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ABSTRACT  

The ability to provide multiple functions within a single scaffold biomaterial is a major goal in 

tissue engineering. Self-assembling peptide-based hydrogels are gaining significant attention as 

three-dimensional biomaterials because they provide a network of nanofibers similar to the 

native extracellular matrix while allowing the presentation of multiple biochemical cues for cell 

signalling. Herein, we combine a positively charged peptide amphiphile (PA) and the negatively 

charged synthetic polymer poly(sodium 4-styrenesulfonate) (PSS) to fabricate hybrid hydrogels 

through supramolecular self-assembly. PSS/PA hydrogels show rather high mechanical stiffness 

while being stable in buffered environment. The sulfonate functionality in PSS promotes 

hydrogel mineralization which can be controlled if undertaken in standard osteogenic medium. 

Loading proteins with different charges in the hydrogels reveals their ability to retain and sustain 

their release and indicates their potential for the controlled delivery of growth factors. Human 

mesenchymal stem cells encapsulated in PSS/PA hydrogels remain viable. The biomimetic 

nanofibrous structure of the hydrogels, together with multiplexing of bioactive signals, can 

provide a suitable environment for stem cell differentiation. 

Key words: Supramolecular hydrogels, nanofibers, bioactive signals, biomimetic mineralization, 

protein delivery, 3D stem cell culture 
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Introduction 

The extracellular matrix (ECM) of tissues serves multiple roles to ensure tissue homeostasis, 

from providing anchorage sites for cell adhesion and migration to regulating the availability of 

soluble growth factors (GFs) for cell proliferation and differentiation. Mimicking the 

multifunction features of the native ECM has been a major goal when designing biomaterials for 

tissue engineering and regenerative medicine. In the recapitulation of the ECM, several methods 

have been pursued, from macromolecular crowding and self-assembly to electrospinning and 

patterning. For example, to replicate the ECM biophysical properties, the typical nanofibrillar 

collagen network, electrospinning1 and self-assembly2 have been used. However, electrospinning 

uses polymer solutions dissolved in non-aqueous solvents and an electric field to produce 

nanofibers. These harsh conditions unable the incorporation of cells during nanofiber processing. 

In contrast, self-assembly can occur at physiological conditions generating nanofibers with 

diameters as small as 10 nm and smaller than those obtained by electrospinning. In addition, self-

assembled peptide nanofibers can be designed to contain sequences derived from ECM 

proteins3,4 further extending the ability of mimicking ECM biochemical properties. The ability of 

the ECM to regulate the activity of GFs results from the supramolecular binding of GFs to 

insoluble ECM components, notably to heparan sulfate proteoglycans via electrostatic 

interactions.5 Several creative approaches have been reported to emulate the GF binding to 

sulfated glycosaminoglycans (GAGs) in native ECMs, including sulfation of polysaccharides6–8; 

incorporation of heparin through covalent bonds9 or supramolecular interactions using specific10 

or non-specific11,12 peptide sequences and in polyelectrolyte complexes13,14; synthesis of heparin-

like molecules15,16 (e.g. sulfonated peptides). From these studies, it becomes obvious that self-

assembling peptides can provide much of the ECM functionality (cell adhesion motifs such as 
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RGD, sulfonated groups, nanofibrillar structure). Peptides can also be combined with 

(bio)polymers to self-assemble into multicomponent hydrogels, either through the formation of 

covalent linkages or non-covalent interactions.17  

Herein, we used self-assembly to prepare multi-functional hydrogels through electrostatic 

interactions between a positively charged peptide amphiplile (PA) and a negatively charged 

synthetic polymer bearing sulfonate functionality, poly(sodium 4-styrenesulfonate) (PSS) 

(Figure 1-A). Previous studies showed that sulfonate groups can promote the nucleation of 

calcium ions18,19 and we have thus exploited PSS-induced hydroxyapatite mineralization in this 

hydrogel system. The negative sulfonate groups in PSS can also provide binding sites for basic 

proteins, similar to sulfated glycosaminoglycans. The dual functionality of PSS has been utilized 

in combination with PAs of opposite charge to form self-assembled nanofibrous hydrogels. We 

show that these hydrogels are able to mineralize in cell culture conditions, control the release of 

positively charged proteins and support the viability and spreading of stem cells. 

 

Figure 1. Self-assembling nano-fibrous hydrogels for the multiplexing of bioactive signals. (A) Self-

assembly of peptide amphiphile (PA) and PSS forming a self-supporting hydrogel; (B) Calcium 

phosphate mineral nucleation on the hydrogel’s nanofibrous structure; Hydrogel can be used as a scaffold 

for protein delivery (C) and 3D cell encapsulation (D). 



 5 

Experimental Section 

Materials and methods 

Materials. Fmoc-protected amino acids, Fmoc-Ala-OH, Fmoc-Lys(Boc)-OH, Fmoc-Val-OH, 

Fmoc-Arg(Pbf)-OH, Fmoc-Gly-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(Tbu)-OH and 4-

methylbenzhydrylamine (MBHA) rink amide resin (100-200 mesh) were purchased from 

Novabiochem (Merck, UK). Triisopropylsilane (TIS) and piperidine were obtained from Alfa 

Aesar (UK). Poly(sodium 4-styrenesulfonate) with two different molecular weights (70 kDa and 

1 MDa) and palmitic acid (C16H32O2) were obtained from Sigma-Aldrich, UK. Fluorescent-

tagged bovine serum albumin (BSA-FITC) was acquired from Sigma-Aldrich (UK) and 

lysozyme labelled with Rhodamine B and FITC (lysozyme-FITC) were obtained from Nanocs 

(US). Cell culture medium (DMEM), fetal bovine serum (FBS) and penicillin-streptomycin 

(Pen/Strep) were purchased from Gibco (Thermo Fisher scientific, UK). Other chemicals were 

purchased from Sigma-Aldrich (UK) unless otherwise stated. 

Peptide synthesis and purification. Peptide amphiphiles (C16V3A3K3 and C16V3A3K3G3RGDS) 

were synthesized in an automated peptide synthesizer (Liberty Blue, CEM, UK) using standard 

9-fluorenylmethoxycarbonyl (Fmoc)-based solid phase synthesis protocol. Peptides were grown 

on the solid support, MBHA rink amide resin, using (4:4:4) equivalents of Fmoc-protected 

amino acids, 1-hydroxybenzotriazole hydrate (HOBt, Carbosynth Ltd. UK) and N,N′-

diisopropylcarbodiimide (DIC, Thermo Fisher, UK) for the coupling reactions. Fmoc group was 

deprotected using 20% (v/v) piperidine in dimethylformamide (DMF, VWR, UK). Before 

cleavage from the resin, the peptide N-terminal was capped with a 16-carbon alkyl chain (C16, 

palmitic acid) using a similar coupling protocol. The removal of the side-chains protecting 
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groups and cleavage of the peptides from the resin was performed with a mixture of 

trifluoroacetic acid (TFA, Thermo Fisher, UK)/ triisopropylsilane (TIS)/ water (95%/2.5%/2.5% 

(v/v)) for 3 hours at room temperature. The peptide solution was collected and reduced down to a 

viscous solution in a rotary evaporator. Cold diethyl ether was used to precipitate the peptide. 

After centrifugation, the supernatant was discarded and the solid precipitate allowed to dry 

overnight. The peptide mass was confirmed by electrospray ionization mass spectrometry (ESI-

MS) using a single quadrupole mass detector (SQ Detector 2, Waters, UK). A Waters 2545 

Binary Gradient high-performance liquid chromatography (HPLC) system with a preparative 

reverse-phase C18 column (X-Bridge prep OBD, 5 μm, 30×150 mm column, Waters, UK) was 

used for purification of the crude peptides using a water/acetonitrile (0.1% TFA) gradient. 

Fraction collection was made based on the peptide mass and acetonitrile removed by rotary 

evaporation followed by lyophilisation to obtain the peptide in powder form. Pure peptide 

amphiphile was treated with hydrochloric acid (10 mM) in three cycles of lyophilization in order 

to remove the TFA counter ions. Finally, the peptides were dialyzed against ultrapure water 

using 500 MWCO dialysis membrane (Spectrum Labs, The Netherlands) and lyophilized. Purity 

of the peptide was confirmed using analytical reverse-phase HPLC (Alliance HPLC system 

coupled with 2489 UV/Vis detector, Waters, UK). Peptide sample (1 mg ml-1) was injected and 

run through a C18 column (XBridge analytic 3.5 μm, 4.6 x 150 mm, Waters, UK) using a 

gradient of water/acetonitrile (0.1% TFA) at 1 ml/min.  

Zeta potential. PA and PSS (70 kDa and 1 MDa) solutions were analysed in a Nano-ZS 

Zetasizer (Malvern Instruments) for measuring their zeta potential. Samples were prepared at 

0.05 wt% in water (pH 7) and PBS (pH 7.4). 
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Preparation of PSS/PA hydrogels. PA and PSS solutions were prepared by dissolving the 

powders in phosphate buffer saline (PBS) to obtain the desired concentration. Hydrogels were 

produced in a 96 well plate by casting 50 µL of a 2% (wt%) PSS (70 kDa or 1 MDa) solution 

followed by 50 µL of 2% (wt%) PA solution. Hydrogels were formed after incubation at 37 °C 

for 30 minutes. 

Oscillatory Rheology. All rheological experiments were performed in a Discovery Hybrid 

Rheometer (DHR-3, TA Instruments, USA) fitted with a 8 mm diameter plate geometry 

(advanced peltier plate, APP). Strain and frequency sweeps were performed on the various 

hydrogels (n3) at 1 Hz frequency and 0.1% strain, respectively. Measurements were carried out 

at 25 °C with a loading gap height set to 0.5 mm.  

Stability of hydrogels. The stability of the PSS/PA hydrogels was studied by incubating them in 

aqueous conditions (water and PBS buffer pH 7.4) at 37 °C. The absorbance of the styrene ring 

at 260 nm was used to monitor the release of PSS in the medium over the time (28-days period). 

PSS concentration was calculated from a calibration curve obtained from PSS standards. Three 

repeats were performed for each hydrogel condition and time.  

Scanning electron microscopy (SEM). The microstructure of the hydrogel surface and cross-

section was examined by scanning electron microscopy (SEM). Samples for SEM observation 

were prepared by incubating the hydrogels in 2% glutaraldehyde in PBS for 1 hour at 4 °C. After 

three cycles of washing with phosphate buffer saline (PBS), hydrogels were progressively 

dehydrated using graded ethanol concentrations. Ethanol removal was performed using a critical 

point dryer (EMS 850, Electron Microscopy Sciences, USA). Samples were first coated with a 

gold layer (5-30 nm) using an Emitech SC7620 sputter coater (Quorum Technologies, UK) then 
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imaged in a field emission gun scanning electron microscope (FEG SEM, Inspect F50, FEI, 

Netherlands).  

Hydrogels mineralization. The hydrogels were incubated in stimulated body fluid (SBF) 

solution for 3, 7 and 14 days at 37 °C. The SBF solution contains ion concentrations similar to 

those of the human blood plasma (Na+ 142.0, K+ 5.0, Ca2+ 2.5, Mg2+ 1.5, Cl- 147.8, HCO3
- 4.2, 

HPO4
2- 1.0, SO4

-2 0.5 mM).20,21 SBF solution was replenished twice a week. After each 

immersion time, the hydrogels were removed from SBF, washed with distilled water and 

prepared for SEM observation, as described in prior section. Hydrogels were also tested for their 

mineralization ability in culture medium with and without osteoinducer agents (10 mM β-

glycerophosphate, 50 μg ml-1 2-Pho2-Phospho-L-ascorbic acid trisodium salt and 10 nM 

dexamethasone) for 7, 14 and 21 days. Samples were also washed with PBS before sample 

preparation for SEM. To determine the composition of the mineral formed, hydrogels were 

analysed by SEM (FEG SEM, Inspect F50, FEI, The Netherlands) equipped with energy 

dispersive electron X-ray (EDX) spectroscopy (Oxford Instruments, UK). For the EDX analysis, 

carbon coating (carbon thread evaporation) was used and the samples were analysed at 10.0 kV 

voltage. The atomic percentage of minerals were determined using INCA software (Oxford 

Instruments, UK). 

FTIR spectroscopy. In order to confirm the formation of calcium phosphate minerals on the 

hydrogels, mineralized hydrogels were burnt at 700 °C to obtain the powder containing the 

inorganic component. Then, the IR spectra of mineral powder and dried non-mineralized 

hydrogels were analysed using Brukler Tensor 27 FTIR spectrometer using an attenuated total 

reflection (ATR) diamond crystal accessory (Bruker, Germany). The absorbance spectrum was 

measured in the range of 2000–400 cm-1 by averaging 32 individual scans per sample at a 
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resolution of 4 cm-1. 

Protein loading and release. Hydrogels were loaded with two labelled model proteins having 

positive (lysozyme-FITC) and negative (BSA-FITC) charges to examine their release profile 

over time in physiological conditions. The proteins were loaded in the hydrogels at final 

concentration of 0.05 mg.ml-1 by first dissolving them in PSS (BSA-FITC) or PA (lysozyme-

FITC) solutions followed by the formation of the gel as described before. Then the loaded 

hydrogels were incubated in 1 mL of PBS (pH 7.4) at 37 °C and aliquots (1 mL) were collected 

at predetermined time intervals and replaced with fresh PBS (1 mL). Collected samples were 

kept frozen until experiment completion and then lyophilized. Release experiments were done in 

triplicate and the protein concentration was determined by dissolving the lyophilized samples in 

200 l of PBS and then measuring the fluorescence intensity at excitation/emission wavelengths 

of 485/520 nm for both BSA-FITC and lysozyme-FITC and calculating the corresponding 

concentration from a calibration curve constructed for each labelled protein. The amount of 

protein loaded in each gel was determined by extracting the protein from the gels through 

physical/mechanical breakdown of the gels (pipetting and sonication) followed by repeated 

centrifugation and washings of the gel pellet until no fluorescence was detected in the 

supernatant. The percentage of protein released at each time point was calculated based on the 

protein amount loaded in the gel and cumulative release plotted over time. The distribution of 

proteins in the hydrogels was examined by confocal microscopy (Leica TCS SP2) using 488 nm 

and 544 nm laser beams for BSA-FITC, lysozyme-FITC and lysozyme-Rhodamine, respectively. 

Lysozyme activity determination. For determining the activity of released lysozyme from the 

PSS/PA gels, unlabelled enzyme (from hen egg white, Sigma-Aldrich) was loaded in the 1 MDa 

PSS/PA gels and release studies were conducted as described above. Aliquots were collected and 
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kept frozen until further analysis. Later, samples were first lyophilized and dissolved in 100 l of 

reaction buffer. Enzyme activity was measured using the EnzChek_Lysozyme Assay Kit 

(Thermo Fisher Scientific) following the instructions provided by the supplier. The initial 

activity of the enzyme loaded in the gel was determined for calculating the cumulative lysozyme 

activity released over time. A control (free enzyme in solution incubated at 37 ˚C for different 

periods of time) was performed in triplicate to estimate the effect of incubation time and 

temperature on enzyme deactivation.  

Cell culture and maintenance. hMSCs (passage number 6, PromoCell GmbH, Germany) were 

used to assess the ability of PSS/PA gels to support cell viability. Cells were first cultured in 75 

cm2 flask at density3103 cells cm-2 and maintained in culture medium (DMEM, low glucose, 

GlutaMAXTM supplement, Gibco, Thermo Fisher, UK) supplemented with 10% FBS, 1% 

Pen/Strep and 0.1% bFGF (FGF-Basic (AA 10-155) recombinant human protein, Thermo Fisher 

Scientific, UK). Flasks were incubated at 37°C, 5% CO2. Medium was refreshed twice a week 

and cells were trypsinized when reached 80% confluency.  

Cell encapsulation and viability in the hydrogels. Cells were encapsulated in 1 MDa PSS/PA 

and 1 MDa PSS/PA-RGDS (10% PA-RGDS) hydrogels using 200103 cells per 100 l hydrogel 

by mixing half of the cells with the PSS solution and the other half with PA solution. 1 MDa 

PSS/PA-RGDS hydrogels were prepared as before where the PA solution contained 10% of PA-

RGDS and 90% of standard PA at peptide final concentration of 2% (wt.%). After self-assembly 

(20 minutes), hydrogels with cells were incubated in culture medium (DMEM supplemented 

with 10% FBS and 1% Pen/Strep) at 37°C, 5% CO2 for 1 and 3 days. Viability of the cells 

encapsulated in the hydrogels was analysed using LIVE/DEAD® Viability/Cytotoxicity Kit for 

mammalian cells (Invitrogen, UK). Briefly, each hydrogel sample was treated with 4 μM calcein 
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AM and 2 μM ethidium homodimer-1 and incubated for 15-20 minutes at room temperature. 

Hydrogels were imaged using confocal microscopy (Leica TCS SP2) and images were analysed 

in Image J for counting the number of live and dead cells. Three hydrogel replicates were used 

and compared to cell culture as monolayers (control). Statistical differences in viability data were 

obtained with GraphPad Prism 7 software (USA) using a two-way analysis of variance 

(ANOVA) with a Bonferroni’s multiple comparison test (*p <0.05; **p < 0.01; ***p < 0.001; 

NS: not significant). 

Scanning electron microscopy of cell-encapsulated hydrogels. The interaction of MSCs with 

hydrogel’s nanofibers was analysed by SEM. MSCs encapsulated in the hydrogels were prepared 

for SEM as above. The samples were coated with gold layer before observation. 
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Results and discussion 

Mechanical properties and stability of self-assembled PSS/PA hydrogels. Peptide 

amphiphiles (PAs) designed by Stupp’s laboratory are known to self-assemble into cylindrical 

nanofibers maintained by strong -sheet secondary structures. These PAs are charged molecules 

that upon mixing with electrolytes or polymers of opposite charge are able to form hydrogels10, 

membranes22 or capsules23. The self-assembly of PAs with high molecular weight (HMw) 

polysaccharides, such as hyaluronic acid (HA)24, alginate22 and λ-carrageenan22 results in the 

formation of solid membranes at liquid-liquid interface either in the form of a sac25 or planar 

membrane24. However, the use of HMw synthetic polymers has not been fully exploited. 

Following a similar approach, we combined the positively charged PA (Figure 1A), containing 

an alkyl chain (C16), a -sheet forming segment (V3A3) and three lysine residues (K3) with 

negatively charged poly(sodium 4-styrenesulfonate) (PSS). Contrary to the HA/PA self-

assembling systems, or with other polysaccharides, mixing PA with PSS of different Mw (70 

kDa and 1 MDa) resulted in the formation of self-supporting opaque hydrogels (Figure 1A). It 

was shown previously that polyelectrolytes with different charge density interact differently with 

positively charged PAs affecting the micro- and nanostructure of the resulting membrane.22 PSS 

is a strong polyelectrolyte showing a zeta potential () of -49.62 ± 2.55 mV in water at pH 7 

(Figure S2). Viscosity measurements of PSS solution (1 wt%, 1 MDa) revealed perfect 

Newtonian behaviour with constant viscosity in a wide shear range and low viscosity close to 

water (0.003 Pas) at 37 °C and shear rate of 70 s-1. In contrast, HA solutions of same 

concentration and similar molecular weight (1.5 MDa) showed higher viscosity (0.682 Pas) and 

shear-thinning behaviour. Because fluid flow is highly dependent on the viscosity, one should 

expect rapid mixing of PSS and PA solutions leading to PA self-assembly into a random network 
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of nanofibers and formation of gel, without the creation of a diffusion barrier as seen in the 

HA/PA system. The low viscosity of PSS solutions (5 wt%, 126.7 kDa) was also observed in 

other studies with SAXS patterns showing characteristic behaviour of salt-free polyelectrolyte 

solutions and correlation lengths (calculated from qmax) between 8 and 70 nm depending on the 

PSS concentration (from 8.7 to 0.6 wt%, respectively).26 While the viscosity of polymer 

solutions depends mainly on the polymer molecular weight and concentration, intra- and inter-

hydrogen bonding formed between polar hydroxyl groups also play a role in determining the 

final viscosity, and the extent of hydrogen bonding decreases with increasing temperature and 

addition of electrolytes into the solution. This is the case in HA molecules, where carboxylate, 

acetamido and hydroxyl groups enable the formation of intra hydrogen bonds and results in 

increased viscosity at neutral pH.27  

Hydrogels were formed by mixing the PA and PSS solutions at the same volume ratio. However, 

we have first optimized the hydrogel formulation by testing different PA and PSS concentrations 

followed by rheological analysis. The rheology data showed changes in the storage modulus with 

peptide and polymer concentration (Figure S3). However, after incubation in culture medium 

(DMEM) for 7 days, hydrogels showed different behaviours. Formulations with higher 

concentrations of PSS made the DMEM environment acidic (as detected by colour change of the 

medium) and the hydrogels with lower concentration of PSS were unstable. Therefore, 

formulations of similar concentration of peptide and PSS were used for subsequent experiments. 

PA solution of 2 wt% was combined with PSS solution of the same concentration and allowed to 

self-assemble for 10 minutes. PSS of different Mw (1 MDa and 70 kDa) were used to investigate 

the effect of the polymer length on the assembly and mechanical properties of the hydrogel.  

Rheology measurements were carried out first by subjecting the hydrogels to an amplitude sweep 
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in a shear strain ranging from 0.01% to 10% at constant frequency of 1 Hz. In all tested 

hydrogels, the storage modulus exceeded the loss modulus, which is a typical behaviour of 

hydrogel systems and both types of hydrogel (1 MDa PSS/PA and 70 kDa PSS/PA) lost their 

linearity over strain of 1% (Figure 2-A,B).28 Following the linear viscoelastic region (LVER), 

strain of 0.1% was used in frequency sweep measurements. 

 

Figure 2. Rheological characterization of PSS/PA hydrogels measured at 25 C. Amplitude (A, B) and 

frequency (C, D) sweep graphs of 1 MDa PSS/PA (A, C) and 70 kDa PSS/PA (B, D); circles refer to 

storage modulus (G’) and triangles refer to loss modulus (G’’). 

 

To measure the stiffness of the hydrogels, frequency sweeps were conducted at 0.1% strain over 

a range of frequencies. The storage modulus for both 1 MDa PSS/PA and 70 kDa PSS/PA 
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hydrogels is dominant over the loss modulus indicating an elastic rather viscous material.28,29 

Moreover, the tan() (G”/G’) variation with frequency showed values below 1 (tan() < 1), 

indicative of a gel system with G’ always exceeding the G”.29 Tan() is constant across a 

frequency range 1-10 Hz (Figure S4). A frequency of 20 Hz was reported for optimal osteoblast 

proliferation30. Both 1 MDa PSS/PA and 70 kDa PSS/PA hydrogels show frequency-independent 

behavior at frequency range 1-10 Hz and they are considered as stiff hydrogels (30-40 kPa)31,32 

(Figure 2-C,D). Different variations of PA hydrogels, formed in the presence of electrolytes, 

have a stiffness in the range of 20 Pa - 83 kPa depending on their molecular structure and 

concentrations28,33,34. To increase the stiffness of self-assembling peptide gels, several 

approaches have been attempted by combining with either peptides or polymers of opposite 

charge).17,31 For example, different types of self-assembling peptides have been combined with 

sulfated polysaccharides, including heparin10,12,35, chondroitin sulfate36 and fucoidan37, to obtain 

gels with increased mechanical strength compared to gels crosslinked with multivalent ions. 

However, the storage modulus obtained did not exceed 50 kPa, whereas the mechanical 

properties of PSS/PA hydrogels can be in the range of 200 Pa – 200 kPa (Figure S3). 

To investigate the stability of the PSS/PA hydrogels in aqueous environments of different ionic 

strength, they were incubated either in water or phosphate buffered saline (PBS) over a period of 

28 days. The stability was assessed by monitoring the release of PSS into the medium. 1 MDa 

PSS forms more stable hydrogels compared to the lower Mw PSS. As seen in Figure 3-A, the 70 

kDa PSS/PA hydrogels dis-integrated by day 7 in PBS. Moreover, the amount of PSS released to 

the medium was minimal for both hydrogels over 28 days incubation period (Figure 3-B).  

The differences in stiffness and stability of the hydrogels can be explained through the PSS Mw 

(chain length) and the number of sulfonate groups available for interacting with the PA. The 
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higher stability of 1 MDa PSS/PA gels can be due to higher number of sulfonate groups (also 

confirmed by mapping analysis of the hydrogels (Figure S5) available for interaction with PA 

fibers leading to a robust intertwined network. However, in the lower Mw PSS/PA gels (70 kDa 

PSS/PA), the shorter chain length (hence less sulfonate groups) resulted in a less entangled 

network leading to decreased stability.  

 

Figure 3. Stability of the hydrogels in water and PBS at 37 ˚C. (A) Comparison between 1 MDa PSS/PA 

hydrogel with 70 kDa PSS/PA (with disintegration by day 7 in PBS). (B) Graphs showing the PSS release 

from 1 MDa PSS/PA (red bars) and 70 kDa PSS/PA (green bars) hydrogels when incubated in water or 

PBS over 28 days. 

 

Nanostructure and mineralization of the PSS/PA hydrogels. Yoreo et al. showed that a PSS 

matrix was able to induce the biomimetic nucleation of calcium carbonate minerals.18 Negatively 

charged groups in biomacromolecules, including carboxylic, phosphate and sulfate groups, play 
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a crucial role in the nucleation of calcium-based minerals.18,38,39 In a similar way, we hypothesize 

that the presence of sulfonate groups in PSS/PA hydrogels could induce the nucleation of 

calcium phosphate mineral as precursor of hydroxyapatite. In order to test this hypothesis, 

hydrogels were first incubated in a simulated body fluid (SBF) for a period of 14 days.20,21 After 

14 days incubation, samples were analysed by SEM and EDX, which showed the formation of 

calcium phosphate minerals over the hydrogel surface (Figure S6). However, SBF is a highly 

saturated medium, which does not resemble a controlled biomimetic mineralization. Thus, the 

hydrogels were incubated in culture medium over a period of 21 days (3-weeks, minimum time 

period for osteogenic differentiation).40 Samples were incubated in four different culture media: 

DMEM without FBS (DMEM-FBS), DMEM with 10% FBS (DMEM+FBS), osteogenic 

differentiation medium without FBS (ODM-FBS) and osteogenic differentiation medium with 

10% FBS (ODM+FBS) at 37 C and 5% CO2 to replicate culture conditions. Mineral nucleation 

was detected by day 7 covering the hydrogels surface (Figure 4), but traces of calcium 

phosphate mineral were also observed in the hydrogel interior (Figure S7, SEM images of 

hydrogel cross-section). Minerals are spherical in morphology and deposited alongside the 

fibres; though it is also possible to get high concentrated areas of minerals (70 kDa PSS/PA, 

D21). The ratio of Ca/P changed with incubation time and is also different in the two hydrogel 

systems. In 1 MDa PSS/PA hydrogels, the Ca/P is close to hydroxyapatite (Ca10(PO4)6(OH)2, 

1.67) by day 7, whereas in 70 kDa PSS/PA it takes up to 21 days to get a Ca/P of 1.63 (Figure 

4). PEDOT/PSS scaffolds without cells and incubated in proliferating medium (7 days) first, 

followed by 21 days in osteogenic medium, showed calcium deposition only after 28 days with 

no significant calcium accumulation by day 7.19 Calcium-phosphate nodules were seen and 

detected in 1 MDa PSS/PA gels after 7 days (Figure 4). The nanofiber structure of the PSS/PA 
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gels may provide a more biomimetic template for hydroxyapatite mineralization. 

 

Figure 4. SEM images of mineralized hydrogels (1 MDa PSS/PA and 70 kDa PSS/PA) incubated in 

DMEM-FBS medium at different incubation periods. 

 

The effect of serum and osteogenic inducers in the medium on the mineralization of the gels was 

also investigated and Figure 5 summarises the data from these studies. Osteogenic medium 

contains β-glycerophosphate, an organic phosphate that can be cleaved by alkaline phosphatase 

(ALP) enzyme secreted by osteoblast cells, into free phosphate ions necessary for hydroxyapatite 

mineralization. The time-dependent formation of PO3
2- by ALP is expected to prevent rapid and 

uncontrolled mineral precipitation in solution.41 Once phosphates are cleaved, they can be 

incorporated in the calcium-nucleated PSS/PA nanofibers. The Ca/P ratios of the mineral formed 

on 1 MDa PSS/PA hydrogels incubated in basal medium with and without FBS (DMEM-FBS 
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and DMEM+FBS) is close to tetra calcium phosphate (TTCP, Ca4(PO4)2O) with higher calcium 

content compared to the osteogenic media (ODM-FBS and ODM+FBS), which are calcium-

deficient hydroxyapatite. This indicates that minerals with different resorbability can be formed 

on these gels depending on the mineralizing medium. Furthermore, these studies were performed 

without cells, which are expected to play a role in the mineralization process, by secreting ALP, 

while here the release of phosphate depends on the ALP present in FBS. 

 

Figure 5. Mineralization of hydrogels in four different media (DMEM-FBS, DMEM+FBS, ODM-FBS 

and ODM+FBS) after 21 days of incubation shown by SEM micrographs and EDX spectra; (A) 1 MDa 

PSS/PA, (B) 70 kDa PSS/PA. 

The storage modulus of the gels after mineralization in the different media tended to increase, 
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but differences were not statistically significant for most of the samples tested (Figure S8). To 

further characterize the minerals formed on the hydrogels, samples were heated up to 700 C to 

completely burn the organic phase (peptide and polymer components). The remaining inorganic 

component (mineral,  4.5%, Figure S9) was analysed by FTIR (Figure S10). Several bands 

corresponding to amines in the peptide’s structure can be assigned in the spectrum of the non-

mineralized hydrogel before heating, including amide I (1635–1670 cm-1), amide II (1545 cm-1) 

and amide III (1400, 1445 cm-1). Moreover, the characteristic bands of SO3
- are visible with a 

slight shift from 1187 to 1162 cm-1 and from 1043 to 1033 cm-1 corresponding to the asymmetric 

and symmetric stretching vibrations, respectively.42 The styrene ring of PSS overlapped with 

amide I band of PA hence giving an intense peak at 1613 cm-1. In the heated samples, the bands 

corresponding to the peptide disappeared and the bands associated with minerals are more 

visible, such as HPO4
2- (1090–1100 cm-1), 3 PO4

3- (1045, 603, and 570 cm-1), and  1 PO4
3- (960 

cm–1).43 However, the heating of samples above 600 ˚C can convert amorphous calcium 

phosphate into poorly crystallized apatite. 

Based on the mechanical properties and mineralization capacity of the PSS/PA hydrogels, 1 

MDa PSS/PA hydrogels were selected for further studies considering their greater stability and 

stiffness and faster mineralization capability (7 days). 

 

Protein loading and release. Binding of GFs to the ECM takes place through different forms. 

One of the most prominent form is through electrostatic interactions with sulfated GAGs.44 Most 

GFs, such as basal fibroblast growth factor (bFGF, also known as fibroblast growth factor-2, 

FGF-2) and BMPs (bone morphogenetic proteins) are basic proteins having net positive 

charges.45 Considering the role of sulfate groups in GF binding, PSS/PA hydrogels could also 
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serve as depots to store basic proteins and control their release for cell activation.  

Two model proteins of different charges and sizes were chosen to study the ability of the PSS/PA 

gels for protein retention and release. Bovine serum albumin (BSA) is negatively charged at 

physiological pH (pI = 5.4) and has a size of Mw: 67 kDa46. Based on its negative charge, the 

protein was incorporated in the hydrogel by mixing it first with PSS solution (to avoid 

interaction with positive PA) and then assembled with PA. As positively charged protein, 

lysozyme (pI = 11.4) with a size of 14 kDa46 was used and first mixed with PA before self-

assembly with PSS. Because self-assembly (gelation) occurs within 5 minutes at physiological 

conditions, the proteins can be entrapped inside the hydrogel without compromising their 

structure. To confirm the efficient incorporation of the proteins in the hydrogels, both proteins 

were labelled with fluorescent dyes to allow their visualization and distribution in the hydrogel 

by confocal microscopy and monitoring their release by fluorescence spectroscopy.  

The possibility of loading multiple proteins in the PSS/PA gels was first investigated. Proteins 

were labelled with different fluorophores and their distribution in the hydrogel visualized by 

confocal microscopy (Figure 6). Green fluorescence (BSA-FITC) is observed in the form of 

nanofibers, indicating preferential interaction with PA, while the red fluorescence (lysozyme-

rhodamine) appears mostly as clumps (potential interaction with PSS). EDX mapping of sulfur 

(Figure S5) shows a uniform distribution of sulfonic groups on the hydrogel.  
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Figure 6. Confocal microscopy images of 1 MDa PSS/PA hydrogels loaded with both BSA-FITC and 

lysozyme-rhodamine B.  

 

To study the protein release, BSA and lysozyme were labelled with same fluorophore to 

eliminate the potential effect of fluorophore on the release pattern. In the first 24 hours of 

incubation, PSS/PA hydrogels released only 5% of BSA reaching 11% after 30 days (Figure 7-

A,B). On the contrary, the amount of lysozyme released was higher, with 38% released after 30 

days. The diffusion of proteins through hydrogels can be controlled through the physical (mesh 

size) and/or the chemical (affinity) characteristics of the hydrogel.47 Protein (e.g. BSA) release 

from hydrogels typically occurs within 1-3 weeks depending on the type of hydrogel and 

crosslinking density48,49, even from sulfated HA hydrogels7, indicating low protein retention. 

Both components of the PSS/PA gel are charged (Figure S2) providing binding sites for proteins 

through electrostatic interactions. Lysozyme is smaller in size compared to BSA and SEM 

images of PSS/PA hydrogels (Figure S5) show a very dense network of nanofibers. Considering 

similar affinity of the proteins for the gel components, release is expected to be controlled mainly 

by diffusion. The higher amount of lysozyme released compared to BSA is confirmed by the 

confocal microscopy images of the gels taken after the release experiment (Figure S11-A) 
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showing less fluorescence in the lysozyme-FITC loaded gels after 30 days. The slow release of 

BSA is further confirmed by the strong fluorescence exhibited by the gels loaded with BSA-

FITC after the release study and indicates strong interactions with gel components, probably with 

PA nanofibers. The effect of electrostatic interactions between proteins and self-assembling 

peptide hydrogels of high charge density was shown to modulate their release patterns.50 

Minimal protein release (7% over 28 days) was observed when unlabelled lactoferrin (77 kDa, pI 

= 8.4-9.0, positively charged at pH 7.4) was incorporated into peptide gels bearing a negative 

charge, while negatively charged or neutral proteins were completely released over 5 days. 

Appel and co-workers reported extended BSA release up to 160 days from neutral 

supramolecular polymer gels, compared to lysozyme (40 days). The hydrogels were formed 

through host-guest interactions of poly(vinyl alcohol) modified with viologen (first guest) and 

the macrocyclic host cucurbit[8]uril and hydroxyethyl cellulose functionalized with a naphthyl 

moiety (second guest).51 For this hydrogel system, protein release is mainly controlled by the 

size of the protein and hydrogel concentration that determines the mesh size. With respect to 

GFs, incorporation and controlled release of recombinant FGF-2 (Mw = 17.2 kDa, pI = 9.7)14 has 

been described using heparin-containing carriers. For example, self-assembling heparin/PA (2/3 

wt.%) gels showed the ability to retard the release of FGF-2 from 100% in control gels (without 

heparin) to 57.1% after 10 days and this delayed release has been reported for other self-

assembling heparin/peptide11 and heparin-containing9,49 hydrogels. Considering that both 

lysozyme and FGF-2 are basic proteins with similar Mw, one can assume similar release of FGF-

2 from PSS/PA gels. Protein release results reveal the potential PSS/PA hydrogels for the 

continuous delivery of GFs or other proteins (e.g. antibodies) for considerable periods of time 

(long-acting release) to achieve robust therapies. 
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Figure 7. Cumulative release (mean  SD) of BSA-FITC and lysozyme-FITC loaded in 1 MDa PSS/PA 

hydrogels at early time points (A, 24 h) and for extended periods of time (B, 30 days). Cumulative 

lysozyme activity release (mean  SD) from the hydrogels within the first 24 h (C) and over a month (D).  

 

The ability of the PSS/PA gels to maintain the bioactivity of entrapped proteins was assessed by 

measuring the activity of lysozyme released from the gel (Figure 7-C, D). Increasing enzyme 

activity is observed as function of time, reaching 20% of initial activity after 30 days. 

Considering similar amounts of enzyme released (as measured for the lysozyme-FITC), a 50% 

loss in the enzyme activity is estimated (Figure S11-B). However, when lysozyme is incubated 

in buffer only, it loses 80% of its initial activity after 14 days, similar to what was found by 

Appel,51 and indicates the protective effect of PSS/PA gel against enzyme deactivation. 

Cell Viability. Cytotoxicity of the hydrogels was assessed with human bone marrow-derived 
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mesenchymal stem cells (hMSCs). hMSCs were encapsulated in the hydrogels without or with 

the cell-adhesive sequence RGDS: PSS/PA hydrogel and PSS/PA-RGDS hydrogel (PSS/PA 

hydrogel containing 10% of RGDS-containing PA, Figure S1-D). Incorporation of 10% of PA-

RGDS in the hydrogel formulation is aimed at promoting cell adhesion. Characterization of the 

mechanical properties of the resulting hydrogels did not show significant differences compared 

to plain gels (without 10% of PA-RGDS, Figure S12).  

 

Figure 8. Viability of hMSCs encapsulated in 1 MDa PSS/PA hydrogels, with or without RGDS, for 1 

and 3 days. (A) Confocal images of calcein-stained live cells and ethidium homodimer-stained dead cells; 

(B) Cell viability in the hydrogels compared to 2D culture. (C) Cell density in the hydrogels remained 

constant from day 1 to day 3. (No significant difference between the groups) 

 

Figure 8-A illustrates the distribution and morphology of the cells inside the hydrogels, as well 

as the overall viability, with live cells stained green and dead stained red (hydrogels showed 

auto-fluorescent in the red channel, hence the red background in the images). The viability 

increased slightly in both hydrogels over 3 days of culture compared to 2D culture (Figure 8-B), 
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but statistical analysis showed no significant difference between the groups. This result 

confirmed that the gelation time (without DMEM) did not affect the cell viability and the 

hydrogel fabrication method is compatible for the encapsulation of cells (Figure 8-C). Cells 

appear round which is typically seen when encapsulated in hydrogels.48 The interaction of cells 

with the hydrogel nanofibers was also analysed by SEM (Figure 9). Cells are initially entrapped 

inside the dense nanofibrous structure of the gels, exhibiting round-shaped morphology even 

after 3 days of culture. However, in both PSS/PA and PSS/PA-RGDS gels, few cells were found 

with spread morphology. Similar findings were previously observed when culturing human 

dermal fibroblasts within self-assembled peptide capsules. By changing the nanofiber density, 

fibroblasts could recover their typical extended morphology.23 Matrix stiffness increases with 

matrix density and PSS/PA hydrogels with lower stiffness can be formed (Figure S3) and used 

to test the effect on cell morphology and differentiation. Taken together, the positive cell 

viability results and SEM analysis suggest that PSS/PA hydrogel can provide a biomimetic 3D 

environment for growing stem cells and studying their differentiation into different lineages. 
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Figure 9. SEM micrographs of 1 MDa PSS/PA hydrogels showing cells embedded in the dense nanofiber 

network at day 1 and their spreading at day 3. 
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Conclusions 

Self-assembly of a known polyelectrolyte (PSS) with a PA of opposite charge in physiological 

conditions resulted in self-supporting stable hydrogels. The obtained hydrogels have nanofibrous 

structure and mechanical properties of stiff materials, which can be tuned by varying the 

concentration of individual components. The negative sulfonate groups of PSS provided 

nucleation points for calcium phosphate deposition. Depending on the mineralization medium 

used, different types of calcium phosphate mineral were formed. These hydrogels also showed 

the ability to retain and control the release of charged proteins, while preventing their rapid 

deactivation. Although preliminary, the positive results from cell culture studies suggest the 

potential of the PSS/PA hydrogels as 3D environments for cell differentiation either in vitro or in 

vivo. 

  



 29 

Supporting Information Available 

The following files are available free of charge. 

Figure S1: Characterization of peptide amphiphiles used this study 

Figure S2: Zeta () potential of PA and PSS solutions 

Figure S3: Storage modulus (G’) PSS/PA hydrogels in function of their composition  

Figure S4: Ratio of G’’ to G’ (tan()) of PSS/PA hydrogels 

Figure S5: SEM/EDX analysis of PSS/PA hydrogels 

Figure S6: SEM/EDX of SBF-incubated hydrogels 

Figure S7: SEM images of hydrogel cross-sections after incubation in DMEM-FBS 

Figure S8: Storage modulus (G’) of PSS/PA hydrogels after mineralization 

Figure S9: TGA analysis of PSS/PA hydrogels after incubation in mineralization medium 

Figure S10: FTIR spectra of the hydrogels before and after burning 

Figure S11: Confocal microscopy images of PSS/PA hydrogels loaded with labelled proteins 

before and after the release experiments; comparison between protein release and activity for 

lysozyme; decay of lysozyme activity over time at 37 ˚C when free in solution.  

Figure S12: Mechanical characterization of 1 MDa PSS/PA-RGDS hydrogel 
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