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ABSTRACT
The accurate prediction of forest above-ground biomass is nowadays key to implementing
climate change mitigation policies, such as reducing emissions from deforestation and forest
degradation. In this context, the coefficient of determination (R2) is widely used as a means of
evaluating the proportion of variance in the dependent variable explained by a model.
However, the validity of R2 for comparing observed versus predicted values has been
challenged in the presence of bias, for instance in remote sensing predictions of forest
biomass. We tested suitable alternatives, e.g. the index of agreement (d) and the maximal
information coefficient (MIC). Our results show that d renders systematically higher values
than R2, and may easily lead to regarding as reliable models which included an unrealistic
amount of predictors. Results seemed better for MIC, although MIC favoured local clustering of
predictions, whether or not they corresponded to the observations. Moreover, R2 was more
sensitive to the use of cross-validation than d or MIC, and more robust against overfitted
models. Therefore, we discourage the use of statistical measures alternative to R2 for evaluat-
ing model predictions versus observed values, at least in the context of assessing the
reliability of modelled biomass predictions using remote sensing. For those who consider d
to be conceptually superior to R2, we suggest using its square d2, in order to be more
analogous to R2 and hence facilitate comparison across studies.
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Introduction

Obtaining accurate predictions of forest above-ground
biomass (AGB) is nowadays key to estimating total car-
bon stock and implementing climate change mitigation
policies, such as reducing emissions from deforestation
and forest degradation (REDD) (Agrawal, Nepstad, &
Chhatre, 2011; Eggleston, Buendia, Miwa, Ngara, &
Tanabe, 2006; UNFCCC, 2014). To facilitate REDD
implementation, tree allometry models are currently
being developed in order to avoid the need for destruc-
tive sampling (Basuki, van Laake, Skidmore, & Hussin,
2009; Chave et al., 2005, 2014; Cuny et al., 2015; Iais et al.,
2011; Krainovic, Almeida, & Sampaio, 2017; Marshall
et al., 2012; Sawadogo et al., 2010). Methods combining
field measurements and remote sensing technologies can
provide robust and cost-effective means for reliably pre-
dicting AGB from large areas of forests (Asner, 2011;
Clark & Kellner, 2012; Goetz & Dubayah, 2014). For this
reason, earth observation technologies using remote sen-
sors are also nowadays extensively used to obtain predic-
tions over large areas (Adnan et al., 2019; Asner &

Mascaro, 2014; Bottalico et al., 2017; Hansen et al.,
2013; Næsset, 2004; Tyukavina et al., 2017). Methods
developed forAGB estimationmade use of the predictive
power of spectral sensors (e.g. Franco-Lopez, Ek, &
Bauer, 2001), LIDAR (e.g. Coomes et al., 2017;
d’Oliveira, Reutebuch, McGaughey, & Andersen, 2012;
Domingo, Lamelas, Montealegre, García-Martín, & de la
Riva, 2018; García, Riaño, Chuvieco, & Danson, 2010;
Montealegre, Lamelas-Gracia, García-Martín, de la Riva-
Fernández, & Escribano-Bernal, 2017) or combinations
of both (e.g. Asner, 2009; Bright, Hicke, & Hudak, 2012;
Egberth et al., 2017; Estornell, Ruiz, Velázquez-Martí, &
Hermosilla, 2012; Hernando et al., 2019). Zolkos et al.,
(2013) compiled a comprehensive revision of studies
obtaining remote sensing predictions ofAGB by calibrat-
ing regional models with field plot information.

The correct evaluation of AGB models is key to
REDD, as errors may propagate when AGB estima-
tions are upscaled (Chave et al., 2004; Molto, Rossi, &
Blanc, 2013; Valbuena et al., 2016). However, there is
at the moment a critical lack of consensus on good
practices for predicting forest AGB, both in the

CONTACT Ruben Valbuena r.valbuena@bangor.ac.uk Bangor University, School of Natural Sciences, Thoday building, LL57 2UW Bangor (UK)

EUROPEAN JOURNAL OF REMOTE SENSING
2019, VOL. 52, NO. 1, 345–358
https://doi.org/10.1080/22797254.2019.1605624

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-0493-7581
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2019.1605624&domain=pdf&date_stamp=2019-05-23


determination of allometric biomass equations
(Sileshi, 2014; Temesgen, Affleck, Poudel, Gray, &
Sessions, 2015) and in the evaluation of AGB predic-
tions using remote sensing methods (Loew et al.,
2017; Valbuena et al., 2017a). The large variety of
modelling methods and approaches for evaluating
their accuracy complicates meta-analyses comparing
various approaches (Loew et al., 2017; Zolkos et al.,
2013). In a recent article (Valbuena et al., 2017a), we
focused on the evaluation of final AGB predictions
from remote sensing with measures of accuracy and
precision. We recommended the use of Piñeiro,
Perelman, Guerschman, and Paruelo (2008) hypoth-
esis test, considered the usability of Theil’s (1958)
partial inequality coefficients, and suggested means
for preventing overfitting to the sample (Valbuena
et al., 2017a). In this paper, we focus on the evalua-
tion of agreement between the AGB observed and the
AGB predicted by the model.

The agreement between the observed and pre-
dicted values is an important indicator in model
evaluation, and the best approach for its assessment
is a subject of current discussion (Duveiller,
Fasbender, & Meroni, 2016; Loew et al., 2017;
Simon & Tibshirani, 2011; Willmott, Robeson, &
Matsuura, 2012). The coefficient of determination
(R2) is widely used as the most suitable statistic for
describing the agreement of model predictions with
those observed empirically. R2 expresses the propor-
tion of variance in the dependent variable explained
by a model. However, the use of R2 in performance
evaluation for predictive methods has been criticized
for not being necessarily related to the accuracy of
predictions (e.g. Fox, 1981; Paruelo, Jobbágy, Sala,
Lauenroth, & Burke, 1998; Willmott, 1982).
Alternatives have been proposed, such as the index
of agreement (d), which can be interpreted as the
relative prediction error (Willmott, 1981; Willmott
& Wicks, 1980). Ever since, it has been popular in
a variety of fields such as hydrology (Legates &
McCabe, 1999; López-Moreno, Latron, & Lehmann,
2010), agriculture (Nendel et al., 2013), neurology
(Ganpule et al., 2017), meteorology (Aschonitis
et al., 2017; Morsy, El-Sayed, & Ouda, 2016), forest
ecology (Ibrom et al., 2007; Ward, Bell, Clark, & Ram,
2013), or climate change (Bring & Destouni, 2014;
Gaitan, Hsieh, & Cannon, 2014; Oyler, Ballantyne,
Jencso, Sweet, & Running, 2015). The use of
Willmott’s d in remote sensing literature has, how-
ever, been marginal (Almeida et al., 2016; García
et al., 2010; Grzegozewski, Johann, Uribe-Opazo,
Mercante, & Coutinho, 2016; Wachholz de Souza,
Mercante, Johann, Camargo Lamparelli, & Uribe-
Opazo, 2015; Yebra & Chuvieco, 2009). Since many
of these authors recommended the use of d above R2,
this research was devoted to study the convenience of

using d for reporting the agreement between remote
sensing AGB predictions and their observed values.
In addition to d, we postulated that using the recently
developed maximal information coefficient (MIC)
(Reshef et al., 2011) as a means for evaluating
observed versus predicted values may be advanta-
geous. MIC was conceived as a non-parametric alter-
native to correlation, in the context of evaluating
relationships between explanatory and response vari-
ables (Speed, 2011). Despite being very recent, it has
already been found useful in a wide variety of con-
texts, such as microbiology (Thomas, Bordron,
Eveillard, & Michel, 2017), medicine (Vallières et al.,
2017), big data analysis (Chen & Yang, 2016), and
also remote sensing (Görgens, Valbuena, &
Rodríguez, 2017). Although it has been suggested
that the robustness of this statistic against noise
should be studied in terms of measuring predictive
accuracy of models (Loew et al., 2017; Murrell,
Murrell, & Murrell, 2014), to our knowledge no pre-
vious study has considered the suitability of MIC in
the context of evaluating the agreement between
modelled predictions of AGB and their correspond-
ing observed values.

In this article, we consider the adequacy of using
alternatives to the R2 for evaluating the agreement
between observed and predicted values. The alterna-
tives considered were d and MIC, and the study was
conceived as a further aspect of prediction accuracy
to be revised in the context of AGB predictions from
remote sensing, additional to those outlined in
Valbuena et al. (2017a). We, therefore, followed up
the same experimental design to allow direct compar-
ison and contrasting against additional measures of
accuracy: results are presented for unviable modelling
approaches alongside correct ones, in order to high-
light whether the alternative measures of agreement
reliably make a difference among them.

Material and methods

Field and remote sensing datasets

The study employed data from n ¼ 37 field plots
composed of two concentric circles of radii
10 m and 20 m (Valbuena et al., 2013b), which
were obtained in the summer 2006 at the Pinus
sylvestris-dominated forests of Valsaín (Spain,
approx. lat.: 41°04ʹ N, lon.: 4°09ʹ W; 1.3–1.5 km a.s.
l.). Within the inner circle, all trees were measured,
including seedlings and saplings, whereas the outer
circle only were measured trees with diameter at
breast height (dbh, cm) above 10 cm. Plot expansion
factors were used to expand the forest information
sampled within the inner plot to the outer plot
(Valbuena, Packalen, Mehtätalo, Garcia-Abril, &
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Maltamo, 2013c). Treetop heights (h, m) were deter-
mined for every individual tree using a Vertex III
Hypsometer (Haglof, Sweden). Plot centres were
staked out using a HiPer-Pro (Topcon, California)
receiver set at 1–2 m above the ground for differen-
tially corrected global navigation satellite systems
(GNSS) positioning (Valbuena, Mauro, Rodriguez-
Solano, & Manzanera, 2012). Tree allometry
(Montero, Ruiz-Peinado, & Muñoz, 2005) was used
to calculate plot AGB (Mg·ha−1) from these field
measurements. While Ruiz-Peinado, Del Rio, and
Montero (2011) improved Montero et al.’s (2005)
models by including a property of additivity among
biomass components, we considered such property
would not propagate to the remote sensing predic-
tions with the methodology employed in this article
(Hernando et al., 2019). The remote sensing survey
was carried out in September 2006 using a LIDAR
system (ALS50-II from Leica Geosystems,
Switzerland) and a multispectral camera (DMC
from Zeiss-Intergraph, Germany). The LIDAR pulse
density was 1.15 pulses·m−2, and approximate foot-
print diameter was 0.5 m at the ground. Using
Terrascan (Terrasolid, Finland) returns were classi-
fied and those at the ground were interpolated into
a digital terrain model (Valbuena, Mauro, Arjonilla,
& Manzanera, 2011). DMC original multispectral
bands had an approximate spatial resolution of
60 cm. The fusion of both remote sensors’ informa-
tion was done with an assured perfect fit via a back-
projection data fusion algorithm (Valbuena et al.,
2013a, 2011). The correspondence between the field
and remote sensing data was guaranteed with survey-
grade and differentially corrected GPS positioning
(Valbuena et al., 2012). Remote sensing predictors
were computed from statistical descriptors of the
distributions of heights from the LIDAR data, and
normalised difference vegetation index (NDVI)
values from the multispectral sensor (Manzanera
et al., 2016). More details about the data employed
and processing steps can be further scrutinized from
Valbuena et al. (2017b), Appendix A, and the above-
listed references. Readers interested in comparable
studies in Mediterranean pine forest ecosystems in
Spain may refer to a recent review in Gómez et al.
(2019), or individual studies using LIDAR (Adnan
et al., 2019; Bottalico et al., 2017; Estornell, Ruiz,
Velázquez-Martí, & Hermosilla, 2011; García et al.,
2010; Gonzalez-Ferreiro, Dieguez-Aranda, &
Miranda, 2012; González-Olabarria, Rodríguez,
Fernández-Landa, & Mola-Yudego, 2012;
Montealegre, Lamelas, de la Riva, García-Martín, &
Escribano, 2016; Montealegre et al., 2017; Valbuena
et al., 2013c), in combination with multispectral sen-
sors (Estornell et al., 2012; Hernando et al., 2019;
Manzanera et al., 2016; Valbuena et al., 2013a,
2017b, 2011), or comparing methods for selection of

predictor variables (Garcia-Gutierrez et al., 2014;
Valbuena et al., 2017a) or prediction methods
(García-Gutiérrez, Martínez-Álvarez, Troncoso, &
Riquelme, 2015; Guerra-Hernández et al., 2016;
Domingo, Lamelas-Gracia, Montealegre-Gracia, &
de la Riva-Fernández, 2017; Domingo et al., 2018;
Valbuena et al., 2016).

Modelling alternatives compared

The values of R2, d and MIC calculated in this study
were obtained for the same modelling alternatives
reported in Valbuena et al. (2017a), in order to
allow direct comparisons according to the conclu-
sions reached in that study. These consisted in pre-
dictions of plot-level AGB using parametric models
and a non-parametric method: best-subset, step-wise
and most similar neighbours, all of them including
‘restricted’ versions according to Piñeiro et al. (2008)
and Valbuena et al. (2017a). All computations were
carried out using the R statistical environment (ver-
sion 3.3.1; R Development Core Team, 2016). The
parametric models were power models adjusted in
their linear form, i.e. using a natural logarithm trans-
form of the response variable (e.g. Asner & Mascaro,
2014; Hudak et al., 2006; Næsset, 2002), which were
bias-corrected when transformed back to the original
scale (Baskerville, 1972; Sprugel, 1983). A first alter-
native, here forth denominated “best-subset” (Hudak
et al., 2006; Miller, 1984), selected model predictors
via exhaustive evaluation of all possible combinations
using package “leaps” of R (Lumley & Miller, 2009),
and minimization of Mallows’ Cp (Mallows, 1973) as
predictor selection criteria. Next, there was
a modification of this alternative here forth denomi-
nated “best-subset restricted overfitting” (Valbuena
et al., 2017a). It consisted in further constraining
the “best-subset” result by restricting the inflation of
sum of squares to a 10% in the cross-validation, to
avoid models overfitted to the sample (Ehrenberg,
1982; Lipovetsky, 2013; Weisberg, 1985), plus positive
results in Piñeiro et al.’s (2008) hypothesis test to the
observed versus predicted fit. The next alternative
employed the same power model but variables were
selected according to a step-wise procedure (Næsset,
2002; Weisberg, 1985) and the corrected Akaike
Information Criterion (AIC) (Burnham &
Anderson, 2002; Sugiura, 1978), as implemented in
the function “stepAIC” of R (Venables & Ripley,
2002). We denominate this method “step-wise”, and
also presented a “step-wise restricted overfitting”
modification using the hypothesis test and the limit-
ing criterion of 10% inflation in sums of squares
(Valbuena et al., 2017a).

The other alternative employed was the non-
parametric prediction. This was based on the most
similar neighbour (MSN) method, one type of
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machine learning approach among the so-called
group of nearest neighbour methods (Franco-Lopez
et al., 2001; McInerney, Suárez, Valbuena, &
Nieuwenhuis, 2010; McRoberts, Nelson, & Wendt,
2002). MSN predictions were carried out using the
“yaImpute” package of R (Crookston & Finley, 2007).
We set the algorithm to use inverse distance weight-
ing averaging of three neighbours, based on previous
experience (Almeida et al., 2016; Eskelson et al., 2009;
Valbuena, Vauhkonen, Packalén, Pitkanen, &
Maltamo, 2014). In the case of MSN, we employed
canonical regression analysis (Cohen, Maiersperger,
Gower, & Turner, 2003; Manzanera et al., 2016) to
recursively select the predictors. The final selection
criterion was the root mean squared error minimiza-
tion with the same above-mentioned limiting restric-
tions of Piñeiro et al.’s (2008) hypothesis tests and
avoiding overfitting (Valbuena et al., 2017a).
Additionally, we calculated results also for a wide
range of number of predictors p ¼ 1 . . . 30, with the
intention to emphasize whether the chosen statistics
of agreement between observed and predicted would
show any differences for unrealistically low n=p
ratios.

Evaluating the agreement between observed and
predicted AGB

For all the modelling alternatives considered, we com-
puted predictions using two options: first, (1) the model
fit employing the entire dataset of i ¼ 1 . . . n forest
plots used to train the model (i.e. model residuals with-
out external validation), and also (2) a leave-one-out
cross-validation removing each case i from the training
data as a prior step to the whole modelling process. In
results, these two options are denoted using superscripts
(or subscripts) fit and cv, respectively. Thus, the training
dataset used was the vector of measured AGB values at
plot-level O ¼ obsi where obsi ¼ obs1; . . . ; obsn, from
which we obtained the vector of modelled predictions
P ¼ prei where prei ¼ pre1; . . . ; pren. These predictions

where either those fitted in model training prefiti
� �

, or

those calculated using cross-validation precvi
� �

, since
both were employed to compute the range of statistical
measures considered for describing the agreement
between observed and predicted. Therefore, prei
denotes either prefiti or precvi in the following equations
detailing the measurements of agreement considered:

(1) The coefficient of determination, which shows
the ratio of the sum of squared residuals to the
total sum of squares:

R2 ¼ 1�
Xn

i¼1
prei�obsið Þ2=

Xn

i¼1
obsi�obs
� �2h i

(1)

(2) Willmott’s index of agreement, which was ori-
ginally suggested to be (Willmott & Wicks,
1980):

d ¼ 1�
Xn

i¼1
prei � obsið Þ2

h
=

Xn

i¼1
prei � obs
�� ��þ obsi � obs

�� ��� �2i (2)

It was later suggested, however, that squaring the
residuals may be an inconvenient approach
(Willmott et al., 1985), and therefore they suggested
the following refinement:

d1 ¼ 1�
Xn

i¼1
prei � obsij j=

h
Xn

i¼1
prei � obs
�� ��þ obsi � obs

�� ��� �i (3)

And also another further modification was suggested
more recently (Willmott et al., 2012):

dr ¼ 1�
Xn

i¼1
prei � obsij j=2

Xn

i¼1
obsi � obs
�� ��h i

(4)

The full version of the refined index of agreement
dr consists of inverting the fraction and subtracting
one from it (Willmott et al., 2012: Equation (5)), in
order to accommodate poorly performing models.
However, this was not necessary in our case since
the agreement between observed and predicted was
higher for all the modelling alternatives considered.

(3) Themaximal information coefficient, which mea-
sures the entropy of the relationship (Reshef
et al., 2011; Speed, 2011). It is based on the
naïve mutual information MI P;Oð Þ (Linfoot,
1957). The computation ofMIC involves binning
P and O, calculating relative abundances p P;Oð Þ
at each grid of the resulting cell, and consider the
overall uncertainty in their relationship using
Shannon’s (1948) entropy:

MIðP;OÞ ¼
X
P;O

pðP;OÞ � log ½pðP;OÞ=pðPÞpðOÞ� :
(5)

In Reshef et al.’s (2011) algorithm, MIC results
from the bin size that maximizes MI P;Oð Þ:

MIC ¼ max
P;Ototal < B

MI P;Oð Þ= log min P;Oð Þ½ �f g (6)

We employed the R implementation for MIC com-
putation available in package “minerva” (Filosi,
Visintainer, & Albanese, 2014).

While the calculation of d resembles that of
a sample Pearson’s correlation coefficient (r), MIC is
customarily interpreted as a non-parametric version
of a correlation coefficient (Görgens et al., 2017).
Also, Simon and Tibshirani (2011) recommended
the use of Brownian distance correlation (Székely &
Rizzo, 2009) above MIC. For these reasons, we also
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calculated from our dataset the following statistics for
additional discussion on the most convenient
approach for assessing the agreement between
observed versus predicted in model evaluation:

(4) The coefficient of correlation between observed
and predicted values, calculated from Pearson’s
product moment correlation:

r ¼
Xn

i¼1
prei � preð Þ obsi � obs

� �h i
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
prei � preð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
obsi � obs
� �2q� 	

(7)

(5) The distance correlation (dCor) is an approach
to evaluating the relationship between two
variables based on their energy (Székely &
Rizzo, 2017), i.e., in this case, the distances
between P;Oð Þ data in the metric space. We
employed the distance correlation statistic
implemented in the package “energy” of
R (Rizzo & Szekely, 2017).

All the alternatives for evaluating the degree of
agreement between observed and predicted were cal-
culated both from the model fit predictions Pfit

� �
and

the cross-validated versions Pcvð Þ: R2
fit , R

2
cv (Equation

(1)), dfit , dcv (Equation (2)), and MICfit , MICcv

(Equation (5)); plus the refined versions of

Willmott’s agreement dfit1 , dcv1 (Equation (3)), and

dfitr , dcvr (Equation (4)), and the additional statistics
of correlation rfit , rcv, dCorfitand dCorcv. The relative
merits of each of the proposed statistical measures of
agreement between predicted and observed were
evaluated by analysing the results provided by the
different alternative prediction methods to the same
dataset. We also compared results obtained while
increasing the number of predictors in MSN.
Taking into account that many of the modelling
alternatives have been already ruled out as unreliable
by additional statistical criteria (Valbuena et al.,
2017a), our objective was to observe whether any

measures of the agreement would reveal similar con-
clusions or otherwise conceal the unreliability of pre-
dictions. Spearman’s rank correlation coefficient (ρ)
was employed to assess redundancy among these
measures since it tests whether two methods would
rank alternatives in a similar manner.

Results

All the statistical measures of agreement between
observed and predicted considered rendered most mod-
elling alternatives reliable. Table 1 compares the results
fromdifferent predictionmethod alternatives. The values
of all measures have been expressed in per-cent units,
with the intention to use them for interpreting the pro-
portion of variance in the observed values that is
explained by the model predictions, as R2 is interpreted.
It is worth noting the high values obtained by the unrest-
ricted version of the step-wise selection, which unrealis-
tically resulted in an over-parameterised model with
p ¼ 23 predictors in spite of the use of AIC. Figure 1
shows bar plots comparing the results for parametric
power models, according to whether they included or
lacked the overfitting restrictions to variable selection.
The versions which restricted the overfitting were more
realistic. Willmott’s d showed less contrast among meth-
ods than R2 or MIC. It also showed lesser differences
between values obtained using the whole dataset and
cross-validated results.

The effects of increasing p in MSN predictions are
expressed in Figure 2. The cross-validated coefficients of
agreement ranged R2

cv ¼ 63:7�87:1% for p ¼ 5�28,
however dropping as low as R2

cv ¼ 33:1% for p ¼ 30
or R2

cv ¼ 38:7% for p ¼ 2. Results in Figure 2 suggest
that for small p there may be little divergence whether
coefficients of determination are obtained from the
model fit R2

fit or cross-validated values R2
cv. Willmott’s

index of agreement d showed similar patterns as R2
cv

(Figure 2), and they were highly correlated
ρ dcv;R2

cv

� � ¼ 0:99. This was not the case for MICcv

ðρ MICcv;R2
cv

� � ¼ 0:65Þ, which was, therefore, less

Table 1. Comparison of diagnoses for different modelling methods and variable selection alternatives to obtain above-ground
biomass (AGB, Mg·ha−1) predictions.

Best-subset
Best-subset restricted

overfitting Step-wise Step-wise restricted overfitting MSN restricted overfitting

Number of predictors* (p) 8 2 23 2 5
Pre./Obs. agreement R2fit (%) 93.1 77.0 98.0 78.9 69.4

R2cv (%) 88.9 73.4 83.6 75.7 76.3
dfit (%) 96.6 88.6 99.0 89.5 77.7
dcv (%) 94.5 86.9 91.7 88.0 81.0
MICfit (%) 84.2 63.9 99.9 91.2 74.4
MICcv (%) 75.5 61.0 88.8 81.3 66.4

MSN: most similar neighbour. R2fit : residual coefficient of determination (Equation (1)). R2cv : cross-validated coefficient of determination (Equation (1)). dfit :
residual Willmott’s index of agreement (Equation (2)). dcv : cross-validated Willmott’s index of agreement (Equation (2)). MICfit : residual maximal
information coefficient (Equation (6)). dcv : cross-validated maximal information coefficient (Equation (6)). Coefficients have been multiplied by 100 to
yield percentage units.

*The actual predictors selected with each method are detailed in Appendix A.
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redundant than d. The difference between non-cross-
validated and cross-validated results was, in general,
more pronounced for R2 or MIC than for d, for the
parametric models (Figure 1) as well as for the various
MSN predictions (Figure 2).

In light of the results obtained in Figure 2, we
deduced that dcv was systematically higher than R2

cv,
ranging as much as d ¼ 59:2�93:8% for all

p ¼ 1�30. Hence, the proportion of explained variance
may simply seem larger when using d instead of R2. For
this reason, we further investigated the convenience of
using the alternative formulations for Willmott’s index
of agreement – d1 and dr –, which are all compared in
Figure 3. Results were again either just lower or higher,
but still redundant to the information already provided
by R2, since ρ dcv1 ;R

2
cv

� � ¼ 0:99 and ρ dcvr ;R
2
cv

� � ¼ 0:98.

Figure 1. Comparison of results for alternative statistics of agreement – Willmott’s (1981) index of agreement (d), maximal
information coefficient (MIC; Reshef et al., 2011) and coefficient of determination (R2) – for power models with various variable
selection methods, including versus lacking the overfitting restrictions (Valbuena et al., 2017a) .

Figure 2. Evolution of measures of agreement between observed and predicted by most similar neighbour (MSN) method for
increasing the number of predictors (p). Dashed lines show values obtained using the whole training dataset, whereas solid lines
were yielded by cross-validated predictions.
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Moreover, the latest refined version of Willmott’s
index – dcvr –, showed less contrast among alternatives
than R2

cv, i.e. with smoother fluctuations along increas-
ing p, which rendered it less useful to discriminate the
reliability of predictions. Also, when fitting the whole
training dataset with very high p these modified ver-

sions – dfit1 and dfitr – obtained very low values, which
seems unfair in light of the results obtained by R2

fit, d
fit

and MICfit for p> 22 in Table 1.

Discussion

In studies carrying out remote sensing AGB predictions,
themost popular statistic employed to evaluate the agree-
ment between observed and predicted is undoubtedly R2

(e.g. Bright et al., 2012; Chen & Zhu, 2013; d’Oliveira
et al., 2012; Erdody & Moskal, 2010; Hudak et al., 2006;
Latifi et al., 2015; McInerney et al., 2010; Næsset, 2002;
Straub, Tian, Seitz, & Reinartz, 2013; Valbuena et al.,
2014; Wing et al., 2012; Zhao, Popescu, & Nelson,
2009). It is, however, well known that in presence of
bias, R2 may be high despite a poor correspondence
between observed and predicted (see, e.g., Valbuena
et al., 2014;White, Coops, & Scott, 2000). For this reason,
it has been argued that R2 may not necessarily be related
to the accuracy of predictions (Paruelo et al., 1998), and
hence Willmott’s (1981) d has been suggested as a more
appropriate alternative to evaluate remote sensing pre-
dictions (Almeida et al., 2016; García et al., 2010; Yebra &
Chuvieco, 2009), in line with discussions held in the
broader realm of statistical modelling (Fox, 1981;

Figure 3. Comparison of the different versions of Willmott’s index of agreement between observed and predicted (Willmott
et al., 1985, 2012; Willmott & Wicks, 1980) against the coefficient of determination R2, when the most similar neighbour (MSN)
method increased the number of predictors (p). Dashed lines show values obtained using the whole training dataset, whereas
solid lines were yielded by cross-validated predictions.

Figure 4. Comparison of original versions of Willmott’s index of agreement d and other measures of correlation (dashed lines),
and their squared versions (solid lines) against the coefficient of determination R2.
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Willmott, 1982). In our results, however, we observed an
underperformance of d as a statistic truly expressing the
degree of agreement between observed and predicted.
Even having been obtained after cross-validation, values
of d summarized in Table 1 and Figure 1 were quite large
in all cases, regardless of results in other measures of
model performance (see Valbuena et al., 2017a). On the
other hand, R2

cv obtained sounder results which were
more likely to discriminate reliable from unreliable alter-
natives, whereas Figure 2 shows that d may simply yield
values systematically larger than R2

cv. The modifications
to d did not necessarily overcome this problem, since
Willmott et al.’s (1985) d1 was instead systematically
lower than R2, and the more recent Willmott et al.’s
(2012) dr showed similar but smoother patterns of varia-
tion (Figure 3). As a conclusion, we suggest that R2 may
be a better alternative than d, in light of our results.
Although Willmott (1981) correctly affirmed that R2

may show large values if predictions are evenly distrib-
uted through the range but yet biased, we suggest that R2

cv

may simply be used along with a hypothesis test ensuring
the absence of bias, such as those proposed by Piñeiro
et al. (2008).

Willmott’s (1981, 1982) put forward a number of
arguments in favour of using d, and many of them
point out that d may be conceptually superior to R2 for
describing the agreement in the observed versus pre-
dicted relationship for model evaluation (García et al.,
2010; Yebra & Chuvieco, 2009). One interesting remark
arises when comparing the calculation of Willmott’s
(1981) index d of agreement with that for Pearson’s
sample correlation coefficient r. It is noteworthy to men-
tion that, although R2 expresses the proportion of var-
iance in the dependent variable explained by a model
while r the dependence between two variables, R2 and r
are closely related to one another. In particular, R2 is
equivalent to the square of Pearson’s correlation (r2)
when using a simple linear regression with intercept fit.
Although this equivalence is not valid for MSN, we
explored the possibility that R2 and r2 may be fairly
close by analogy. Figure 4 shows that was indeed the
case, as it was also for the square of Willmott’s index of
agreement (d2). Thus, we argue that studies with
a particular interest in using Willmott’s (1981, 1982)
suggestions for evaluating model predictions (Almeida
et al., 2016; García et al., 2010; Grzegozewski et al., 2016;
Wachholz de Souza et al., 2015; Yebra &Chuvieco, 2009)
should report d2 instead, in order to make it more
comparable to more widespread studies using R2 (e.g.
Næsset, 2002, 2004; Hudak et al., 2006; Zhao et al., 2009;
Erdody & Moskal, 2010; McInerney et al., 2010; Bright
et al., 2012; d’Oliveira et al., 2012;Wing et al., 2012; Chen
& Zhu, 2013; Straub et al., 2013; Asner &Mascaro, 2014;
Valbuena et al., 2014; Latifi et al., 2015; Zolkos et al.,
2013).

The case of using maximal information coefficient
(Reshef et al., 2011) could also be supported by analogy
to the relationship between R2 and r2, since MIC is
usually regarded as a non-parametric version of corre-
lation (Chen & Yang, 2016; Görgens et al., 2017;
Thomas et al., 2017; Vallières et al., 2017). Results for
MIC in Table 1 and Figure 2 can be best interpreted by
observing the scatterplots of observed versus cross-
validated predictions published in Valbuena et al.
(2017a: Figures 2–3). The remarkably higher values of
MIC with respect toR2 for, e.g., p ¼ 8 or p ¼ 10 (Figure
2), can be explained by the fact that these scatterplots
show clustered cases in the observed versus predicted
metric space (see Valbuena et al., 2017a: Figure 2). In
that sense, we deduct that MIC simply favours local
clustering of predictions, whether or not they corre-
spond to the observations. We, therefore, discourage
the use of MIC as a substitute of R2 for model evalua-
tion. Since Simon and Tibshirani (2011) recommended
the use of distance correlation dCor (Székely & Rizzo,
2017) as an alternative to MIC, we also included it in
Figure 4. The analogy of squaring d does not work for
MIC, which simply showed unrealistically low values
when squared. The square of distance correlation
(dCor2), however, also obtained values which were
fairly similar to those for R2 (Figure 4).

Another unexpected result obtained in Figure 2
was the fact that differences between R2

fit and R2
cv

only became apparent for large p, even for such
a small n as it was employed in our study case. This
result suggests that, in spite of the popularity of cross-
validation in the assessment of forest AGB using
remote sensing (e.g. Franco-Lopez et al., 2001;
García et al., 2010; Hudak et al., 2006; Hudak,
Crookston, Evans, Hall, & Falkowski, 2008; Latifi
et al., 2015; McInerney et al., 2010; McRoberts et al.,
2002; Næsset, 2002; Packalén & Maltamo, 2008;
Valbuena et al., 2013a; Wing et al., 2012), reports
on results obtained by leave-one-out cross-
validation could easily converge to those yielded by
the model fit (i.e. using the same dataset for training
and validation). This may put into question the need
for cross-validation at all since it makes little differ-
ence for those models with more realistic number of
predictors p � 3�5ð Þ (Figure 2). Although cross-
validation may add robustness to an analysis with
small sample sizes and few highly influential cases,
our results show little difference compared to using
the entire training dataset (Valbuena et al., 2017a).
Future research should be devoted to further investi-
gating the reliability of cross-validation, accounting
for trade-offs between model generality and statistical
power (Cohen et al., 2003) faced when pondering
between using cross-validation or separating part of
the available field information for independent model
validation. It is useful for practical forest inventory to
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mention that models restricted according to
Valbuena et al. (2017a), despite using less predictor
variables, obtained similar performances in light of all
the accuracy assessment figures analysed.

Conclusions

These are the conclusions that can be drawn from the
results obtained in this study and their subsequent
discussion. First, we observed an underperformance
of Willmott’s (1981) d in comparison to R2, since the
latter was more sensitive to actual model
performance. Second, the refinements later intro-
duced to that same index (Willmott et al., 1985,
2012) did not solve the observed shortcomings either.
Third, we wish to put forward a recommendation to
use a squared version of Willmott’s index d2 for those
who prefer it above R2, to allow better comparison
with studies using R2. Fourth, the maximal informa-
tion coefficient MIC is not at all suitable for compar-
ing relationships between observed and predicted in
model evaluation. And finally, for a small number of
predictors, the difference between using cross-
validation or not using it at all can be negligible,
which shows how useful can be its comparison for
evaluating overfitting. More research would be
needed to explore the usefulness of different cross-
validation alternatives in the specific topic of remote
sensing predictions of forest AGB.
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Appendices

Appendix A. Details on the predictors selected by each of these methods. These models were the same detailed in Valbuena
et al. (2017a).

Best-subset Best-subset restricted overfitting Step-wise Step-wise restricted overfitting MSN restricted overfitting

H.GC H.mean H.GC H.P75 H.L2

H.L3 NDVI.P75 H.CV H.L3 H.L3

H.Mean NDVI.GC H.AAD

H.P95 H.L2 H.Mean

H.IQR H.L4 H.GC

H.P40 H.L3

NDVI.Var H.AAD

NDVI.AAD H.Mean

H.SD

H.Kurt

H.P90

H.P95

H.P80

H.P75

NDVI.SD

NDVI.AAD

NDVI.L1

NDVI.L3

NDVI.P25

NDVI.P05

NDVI.P75

NDVI.P70

NDVI.Var

Descriptors of predictor variables are detailed in Manzanera et al. (2016) and Valbuena et al (2017b). Names are composed of a prefix and a suffice
separated by a dot (.). Prefices refer to the attribute characteristic used: height from LIDAR sensor (H) or normalized vegetation index from
multispectral sensor (NDVI). Suffices refer to the statistical descriptor of the distribution of that attribute characteristic: mean (Mean), variance
(Var), standard deviation (SD), average absolute deviation (AAD), percentiles (P05, P25, P40, P70, P75, P80, P90, P95), L-moments (L1, L2, L3, L4), Gini
coefficient (GC), inter-quartile range (IQR).

358 R. VALBUENA ET AL.

https://doi.org/10.1002/joc.2419
https://doi.org/10.1080/02723646.1980.10642189
https://doi.org/10.1016/j.rse.2012.06.024
https://doi.org/10.1016/j.rse.2009.07.001
https://doi.org/10.1016/j.rse.2009.07.001
https://doi.org/10.1016/j.rse.2008.09.009
https://doi.org/10.1016/j.rse.2008.09.009
https://doi.org/10.1016/j.rse.2012.10.017
https://doi.org/10.1016/j.rse.2012.10.017

	Abstract
	Introduction
	Material and methods
	Field and remote sensing datasets
	Modelling alternatives compared
	Evaluating the agreement between observed and predicted <inline-formula id="ILM0054"><alternatives><inline-graphic xlink:href="TEJR_A_1605624_ILM0054.gif"/><tex-math>$$AGB$$</tex-math></alternatives></inline-formula>

	Results
	Discussion
	Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References
	Appendices



