) displayed robust Pbx4 and Prep1 peaks (Figure 3.14 A, C, E, 

G, I). While they all also showed Nfya peaks, several were small. In particular, 

the TALE and Nfya ChIP signal for fgf8a and yap1 were weakest (Figure 3.14 G, 

I), but both factors could still drive GFP expression (Figure 3.14 H, J). It could be 

that these peaks grow larger at later timepoints; the ChIP tracks are from the 3.5 

hpf ChIP-seq data, whereas the photos are taken at 24 hpf. As previously 

mentioned, Prep1 ChIP-seq data shows that many new Prep1 peaks arise 

between 3.5 hpf and 12 hpf (Ladam et al., 2018). Although few of these are 

DECA motifs, it is possible that the peaks at fgf8a and yap1 grow stronger as 

development progresses. 

The tissue-specific nature of the expression patterns among the five 

enhancers capable of driving GFP expression lends credence to the hypothesis 

that the TALE factors and NFY, which are ubiquitously expressed, are playing a 

more general role. If the TALE factors and NFY were driving expression 

themselves with no other input, the expectation would be that any enhancers 

capable of driving GFP expression would express GFP ubiquitously since the 

TALE factors and NFY would be present throughout the organism at this stage of 

development to bind the enhancers and activate transcription. Since all five 

enhancers demonstrate tissue-restricted expression, it is more likely that they 
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play a more generic role, opening the chromatin and exposing other tissue-

specific transcription factor binding sites (Figure 4.1). In tissues where these 

transcription factors are expressed, the enhancer can drive GFP expression. This 

data supports our proposed role for the TALE factors and NFY at ZGA, where the 

factors utilize PTF activity to identify their binding sites in the zygotic genome and 

begin establishing permissive chromatin profiles around essential genes to be 

expressed in the first wave of zygotic gene expression, particularly genes 

involved in transcription regulation and embryonic development. 

 

Enhancers are inactive in human cells 

 

Interestingly, none of the five enhancers capable of driving GFP 

expression in zebrafish were capable of driving gene expression in HEK293T 

cells (unpublished data). This suggests that the TALE factors and NFY 

themselves are not solely responsible for the activity of the enhancers that they 

bind. Rather, it seems likely that they recruit other factors to build functional 

transcription complexes. These other factors are most probably chromatin 

modifying enzymes which help establish a permissive chromatin environment for 

transcription and expose binding sites for other transcription factors (Figure 4.1). 

In addition, the TALE factors and NFY may themselves aid in the recruitment of 

other factors essential for transcription activation. Being zebrafish enhancers, 

these DNA elements can function normally in the context of the zebrafish 
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proteome. In human cells such as HEK293T cells, however, differences in 

binding affinity between human and fish proteins prevent the recruitment and 

binding of the proper factors. 

 

Transgenic GFP is maternally deposited 

 

Interestingly, all five of the enhancers able to drive gene expression 

appeared to exhibit maternal deposition, as many eggs are GFP-positive prior to 

ZGA (Figure 3.17). These eggs invariably grow into GFP-positive embryos, 

whereas GFP-negative eggs invariably grow into GFP-negative embryos (Figure 

3.16 B). The mechanism behind this unusual observation is unclear; it could be 

that the enhancers are active in the maternal germline, leading to deposition of 

GFP. Alternatively, the mRNAs transcribed by the enhancers could be lacking an 

essential component for maternal transcript repression in oocytes. For example, 

the Y-box protein Ybx1 binds maternal mRNAs and represses their translation 

(Sun et al., 2018). It is possible that the transcripts driven by the enhancer 

elements lack a binding site for Ybx1, resulting in their translation in oocytes and 

thus deposition of maternal GFP protein. While I was able to identify multiple 

male founders for each of the wild-type pTransgenesis lines, I was not able to 

identify any female founders to determine whether this effect persisted in a 

different transgenesis system and could be attributed to the enhancers or 
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another component of the transgenic construct. Further screening with transgenic 

F1 females could provide insight into this intriguing finding. 

These findings are significant in that they reveal that enhancers containing 

DECA motifs and CCAAT boxes are capable of driving transcription in vivo. Prior 

to this work, the DECA motif had no assigned biological function. The fact that 

enhancer elements containing a DECA motif can drive transcription suggests a 

role for the motif in driving gene expression. In addition, the majority of research 

describes CCAAT box activity at promoter regions (reviewed in (Dolfini et al., 

2012)). The presence of CCAAT boxes in these active enhancer regions 

demonstrates that NFY also has a role in driving transcription in regions besides 

promoters. Furthermore, expression of the genes near these enhancers is 

generally early in development and in the anterior embryo. Although the 

observed patterns do not always mimic that of the nearest gene, this may be due 

to extenuating circumstances and does not rule out a joint role for the TALE 

factors and NFY in driving the expression of such early anterior genes. Taken 

together, this work outlines a new role for the TALE factors and NFY in activating 

transcription at early anterior genes. 

 

The TALE factors and NFY are required for enhancer activity 

 

With the knowledge that the DECA/CCAAT enhancers were sufficient to 

drive gene expression, I set out to determine whether they were also necessary 
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for it. Indeed, both the dominant negatives and the mutation of the DECA site 

and CCAAT box led to a loss of activity for the tcf3a and tle3a enhancers (Figure 

3.18 E, F; Figure 3.19 C, G). This suggests an essential role for the TALE factors 

and NFY in the ability of these enhancers to drive transcription. In the case of the 

dominant negatives, GFP signal was not completely lost (Figure 3.18, B-F). 

There are many potential reasons for this, many of which also applied to the 

phenotype characterization and RNA-seq. Chief among these is that the TALE 

factors and NFY are both maternally deposited, giving endogenous Pbx4 and 

Nfya something of a head start in forming functional TALE and NFY complexes 

during the lag period where the dominant negatives are being translated. As GFP 

is a very stable protein, it is likely that most of the detected GFP signal originates 

with these functional complexes earlier in development and lingers until 18 hpf, 

when I scored the embryos. Another potential reason for the inconsistent results, 

as with the phenotype characterization (Table 3.1; Table 3.2), is that I scored 

these embryos individually and injections are not always completely consistent. It 

is conceivable that some embryos may receive less injected material than others. 

The needles used for microinjection have very small bores and frequently clog, 

dispensing less material per injection as a result. The sharpness of the needles 

also varies, affecting how easily they pierce the cell membrane. Duller needles 

cause tears, which can allow material to leak out. The RT-qPCR pooling helps to 

correct for these individual discrepancies, but this assay still detects GFP 

transcripts which likely originate from one of the aforementioned reasons. 



148 
 

pTransgenesis and E1b transgenic lines show similar expression patterns 

 

In the pTransgenesis system, the wild-type enhancers for tcf3a and tle3a 

were able to drive transcription of RFP in similar patterns to what was observed 

in the E1b-GFP lines (Figure 3.19 A, E). This, along with the multiple E1b-GFP 

lines for tcf3a and tle3a (Table 3.9), suggests that the enhancers’ activity is 

specific and not due to extenuating factors such as genome integration site. The 

mutant DECA site was previously shown to not bind the TALE factors (Vlachakis 

et al., 2000), whereas NFY has only ever been characterized as binding the 

sequence CCAAT. Nonetheless, one could perform ChIP-qPCR on the 

transgenic mutant embryos to confirm a loss of both TALE and NFY binding in 

the mutant enhancers. The loss of RFP in these mutant embryos (Figure 3.19 C, 

G) suggests that the TALE factors and NFY are essential to the enhancers’ 

ability to drive transcription and are indispensable for the activity of many genes. 

 

Not all transgenic enhancer genes are present in ChIP-seq and RNA-seq data 

 

Comparing the enhancers capable of driving GFP expression to the ChIP-

seq, I find that tcf3a, tle3a (gro2), dachb, and fgf8a all appear as genes near 

TALE and NFY peaks. yap1 is absent from this list; however, it could be due to 

the weaker ChIP peaks observed for that enhancer failing to meet either a fold 

enrichment or statistical cutoff for one of the factors. As previously indicated, the 
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peaks could grow stronger as development progresses, explaining the ability of 

the yap1 enhancer to drive GFP expression. In the RNA-seq data, only dachb, 

with a 0.59-fold change, is downregulated enough to meet the cutoff in the 

PBCAB data set. As for the other genes near the enhancers in this data set, tcf3a 

shows a 1.49-fold change, tle3a shows a 1.07-fold change, fgf8a shows a 1.16-

fold change, and yap1 shows a 1.24-fold change. In the Nfya-DN data set, tcf3a 

shows a 1.09-fold change, tle3a shows a 0.88-fold change, dachb shows a 0.87-

fold change, fgf8a shows a 0.99-fold change, and yap1 shows a 1.01-fold 

change. This presents a discrepancy with the transgenic data (Figure 3.14), 

which shows that these enhancers are dependent on TALE and NFY function, 

yet all but dachb with PBCAB fail to meet the cutoffs. There are some possible 

explanations for this. As explained earlier, there is a time discrepancy between 

the two sets of experiments, with the RNA-seq analysis happening at 12 hpf and 

the observation for the dominant negative-injected E1b-GFP and pTransgenesis 

embryos happening at 18 hpf and 32 hpf, respectively. Although all of the genes 

associated with these enhancers are expressed very early, higher expression 

may not begin for them until sometime between 12 hpf and 18 hpf. At this time, 

the loss of the reporter gene may be more noticeable compared to a control. 

Alternatively, it is possible that the endogenous enhancers contain elements 

which allow for some sort of redundancy in activation which the cloned 

enhancers lack. As the enhancer selection did not regard any other potential 

transcription factor binding sites, it is possible that a key binding site for another 
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factor is missing. This would make the cloned enhancers less robust and explain 

their loss of activity despite the apparent indifference of the endogenous 

enhancers. In this same vein, it is possible that the dominant negatives disrupt 

the larger gene network. For example, if the dominant negatives activate a 

repressor that represses a second repressor that downregulates tcf3a expression 

then this could balance out the loss of activator activity from the TALE factors 

and NFY, explaining the apparent lack of change in tcf3a expression despite the 

dominant negatives. Finally, it is possible that the cloned enhancers do not 

directly regulate the genes nearest to them for which they are named. Further 

study of additional transcription factor binding sites in these enhancers will be 

necessary to elucidate the exact reasoning for this disagreement. 

This data is significant in that it demonstrates that the TALE factors and 

NFY are essential for the activity of enhancers they occupy. Although each factor 

individually is essential at many genes, this data is the first to demonstrate that 

they are essential at co-bound enhancers. Given that the TALE factors and NFY 

are broadly expressed early in development but many target genes are spatially 

restricted, this data suggests a generic role such as opening chromatin to expose 

binding sites of tissue-specific transcription factors (Figure 4.1). The fact that 

individual dominant negatives can disrupt enhancer activity suggests that both 

factors are required for this activity. Furthermore, it supports a hypothesis in 

which the TALE factors and NFY cooperate to open specific genomic loci at ZGA 

to activate expression of transcription- and development-related genes.  
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Future Directions 

 

The results from this work establish a role for the TALE factors and NFY 

during MZT. They also set the stage for many additional avenues of work. 

 

Does NFY play a role in anterior central nervous system development? 

 

 Although the phenotypes caused by PBCAB and Nfya-DN were very 

similar, they were not identical. Specifically, while the TALE factors affected 

hindbrain segmentation and patterning, the regions examined posterior to the 

midbrain-hindbrain boundary appeared normal in the embryos injected with Nfya-

DN. Previous research implicates NFY in central nervous system (CNS) 

development, but this data suggests that it does not have a role in CNS 

development posterior to the midbrain-hindbrain boundary. The anterior nature of 

the abnormalities in the Nfya-DN-injected animals supports the notion that CNS 

defects may exist and that they may be anterior to the midbrain-hindbrain 

boundary. Further research using more anterior markers such as pax6a could 

help further establish a role for NFY in CNS development. Alternatively, specific 

cell types in which the TALE factors and NFY may cooperate, such as neural 

crest cells, could be isolated and studied in single-cell high-throughput assays 

such as RNA-seq or ChIP-seq. To do this, one could generate transgenic 

zebrafish containing GFP driven by a promoter specific to neural crest cells, then 
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dissociate the embryos and isolate the neural crest cells using FACS. The latter 

experiment also alleviates a potential complication with the RNA-seq and ChIP-

seq experiments performed in this project, in which specific signal could have 

been diluted due to the use of whole embryos. 

 

What is the role of NFY in cilia-related genes? 

 

The GO terms of genes downregulated by Nfya-DN revealed a strong 

enrichment for cilia-related genes. Currently, no role for NFY in cilia-related gene 

expression has been reported. Analysis of Nfya ChIP peaks near the cilia-related 

genes downregulated by Nfya-DN could reveal whether the regulation of these 

genes by NFY occurs at enhancers or promoters, and whether there is a 

preference for motile or sensory cilia-related genes. The latter could also inform 

experiments regarding the specific abnormalities in these embryos and perhaps 

tie some of the observed phenotypes in Nfya-DN-injected embryos to cilia-related 

deficiencies. For example, leftward fluid flow in the Kupfer’s vesicle provides a 

developmental cue in left-right symmetry establishment during development. This 

fluid flow is generated by motile cilia, disruption of which could explain the left-

right asymmetry observed in Nfya-DN-injected fish. Examination of this potential 

link between the Nfya-DN phenotype and cilia could establish yet another role for 

NFY in embryonic development. 
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Do Pbx4 and Nfya bind additional sites by 12 hpf? 

 

By 12 hpf, Prep1 binds many additional sites that it had not bound at 3.5 

hpf. These sites predominantly contained HEXA motifs whereas the sites bound 

at 3.5 hpf predominantly contained DECA motifs, suggesting unique roles for 

each motif at each stage of development (Ladam et al., 2018). The future 

directions of this work will almost certainly involve the collection of NFYA ChIP-

seq data at 12 hpf. Comparing these results at 12 hpf to the results at 3.5 hpf will 

allow for better understanding of the distinct roles for the TALE factors and NFY 

at these different developmental stages. 

 

How do chromatin marks at TALE/NFY enhancers change? 

 

 The TALE factors and NFY appear to have a broad role at the enhancers 

they bind, such as changing the surrounding chromatin profile to be more 

permissive for transcription factor binding and transcription. Further observation 

of the changes that take place in response to TALE and NFY binding could help 

better understand whether this is indeed the role of these factors, establish PTF 

activity, and identify which chromatin modifying enzymes they are recruiting to 

these enhancers. This would require ChIP-seq experiments on newly fertilized 

embryos for a variety of chromatin marks such as H3K27me3 and H3K27ac. In 
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addition, ChIP-seq experiments at the same time for Prep1, Pbx4, and Nfya 

could provide insight into just how early these factors bind. 

 

Do the TALE factors and NFY stabilize one another’s binding? 

 

 Although the TALE factors and NFY both appear to be required for 

enhancer activity, it is not clear whether the factors possess equal PTF 

capabilities or whether one factor may stabilize the binding of another. To 

determine whether one factor stabilizes the binding of the other, it would be 

possible to use ChIP-qPCR at regions where the factors bind near one another. 

In this experiment, embryos could be injected with one of the dominant 

negatives, followed by ChIP for the other and qPCR at the co-bound loci. In 

theory, if one factor is essential for stabilizing the other, then that factor will not 

be present at the co-bound locus. Alternatively, it would be possible to design an 

in vitro pull-down experiment, wherein biotinylated oligos containing various 

mutated versions of the DECA motif and CCAAT box could be incubated in cell 

lysate then pulled out of solution with binding factors attached. The factors can 

be eluted from the oligo, followed by a western blot to assess binding. 
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What other factors associate at TALE/NFY enhancers? 

 

 Although the TALE factors and NFY appear to be essential to the ability of 

these enhancers to drive transcription, there are likely many other factors that 

play roles as well. For example, GC boxes tightly associate with CCAAT boxes 

and DECA sites, suggesting roles for one of the many factors that bind this motif. 

Using a technique such as MudPIT, one could immunoprecipitate either the 

TALE factors or NFY and identify other factors within the complex. This would 

help elucidate any other essential factors as well as tissue-specific transcription 

factors that may bind at the opening enhancers and could also be used in 

conjunction with an in vitro binding experiment as described above, perhaps 

using a biotinylated version of the tcf3a enhancer as the bait oligo (Figure A.2). 

 

Figure A.2: Using a bait oligo to assess TALE and NFY complex assembly. Schematic of a 
proposed experiment using a bait oligo to assess properties of TALE and NFY complex 
assembly. (A-B) Biotinylated bait oligos containing wild-type (A) or mutated (B) DECA/CCAAT 
motifs are incubated in 3.5 hpf zebrafish cell lysate then pulled out of solution using magnetic 
streptavidin-coated beads. Proteins bound to the bait oligo are then eluted for downstream 
applications, such as western blots to assess the presence of specific factors or MudPIT to 
identify other factors. 
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Concluding Remarks 

 

 This work provides evidence that the TALE factors and NFY work together 

at enhancers to drive the transcription of genes involved in transcription 

regulation and embryonic development at the ZGA. Dominant negative versions 

of each factor lead to similar phenotypes in zebrafish embryos and reveal 

common as well as independent sets of genes that each factor regulates. ChIP-

seq data helps narrow these differentially expressed genes to those most likely to 

be regulated directly by each factor and shows how the chromatin profile 

surrounding these sites resembles enhancers as they become active. Enhancers 

bound by the TALE factors and NFY can drive transcription, and loss of either 

factor results in loss of activator activity. Taken together, these results suggest a 

pioneer role for the TALE factors and NFY at ZGA, where the factors begin 

opening the chromatin profile at their binding sites to initiate transcription of key 

transcription and development genes. 
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APPENDIX B: COMPARISON OF DIFFERENTIALLY 

EXPRESSED GENES IN ZEBRAFISH EMBRYOS 

TREATED WITH DOMINANT NEGATIVE PBX4 OR TALE 

MORPHOLINOS 
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Background 

 

 Antisense Morpholino oligos (MOs) are a standard method for disrupting 

gene expression in reverse genetics. Rather than the standard nucleic acid 

backbone of ribose sugars and phosphates, MO backbones consist of 

methylenemorpholine rings linked through phosphorodiamidate groups. The 

methylenemorpholine ring provides an attachment point for DNA bases, which 

can form standard Watson-Crick base pairs with RNA or single-stranded DNA. 

By designing a MO with the complementary sequence to a key region in a target 

mRNA, the MO can hybridize at the target site of the target mRNA and block the 

interaction of that region with key factors. In this way, MOs can block certain 

steps in gene expression, such as splicing or translation, and prevent the 

creation of the target protein. Blocking the expression of the target protein, or 

knocking it down, often results in abnormal phenotypes, lending insight into the 

function of the target gene. Thus, morphant phenotypes have become a staple in 

reverse genetic studies (reviewed in (Heasman, 2002)). 

 Due to their simple premise, researchers use MOs to disrupt gene 

expression in a variety of organisms. MOs have even gained approval from the 

US Food and Drug Administration in the treatment of Duchenne muscular 

dystrophy as the drug eteplirsen. In the laboratory, MOs are commonly used to 

disrupt gene function in zebrafish. However, as advancements in in gene editing 

technology, such as CRISPR/Cas9, facilitate the generation of germline mutants, 
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the reliability of MOs in gene disruption has come into question. One study 

compared the morphant phenotype to the germline mutant phenotype of 20 

genes in zebrafish. Of the 20 morphant phenotypes, only ten accurately 

recapitulated the germline mutant phenotype. The same group also showed that, 

of the germline mutants from the Sanger Zebrafish Mutation Project, only 20% 

aligned with corresponding morphant phenotypes (Kok et al., 2015). While the 

specific reasons for this incongruity remain a hot topic of debate, the fact remains 

that the accuracy of morphant phenotypes is no longer a sure thing. 

 Previously, our lab used a cocktail of MOs targeting pbx4, pbx2, and 

prep1.1 to disrupt TALE function in zebrafish embryos. We observed that the 

TALE MOs caused the embryos to have smaller heads, smaller eyes, and 

swollen pericardium/cardiac edema by 24 hpf (Ladam et al., 2018). This 

phenotype accurately mirrored that of existing pbx4 and prep1.1 germline 

mutants, indicating that the morphant phenotype was specific (Deflorian et al., 

2004; Pöpperl et al., 2000; Waskiewicz et al., 2002). Using the TALE MOs, we 

generated RNA-seq libraries from zebrafish embryos that had been injected with 

either TALE MOs or a control at 12 hpf. DAVID analysis of genes differentially 

expressed between the TALE MO and control conditions showed downregulation 

of genes involved with transcription, embryonic development, and homeobox 

genes. These results agreed with published literature regarding the function of 

the TALE factors (reviewed in (Ladam & Sagerström, 2014)). 
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 Aside from MOs and germline mutants, dominant negatives can disrupt 

TALE function. One such dominant negative is PBCAB, which is a truncated 

version of pbx4 lacking the C-terminal domain. PBCAB can still form 

heterodimers with Prep1; however, it lacks the ability to cross the nuclear 

membrane. When expressed in saturating amounts, PBCAB can outcompete 

endogenous Pbx4 for Prep1 binding and sequester it in the cytoplasm, resulting 

in a loss of TALE function (Choe et al., 2002). Zebrafish embryos injected with 

PBCAB display the same phenotype as embryos injected with TALE MOs, 

suggesting that their effect is consistent with previously published data regarding 

TALE disruption (Figure 3.2 C; Figure 3.3 E, F; Figure 3.4 E, F; Table 3.1; Table 

3.2; Table 3.3). In addition, our lab generated RNA-seq libraries from zebrafish 

embryos injected with either PBCAB or GFP (control) mRNA at 12 hpf. Analysis 

of the downregulated genes using DAVID revealed disruption of genes involved 

with transcription regulation, embryonic development, and homeobox genes 

(Figure 3.7 A, B). However, comparison of the specific downregulated genes 

reveals limited overlap of the genes. Here, I present a comparison of genes 

downregulated by PBCAB to genes downregulated by TALE MOs. 

 

Methods 

 

The methodology used in this Appendix is presented in Chapter II: Materials & 

Methods. 
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Results 

 

 To assess which genes’ expression PBCAB and the TALE MOs disrupted, 

I used DESeq2 in Dolphin (Anders & Huber, 2010). For further analysis, I only 

considered genes with a fold-change of 1.5 or greater and an adjusted p-value of 

0.01 or less. For PBCAB, this yielded 646 downregulated and 854 upregulated 

genes. For the TALE MOs, it yielded 526 downregulated genes and 145 

upregulated genes (Figure B.1 A). Comparing the genes downregulated by 

PBCAB to those downregulated by TALE MOs, I found 149 genes downregulated 

in both conditions (Figure B.1 B). GO term analysis using the DAVID tool 

revealed that these 149 genes downregulated by both PBCAB and TALE MOs 

functioned primarily in roles related to transcription, embryonic development, and 

homeobox genes (Figure B.1 C). Comparing the genes upregulated by PBCAB 

to the genes upregulated by TALE MOs, I identified 51 genes common to the two 

conditions (Figure B.1 D). The GO terms of these 51 genes were also enriched 

for processes related to transcription, development, and homeobox genes 

(Figure B.1 E). 



162 
 

 

Figure B.1: PBCAB and TALE MOs alter the expression of distinct sets of genes. (A-B) 
Venn diagrams showing genes downregulated (A) or upregulated (B) in embryos injected with 
PBCAB or TALE MOs. (C-D) Top GO terms returned by DAVID for genes downregulated (C) or 
upregulated (D) by both PBCAB and TALE MOs. Blue bars correspond to transcription-related, 
green to embryogenesis-related, orange to homeodomain-related, and gray bars to other 
ontologies. 
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Discussion 

 

 Dominant negatives and antisense Morpholino oligos (MOs) are different 

methodologies to disrupt gene expression. Here, I generated RNA-seq libraries 

from 12 hpf zebrafish embryos injected with PBCAB, a dominant negative Pbx4 

(Choe et al., 2002), or with GFP as a control. I performed differential expression 

analysis using DESeq2 to identify which genes’ expression changed between the 

PBCAB and GFP conditions (Anders & Huber, 2010), finding 646 downregulated 

and 854 upregulated genes in the PBCAB condition. Using previously published 

RNA-seq data from 12 hpf zebrafish embryos injected with either TALE MOs or a 

control, I performed the same differential expression analysis and identified 526 

downregulated and 145 upregulated genes (Figure B.1 A). Comparing the two 

lists, I found 149 common downregulated genes and 51 common upregulated 

genes (Figure B.1 B, D). DAVID revealed that both the 149 common 

downregulated and 51 common upregulated genes were enriched for GO terms 

involved with transcription, embryonic development, and homeobox genes 

(Figure B.1 C, E). 

The bulk of the literature describes activating activity for the TALE factors, 

which would suggest that downregulated genes are most likely to be due to direct 

effects (reviewed in (Ladam & Sagerström, 2014). Although PBCAB and the 

TALE MOs utilize different mechanisms to attenuate TALE function, the set of 

genes they disrupt should be relatively similar, as the majority should be 
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attributed to the loss of TALE function. However, I find only 149 genes with at 

least a 1.5-fold change (23.1% (149/646) of PBCAB, 28.3% (149/526 of TALE 

MO) in both conditions (Figure B.1 B). Outwardly, PBCAB and the TALE MOs 

result in very similar phenotypes, causing smaller heads, smaller eyes, and 

swollen pericardium/cardiac edema in zebrafish embryos by 24 hpf (Figure 3.2 C; 

(Ladam et al., 2018)). However, based on these results, it appears that PBCAB 

and the TALE MOs disrupt the expression of distinct sets of genes. 

Although most research implicates the TALE factors as transcriptional 

activators, there are several reports of the TALE factors possessing repressive 

activity as well. For example, Pbx4 can recruit histone deacetylases, which can 

remodel chromatin to be less permissive to transcription (Choe et al., 2009; 

Saleh et al., 2000). This repressive activity suggests that some of the genes 

upregulated by PBCAB or the TALE MOs may also be due to direct activity of the 

TALE factors. DESeq2 analysis revealed 854 genes upregulated by PBCAB and 

only 145 upregulated by the TALE MOs, which in and of itself is a very large 

discrepancy (Figure B.1 A). Of these genes, only 51 are upregulated by both 

PBCAB and TALE MOs (6% of total PBCAB and 35.2% of total TALE MO) 

(Figure B.1 D). Although many of these may be due to indirect effects, and 

therefore could be attributable to PBCAB or the TALE MOs themselves, the fact 

remains that overlap between the two methodologies is far smaller than 

expected. 
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Despite the relatively small overlap among differentially expressed genes, 

the GO terms enriched within those overlapping differentially expressed gene 

sets are generally consistent with the GO terms enriched within the entire 

PBCAB and TALE MO sets. This is not terribly surprising since both the PBCAB 

and TALE MO sets themselves affect the same classes of genes. Genes 

downregulated by PBCAB and the TALE MOs consist of genes involved with 

transcription regulation, embryonic development, and homeodomains (Figure B.1 

C), which are the same categories as the genes downregulated by PBCAB alone 

and the TALE MOs alone (Figure 3.7 A, B; (Ladam et al., 2018)). The distribution 

of the categories within each condition is slightly different, with genes 

downregulated by PBCAB generally more highly enriched for general 

transcription regulation and having a greater number of uncategorized terms 

(Figure 3.7 A, B). The genes downregulated by the TALE MOs alone are more 

enriched for homeobox genes (Ladam et al., 2018). The GO terms 

downregulated by both PBCAB and the TALE MOs appear closer to that of 

PBCAB alone, but retain no uncategorized terms, suggesting that the 

uncategorized terms are predominantly exclusive to the different methodologies. 

Although the categorical distribution for upregulated genes is more 

consistent between those upregulated by PBCAB and those upregulated by both 

PBCAB and TALE MOs, some of the categories are different. For example, the 

top result for genes upregulated by both factors is the p53 signaling pathway. 

Although related to transcription, p53 activation is cited as a potential off-target 
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effect of MOs, calling the specificity of these results into question (Gerety & 

Wilkinson, 2011). Furthermore, as previously mentioned, upregulated genes are 

more likely to be indirect effects based on the fact that the TALE factors are 

generally described as transcriptional activators (Ladam & Sagerström, 2014). 

In conclusion, PBCAB and the TALE MOs cause very similar phenotypes 

in zebrafish embryos by 24 hpf. These phenotypes closely mirror those of the 

pbx4 germline mutants (Pöpperl et al., 2000), suggesting that they are specific 

and accurate. However, RNA-seq analysis at 12 hpf of the genes differentially 

expressed in zebrafish injected with PBCAB or the TALE MOs reveals limited set 

of differentially expressed genes. While it appears safe to assume that both 

PBCAB and TALE MOs accurately display phenotypes associated with disruption 

of each factor, the difference in GO terms between each leaves some room for 

uncertainty. 
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