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Abstract—The question of whether the correct algorithm is
used for the problem at hand usually comes at the end of
execution, when the algorithm’s ability to solve the problem (or
not) can be verified. But what if this question could be answered
in advance, with enough notice to make changes in the approach
in order for it to be more successful? This paper proposes a
general agent performance prediction system, tested in real time
within the context of the General Video Game AI framework.
It is solely based on agent features, therefore removing potential
human bias produced by game-based features observed in known
games. Three different models can be queried while playing the
game to determine whether the agent will win or lose, based on
the current game state: early, mid and late game feature models.
The models are trained on 80 games in the framework and tested
on 20 new games, for 14 variations of 3 different methods. Results
are positive, indicating that there is great scope for predicting
the outcome of any given game.

I. INTRODUCTION

Many researchers have approached the problem of General
Video Game Playing in the last years, partly encouraged by the
proliferation of benchmarks like the General Video Game AI
(GVGAI; [1]) framework, the Arcade Learning Environment
(ALE; [2]) and others. In the different studies, authors employ
either a single or a combination of techniques in order to tackle
this complex problem, in which an agent must be able to play
any within a collection of games. Known examples are Mnih et
al. [3] work on the Atari framework or the several times winner
of the GVGAI competition, YOLOBOT [4], respectively.

A recent survey in the uses of GVGAI for research and
education [5] highlights a commonality on multiple studies:
not only most approaches rarely surpass 25% of victories
across the set of games tested (with just some approaches
reaching 50% in particular games and settings), but also the
victory count is accumulated in specific games. Some games
in the framework are too hard for any of the GVGAI agents
developed so far, and it remains an open question as to whether
they are too hard for a general approach.

This is something that may be expected a priori, but as
D. Ashlock et al. [6] suggest in their work, a hyper-heuristic
approach or a portfolio of agents should be able to overcome
this problem. However, finding the right approach for the right
game, especially if that game is unknown, is a hard challenge.

Several previous studies suggest clustering games using
game features or performance of agents on them [6], [7], [8].
In general, this clustering can be used to select which agent,
from a collection of different techniques, should be used to
play the game at stake. This is a reasonable approach, but little

thought has been put so far into analysing if the algorithm
should be changed once the game has already started. The
technique used in a particular game may need to be discarded
in favour of another one, either because the choice was wrong
in the first place, or because the game conditions have changed.

In fact, it is common for a human who is playing a game
to have a certain intuition about how well are they doing mid
way through it. A player in Space Invaders can see, before
losing the game, that the presence of too many aliens close
to the ground is a bad sign. Having most pellets still to be
eaten in Pac-Man with no power pills left in the level can also
be an indication of the likely (negative) outcome of the game.
Our interest is to see if it is possible to give this ability to a
general agent, allowing the possibility of changing technique
before it is too late in the game.

The use of game features, however, poses an additional
problem: including the number of pills or aliens as features is a
very specific approach. In fact, even considering GVGAI terms
(as presence of Non-Player Characters, portals, resources, etc.)
is not general enough. This does not only tailor the methods
to GVGAI (which may be hard to avoid when working with
a specific framework), but also to the games the algorithm
designer has seen in the past. Other features, however, can be
more resilient to this bias, such as agent-based features [9]:
decisiveness of action selection, speed of convergence to a
recommendation or analysis of the fitness landscape.

The work presented in this paper explores the idea of
designing a game outcome predictor. In particular, we propose
building predictors that only focus on agent-based features, in
order not to bias the prediction towards already seen games.
The question this paper tries to answer is if it is possible to
train a model solely on agent experiences, so it is able to
estimate the probability of victory at the current state for any
game within the GVGAI framework.

II. RELATED WORK

There is extensive literature on extracting various AI game-
play measures. Traditionally, these methods are predominantly
used in the area of Procedural Content Generation in order to
assess the quality of a level or game created automatically.

Liapis et al. [10] create models of player types called
“procedural personas”, which then they use to automatically
generate levels of a roguelike puzzle game. For this purpose,
they identify several features that the evolved agents will focus
on: the number of monsters they kill, the number of treasures
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collected or reaching the exit of the level. Using these different
personas to automatically play-test levels, the authors are able
to generate interesting levels which highlight agent strengths.

Some researchers focus more on the area of human-
computer interaction and how measures extracted from game-
play can be used in predicting various aspects characterizing
automatically generated games (engagement, frustration and
challenge in [11]; or human enjoyment when playing against
different ghost teams in the game Ms Pac-Man [12]). The
content and game-play features highlighted by Shaker et
al. [11] in the platformer game Super Mario Bros are directly
applicable to AI game-play as well as humans: number of
enemies, number and width of gaps in the level, enemies
placement, boxes, power-ups and events triggered during play.

Isaksen et al. [13] define several metrics characterising dice
games: win bias (the difference between the probabilities of
player A winning a dice battle and player A losing the battle),
tie percentage (the probability of a tie in a given battle) and
closeness (how much the result of the battle centered around
a tie). Volz et al. [14] evaluate how close the game ended
as well in the card game Top Trumps with the objective of
automatically balancing the game.

However, the features explored by these authors are game-
specific and applying these methods to other domains is
not straightforward. When designing games, Browne and
Maire [15] looked at 57 different criteria in judging an evolved
game split into 3 categories, intrinsic, viability and quality. The
authors use general game-playing agents to test their games,
which are written in the Ludi Game Description Language.
Most of the quality features analysed are resultant from AI
game-play, such as depth, drama, decisiveness or uncertainty.
Some of these metrics, where possible to translate to single-
player games, were adapted for our study.

Several works move away from the area of PCG and
instead focus on extracting measures of player behaviour to
specifically tune game-playing agents or perform a deeper
performance analysis than the typical win rate investigation.
Khalifa et al. [16] used features from human game-play data
to tune a human-like Monte Carlo Tree Search (MCTS) player.
Their features mostly focused on actions, such as action
repetition, change frequency or pauses, with an additional map
exploration metric. The authors applied the features extracted
from human data to tune a Monte Carlo Tree Search agent on
3 different games in the General Video Game AI framework
(GVGAI), with mixed results.

More general measures for better analysis are depicted by
Volz et al. in [9]. Their prototype implementing the measures
for live game-playing agent analysis also uses the GVGAI
framework, allowing for a general application of the method
on several different games. Some of these metrics, such as
decisiveness or action entropy, were included in this study,
excluding multi-player or comparison metrics.

Some researchers use such metrics for machine learning
tasks. For example, Bontrager et al. [7] cluster the games in the
GVGAI framework based on the performance of several agents
submitted to the corresponding competition. In this case, the

performance of an agent is simply characterized by the win
rate, which is shown to differ between the players. The authors
signify that some agents possess skills useful in certain tasks,
while other agents lack or make up for them in different ways.

Mendes et al. [8] used this conclusion to construct a hyper-
heuristic agent. The authors extracted several game features
(number and type of NPCs, resources available, map dimen-
sions and number and types of other sprites) and used a
classification method to determine which AI agents, selected
from a subset of GVGAI competition entries, achieve highest
win rates when specific game features or combination of
features are present in a new game tested. The algorithm then
decides which agent to query for a solution depending on the
recommendation of the classifier (a Support Vector Machine
and a Decision Tree). The agent selected will play the entire
game with no changes.

A similar approach was employed by Horn et al. in [17] for
AI hybrid evaluation (excluding the hyper-heuristic construc-
tion step). They propose a game difficulty estimation scheme
based on game features (NPC types, puzzle elements, pathfind-
ing requirements or traps). These are arguably more open to
human bias, as each metric is evaluated manually. Although
the game difficulty features identified do not correspond to
agent win rates, the authors carry out an analysis which gives
a deeper insight into reasons for agent performance levels.

These works are, however, based on game features as
defined by human knowledge on the existing data set. This
paper proposes a game win predictor based solely on agent
experiences, aiming to remove potential human bias resultant
from designing features seen on known games.

III. BACKGROUND

A. General Video Game AI

The domain chosen for this study is the General Video
Game AI (GVGAI) framework [18], which allows for general
video-game playing agent testing on a wide range of different
games. The diversity in game features, difficulty and different
agent performance is showcased in the previous section, which
highlights it as an appropriate environment for general agent
testing. As opposed to other frameworks focused on the area
of General (Video) Game Playing, GVGAI does not make
the game ruleset available to the AI agents. Instead, the
information given contains the current game state with the
sprites present in the level, the avatar the agent is controlling,
the action set available, the history of events up until that
game tick and the current game score. Additionally, in the
planning tracks, agents have access to a non-deterministic
Forward Model (FM), which they may use to simulate possible
future states. All information is offered to the agents through
Java objects. All games in the framework are real-time, giving
1 second initialization time and 40 milliseconds decision time
at every game tick. There are 100 single-player grid-physics
games available in the framework as of March 2018, all of
which are used in this study for a large scale experiment.



B. Game-playing agents

This section describes the 3 methods that the game-playing
agents used in this study are based on.

1) Random Search (RS): This agent uniformly samples at
random action sequences of length L within the allocated
budget and chooses for play the first action in the best solution
found. In order to evaluate a sequence, the FM is used to
simulate through the actions, in turn, until the end of the game
or the end of the sequence is reached. The value of the final
state is computed using a heuristic (see Equation 1, where H+

is a large positive integer number and H− is a large negative
integer number), this becoming the value of the solution.

f = score +

{
H+, if loss

H−, if win
(1)

2) Rolling Horizon Evolutionary Algorithm (RHEA): This
agent is one of the promising methods in the domain of
General Video Game Playing, as showcased in [19]. In its
vanilla form, it randomly initializes a population of size P with
individuals of length L, which it then evolves over several gen-
erations by applying various evolutionary techniques, such as
uniform crossover and uniform 1-bit mutation. One individual
represents a sequence of actions, which is evaluated similarly
to the RS procedure: the FM model is used to simulate through
the sequence of actions and the final state is evaluated with the
same heuristic described in Equation 1. The first action of the
best individual found at the end of the evolution is selected.

Previous work is used to select the agents employed in
this study, the best of each being chosen. As a result, vanilla
RHEA [20], EA-MCTS [21] and EA-Shift [19] form the subset
of RHEA variations. EA-MCTS employs a different seeding
method, using the solution provided by a Monte Carlo Tree
Search agent (awarded half the thinking budget) to generate its
initial population. EA-Shift focuses on Monte Carlo roll-outs
added at the end of individual evaluation, as well as a shift
buffer applied for population management (the population is
not discarded and reinitialized at every game tick, but instead
shifted to the left and new random actions are added at the
end of each individual). Additionally, we add EA-All for
completeness, which combines EA-Shift with EA-MCTS.

3) Monte Carlo Tree Search (MCTS): This agent is the
most dominant method in GVGAI, many competitors choosing
it as the basis for their entry. A comprehensive survey of
MCTS techniques can be found in [22]. MCTS builds an
asymmetric tree to make its choices, relying on statistics
gathered from several simulated play-throughs. Each iteration
that adds to the tree statistics begins by navigating down
the tree using the tree policy (Upper Confidence Bound for
Trees with an exploration constant of

√
2 for the agents used

in this study, aiming to balance between exploration and
exploitation). When it finds a node not yet fully expanded,
a new child of this node is added to the tree, by selecting
a new action to play from this game state. A Monte Carlo
simulation (or roll-out) is run from the newly added child until
the end of the game or a depth L is reached. The final state

is evaluated with the same heuristic from Equation 1 and the
value is backed up the tree, updating all nodes visited during
this iteration. In our implementation, the nodes only store
statistics and not the actual game states, the FM being used to
simulate through the tree at every iteration. A selective window
containing W iterations is used for analysis as the equivalent
of RHEA population size P . The most visited action at the
end of the process is selected for play.

F1 = 2 · precision · recall
precision+ recall

(2)

C. Classification

Due to the high variety of the games in the GVGAI frame-
work and the low overall performance of the general agents
(most games remain too difficult to be solved), as highlighted
in the literature review, the F1-Score (see Equation 2) will be
reported as to the quality of the classifiers employed in this
study. This represents the harmonic average between precision
and recall, 1 signifying the best value and 0 the worst. It is
meant to be a better measure of classifier quality than accuracy
when there is an imbalance in data (in this case, a majority of
games resulting in a loss, see Table I) [23].

IV. DATA SET

To obtain the set of agents used to generate the data
set, 3 roll-out values L were tested for RS (10, 30, 90); 2
parameter sets were tested for all RHEA variations (P=2,L=8
and P=10,L=14); 3 parameter sets were tested for MCTS
(W=2,L=8; W=10,L=10 and W=10,L=14).

All 14 algorithm variations described previously were run
on all 100 games publicly available in the GVGAI Framework,
20 times on each of the 5 levels, being given a budget of 900
FM calls. Each run produced 2 log files, recording information
about the agent inner processing, as well as its actions played
and game scores, at every game step, in addition to the final
game results (win/loss, final score and number of game ticks).

Data set and processing scripts are publicly available1. On
each game, Formula-12 points are awarded attending to a
ranking determined by win rate. The first 10 ranked entries
receive 25 points, second 18, then 15, 12, 10, 8, 6, 4, 2, 1 and
0 for the 11th and below positions. Points across games are
summed up for an overall ranking, shown in Table I.

A list of all the features extracted can be found below.
Features φ2, φ8, φ9, φ10, φ11 and φ12 compute averages from
the beginning of the game up until the current tick t. Features
φ5, φ6, φ11 and φ12 rely on the FM. Only agent features were
used in this study, with the exception of the game score:

φ1 Current game score
φ2 Convergence: Iteration number when the algorithm
found the final solution recommended during one tick. A
low value indicates quick and almost random decisions.
φ3 Positive rewards: Count of positive scoring events.
φ4 Negative rewards: Count of negative scoring events.

1https://github.com/rdgain/ExperimentData/tree/GeneralWinPred-CIG-18
2Not to be mistaken with F1 accuracy measure for classifiers.



# Algorithm Points Avg. Wins
1 10-14-EA-Shift 1225 26.02 (2.11)
2 10-RS 898 24.33 (2.13)
3 2-8-EA-All 888 23.95 (1.98)
4 30-RS 885 22.49 (2.02)
5 2-8-EA-Shift 866 24.54 (2.00)
6 14-MCTS 780 24.29 (1.74)
7 10-14-EA-All 695 22.66 (2.02)
8 10-14-RHEA 664 23.23 (2.08)
9 10-MCTS 652 24.01 (1.65)
10 2-8-EA-MCTS 621 23.98 (1.73)
11 10-14-EA-MCTS 618 23.99 (1.80)
12 8-MCTS 594 23.42 (1.61)
13 90-RS 457 16.31 (1.67)
14 2-8-RHEA 257 18.33 (1.77)

TABLE I: GVGAI-style Formula-1 point ranking of all meth-
ods. Type and configuration (roll-out length L if one value,
population size P and roll-out length L if two values) are
reported, followed by the sum of Formula-1 points across 20
games and the average win rate.

φ5 Success: The slope of a line over all the win counts.
Win count increases when any solution sees the end of the
game with a win, at any point during search. A high value
indicates the increase in discovery of winning states.
φ6 Danger: The slope of a line over all the loss counts.
Loss count increases when any solution sees the end of
the game with a loss, at any point during search. A high
value indicates the increase in discovery of losing states.
φ7 Improvement: The slope of a line resultant from all
best fitness values plotted over game tick. A high value
indicates good fitness improvement.
φ8 Decisiveness: Shannon entropy (SE) over the number
of times each of the possible actions was recommended (it
was the first action of a solution in the final population
or analysis window). In all cases of distribution-based
features, a high value suggests actions of similar value;
the opposite shows some to be dominating.
φ9 Options exploration: SE over the number of times
each of the possible actions was explored (it was the first
action of a solution at any time during search). A low
value shows an imbalance in actions explored.
φ10 Fitness distribution: SE over fitness per action.
φ11 Success distribution: SE over win count per action.
φ12 Danger distribution: SE over loss count per action.

The full feature file (processing all games and algorithms for
global classifiers) took approximately 2.5 hours to generate,
from 26GB of raw metrics data split over 281.4k files (Dell
Windows 10 PC, 3.4 GHz, Intel Core i7, 16GB RAM, 4 cores).

Figure 1 shows the pairwise correlation between the features
extracted (using the Pearson correlation coefficient), in a
comparison between the early (first 30% of game ticks) and
late (last 30% of game ticks) phases of the games. Differences
are small, but they do exist. An aspect worth highlighting is the
higher correlations in the bottom right corner in the late game
phase versus the early game phase (i.e. the success distribution
appears to increase correlation with all other features).

Fig. 1: Feature correlation early game (left, 0-30% of all
games) and late game (right, 70-100% of all games)

Another interesting positive correlation that only appears
in the late game phase is that between the sense of danger
and the convergence, suggesting agents take longer to settle
on their final decision when surrounded by possible losses.
The case of one action appearing to be dominating leads to a
persistent negative correlation between convergence and fitness
distribution. This suggests that agents are unlikely to change
their decision if one action is deemed significantly better than
the rest and try a less promising move.

V. PREDICTIVE MODELS

For the purpose of these experiments, all data sets were
randomly split 80/20 in training/test subsets.

The study presented in this paper aims to build several
classifier models from agent features extracted, which would
predict a win or a loss during play of a new game. We also
show that the system is robust enough to handle new agents
with significantly different play styles as well.

It takes approximately 10 seconds to process a full feature
file and split the data into train and test, another 10 seconds to
train a global model on a full feature file (or 1 minute if cross
validation is used). Predicting the outcome of 28000 instances
takes approximately 1 minute, the equivalent of 2.26ms per
instance. As the data used in this study is publicly available,
adapting the methods to different problems or agents would
only involve extracting the relevant features from the newly
introduced agents or problems.

A. Baseline

The baseline model all our classifiers are compared against
is a simple rule based predictor incorporating human knowl-
edge. In classic arcade games and most GVGAI games,
gaining score is a good thing and often means the player is on
the right path to winning if they increase their score. This idea
is implemented as described in Equation 3, which compares
the count of positive scoring events recorded to the count of
negative events. This classifier’s performance on the test set
is shown in Table II, where it can be observed that it reaches
an F1-Score of only 0.59 despite a high precision (0.70). This
model will be referred to as Rg in the rest of this paper.

ŷ =

{
win if φ3 > φ4

lose otherwise
(3)



Precision Recall F1-Score Support
Loss 0.83 0.52 0.64 20500
Win 0.35 0.70 0.46 7500
Avg / Total 0.70 0.57 0.59 28000

TABLE II: Global rule based classifier report. Global model
tested on all game ticks of all instances in the test set.

Precision Recall F1-Score Support
Loss 1.00 0.99 0.99 20500
Win 0.97 0.99 0.98 7500
Avg / Total 0.99 0.99 0.99 28000

TABLE III: Global AdaBoost classifier report. Global model
tested on all game ticks of all instances in the test set.

φ1 0.24 φ2 0.04 φ3 0.08 φ4 0.06
φ5 0.2 φ6 0.1 φ7 0.12 φ8 0
φ9 0.06 φ10 0.02 φ11 0.02 φ12 0.06

TABLE IV: Feature importances extracted from global model.
φx represents a feature and its associated importance.

B. Classifier selection - global model

Seven classifiers (with default hyper-parameters if not spec-
ified) were trained and tested for proof of concept and classi-
fier analysis. These are K-Nearest Neighbors (5 neighbours),
Decision Tree (5 max depth), Random Forest (5 max depth,
10 estimators), Multi-layer perceptron (1 alpha), AdaBoost-
SAMME [24], Naive Bayes and Dummy (simple rule decision
making, very poor general performance to be used as another
possible baseline). All classifiers are used as per their imple-
mentation in the Scikit-Learn Python 2.7.14 library [25].

Cross-validation with 10 folds was used during training
to assess performance, the classifiers obtaining 0.95, 1.00,
0.98, 0.96, 1.00, 0.95 and 0.66 accuracy during validation,
respectively. Both AdaBoost and the Decision Tree classifier
achieved high accuracy values during validation and test (0.99,
see Table III for its performance measures) and were deemed
equal. AdaBoost was selected as the main classifier for the
rest of the experiments presented in this paper.

Feature importances according to AdaBoost can be seen in
Table IV. It appears that the game score is most important
in distinguishing wins and losses, unsurprisingly, but it is
followed close behind by the number of wins seen by the
agents, the improvement in fitness and the sense of danger.
The decisiveness of the agents is considered to have no impact
in deciding the outcome of a game.

C. Model training

All games were split into logical phases for predictions at
various points in the games: early game (0− 30%), mid game
(30−70%) and late game (70−100%). Multiple models were
then trained for each of the phases, using agent features based
on metrics logged only in the ticks corresponding to each
interval. 3 different models resulted, referred to as Eg , Mg

and Lg , respectively, in the rest of this paper.
The performance of the models was analysed by testing

each on the 20 new games, on their corresponding interval

of game ticks. During training with 10-fold cross-validation,
they achieve 0.80, 0.82 and 0.99 accuracy, respectively. During
test on the new games, they report accuracies of 0.73, 0.80
and 0.99 (0.70, 0.80 and 0.99 F1-Scores), respectively. These
results are satisfactory and allow for further exploration.

VI. LIVE PLAY RESULTS

For the experiments in this paper, we simulated live play by
extracting agent features from the log files for a range of ticks
(T = {100 ·a : ∀ a ∈ [1, 20] : a ∈ N}), all from the beginning
of the game until the current tick tested t ∈ T . Gameplay
from all 14 algorithms on the 20 test games (20 plays on each
of the 5 levels) was used to compute the final results. Each
model was tested on each of the feature files, being asked to
predict the game outcome every 100 ticks.

Simulated live play results can be observed in Figure 4. The
simple rule based model achieves a high performance in some
of the games and it proves better than the trained predictive
models (i.e. “Aliens”, “Defem”, “Chopper”, “Eggomania”). As
these are games with plenty of scoring events, it is unsurprising
that the simple logic of Rg works in these cases. However,
there are games where the trained models achieve much better
predictions (“Ghost Buster”, “Colour Escape” or “Frogs”). The
reward gain is not linear in these games, meaning the player
need not necessarily be phased by a temporary decrease in
score, or too optimistic as a result of score gains.

It is interesting to observe that the trained models do not
follow the expected curves (Eg being better in the early game
phase and then decreasing, Mg showing a spike in the middle
of the game and Lg offering good predictions only towards the
end of the game). Instead, the early game model appears to
have a generally low performance compared to the rest, which
can be explained by the limited information available for this
particular model. The late game model seems particularly
strong in games with very low win rate (“Fireman”, for
example, in which both Eg and Mg are predicting wins, yet
the overall win rate remains at 0% for this game).

It is most interesting to observe the games with close to
50% win rate, “Defem” and “Ghost Buster”. High F1-Score
values here indicate that the predictors are able to correctly
judge both wins and losses equally. And indeed, in both games,
the trained models achieve F1-Scores of over 0.8 only half
way through the game. Model Mg appears to excel in these
situations, meaning that it can recommend the game outcome
and possibly the better approach to be used.

It is important to highlight at this point the importance of
this great result: the predictor is able to foresee with high
reliability, after only a fourth of the game has been played,
if the agent is going to win or lose the game. In this case,
games that are either won or lost with the same probability
as a coin flip. And these are truly general models: trained
in different games, using only agent experience features. This
shows a great scope for the system’s use within hyper-heuristic
methods, as some of the algorithms tested in this study do
win at “Defem” and “Ghost Buster”. Devising a procedure
that determines which is that better method and switches to



Early-P Mid-P Late-P Total-M
Eg 0.22 (0.72) 0.42 (0.74) 0.49 (0.76) 0.38 (0.74)
Mg 0.29 (0.72) 0.57 (0.79) 0.71 (0.83) 0.53 (0.78)
Lg 0.01 (0.73) 0.05 (0.74) 0.22 (0.76) 0.09 (0.74)
Rg 0.42 (0.67) 0.47 (0.61) 0.46 (0.58) 0.45 (0.62)

Total-P 0.24 (0.71) 0.38 (0.72) 0.47 (0.73)

TABLE V: F1-Scores each model per game phase over all
games, accuracy in brackets. Each row is a model, each
column is a game phase. Highlighted in bold is the best model
on each game phase, as well as overall best phase and model.

it when the prediction is a loss is scope for future work, but
having a system that indicates if a change should be made is
the first step in that direction.

All predictive models were further analysed as to their
average quality considering all games. To this extent, table V
summarises F1-scores for all models on the different game
phases identified. The models are the same as discussed in
Section V-C, and they are tested in the same previous test
setting, with features extracted from the beginning of the game
until the current tick which falls at the half point in each game
phase (15%, 50% or 85% of the game ticks).

The results indicate the rule-based model to be giving
consistent average performance throughout the game phases,
being the best in the early phase with an F1-score of 0.42.
In the Mid and Late game phases, model Mg is the best,
achieving a 0.57 and 0.71 F1-score, respectively. Overall, the
best model is Mg with an F1-score average of 0.53.

It is not surprising that the Mg model is the best in its
respective game phase, and it is expected that the prediction
quality is generally lower in the Early game phase, when there
is less information available and it is harder to judge if the
agent’s performance is good enough or not. A significant result
extracted from the summarised data is that model Mg achieves
high (if not the best) F1-scores across all game phases,
indicating that the system can identify with high confidence
whether the agent is performing well or not and leaving open
the possibility of switching approaches appropriately.

VII. CONCLUSION

This paper presents work in extracting agent features from
AI gameplay in a generic setting, using the General Video
Game AI framework (GVGAI). Game-specific features are
specifically excluded in order to avoid potential bias intro-
duced by human knowledge of already known games. 14 total
variations of Rolling Horizon Evolutionary Algorithm, Monte
Carlo Tree Search and Random Search are used to generate
data on 100 games, playing 20 times each of the 5 levels. Three
different models corresponding to early, middle (mid) and late
game phases are trained on 80 randomly selected games and
tested on the remaining 20 through live play simulation and
repeated predictions every 100 game ticks.

The results obtained indicate that models are able to cor-
rectly predict in most cases the outcome of the game with
sufficient time before the end of the game to make appropriate
changes in the method employed. Throughout all experiments,

it is apparent that some models have better predictions in
specific games than others. Additionally, the mid-game phase
model proved to have the best overall performance, achieving
an F1-Score of 0.53 (0.78 accuracy) across all test games and
game phases. It is also the strongest model in the individual
mid and late phases, being bested in the early game phase only
by the simple rule predictor implemented (which incorporates
the human knowledge that gaining score leads to a win).

Regarding next steps, a hyper-heuristic agent will be built,
able to switch between algorithms appropriately while playing
the game, based on the predictions given by our system. The
task can be split into two: identifying which features need
improvement and which method leads to the desired behaviour.
A prediction explanatory system could be responsible for the
first part of this task and first steps towards this system are
presented in Figure 2, which uses the LIME system3. The
example provided is an explanation of the prediction of each
model at game tick 300 in “Frogs” level 0, when played by
2-8-RHEA. There is an obvious difference between features
and a clear signaling of which features currently indicate a
loss. Therefore, a hyper-heuristic method could make use of
this analysis to correct the loss indications.

Additionally, new methods could be introduced to the
system in order to create stronger models, able to adapt to
any style of play. The current system is robust enough to
handle testing on new algorithms: Figure 3 shows predictions
trained with data generated only by RHEA and RS variants,
but tested live with an MCTS controller playing the game. If
this is compared to Figure 4s, it can be seen that all models
are able to maintain a similar shape and still accurately predict
the outcome half way through the game.

Lastly, more features could be integrated to better describe
player experience, such as empowerment [26], spatial entropy
or characterization of agent surroundings [9].
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