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Abstract 

Ferromagnetically filled graphitic-carbon foams are a new class of materials 

characterized by an open-cell structure continuously filled with ferromagnetic 

crystals. Targetted design for applications requires knowledge of the magnetic 

ordering and the interaction between magnetic moments in the filling and those due 

to the spin of the delocalised -electrons which contribute to thermal and electrical 

conduction in the graphitic carbon. Magnetometry together with electron spin 

resonance, thermoelectric, and calorimetric measurements on iron-filled carbon foam 

reveal ferromagnetic responses at room temperature with a transition to anti-

ferromagnetic behaviour in some fraction of the filling at 130 K. This observation is 

consistent with the -Fe (bcc) to -Fe (fcc) transition at this temperature predicted by 

others. Seebeck coefficient measurements revealed a behaviour typical of 
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unmodified graphitic carbon indicating the absence of any interaction between the 

magnetic moments of the filling and the conduction electrons in the graphitic carbon. 

 

1 Introduction 

Ferromagnetically filled carbon materials are multifunctional systems which can 

exploit controllable magnetic properties and important electromagnetic waves 

dissipation characteristics to be used in multiple technological applications. This 

class of materials frequently includes 1) graphene coated iron-filled nano-composites 

[1], 2) amorphous-carbon-coated iron/iron-oxide-filled composites [2-11] 3) 

ferromagnetically filled carbon foam [12-15], 4) ferromagnetically filled carbon 

nanotubes (Me@CNTs, where Me is the encapsulated metal or metal carbide) [16 

28], 5) ferromagnetically filled carbon onions (Me@CNOs) [28] and 6) 

ferromagnetically filled CNTs-polymer composites [16, 29-35]. Typical examples of 

used polymers for films fabrication include (Ca-SA)/deacetylated konjac 

glucomannan (DKGM) [29], P(GMA-EGDMA) [34], Sodium alginate [32], P(GMA 

DVB) [35] and polyurethane–urea (Spandex) [16]. 

 

In typical iron-filled amorphous-carbon-coated or polymer-based composites the 

ferromagnetic/paramagnetic particles have been frequently coated with: 1) 

amorphous carbon [2-11] through the use of high intensity ultrasound for the 

decomposition of Fe(CO)5 and subsequent annealing or 2) graphene layers which 

have been reported to exhibit excellent microwave absorption performances [1]. 

Recent works have also shown that multishelled ZnO spheres could be considered 

possible candidates to encapsulate functional materials of interest [31]. 



The key advantages of ferromagnetically filled graphitic-carbon foams [12-15] 

relative to other, comparable systems are 1) the high-volume-fraction of the 

continuous ferromagnetic filling, 2) typically high saturation magnetizations 

comparable to those of bulk iron, and 3) the scalability of the production method, 

which involves fusion of Fe3C nanocrystals encapsulated by spherical graphitic 

carbon shells by annealing at high temperature [12-15]. The applications of this 

composite material exploit the controllable ferromagnetic properties or the inherent 

electromagnetic absorption dissipation properties of the magnetic moments in the 

filling and the conduction electrons in the graphitic carbon. 

 

The nature of the magnetic ordering and the question of whether the magnetic 

moments interact with those due to the spin of the -electrons in the graphitic carbon 

– which contribute to thermal and electrical conduction – is therefore important if 

structure-property relations are to be understood and tailored design is to be 

achieved. 

 

Here we address these questions in a novel investigation where we focus our 

attention on the magnetometry together with electron spin resonance (ESR), 

thermoelectric, and calorimetric measurements properties of iron-filled magnetic 

carbon foam. 

 

We observe ferromagnetic hysteresis with a saturation magnetization Ms = 180 

emu/g and a coercivity Hs = 29 Oe at room temperature and a reduction in 

magnetisation in the zero-field-cooled (ZFC) characteristic at 130 K. On the basis of 

the ESR and specific heat capacity measurements we conclude that this ZFC feature 



is the result of a transition from ferromagnetic to antiferromagetic ordering in some of 

the filling. Thermoelectric measurements indicate no interaction between the 

magnetic moments and the -electron system. 

 

2 Experimental 

The iron-filled graphitic carbon foam was fabricated by using the two-stage process 

reported in Ref. 2-4. Self-organised Fe3C nanocrystals encapsulated by graphitic 

carbon shells were firstly produced by ferrocene pyrolysis at 900 oC. Annealing was 

then performed in the same reactor at the temperature of 1000 oC under Ar flow. 

 

The characterization was carried out with: a JSM-7500F 5-20 kV scanning electron 

microscope (SEM), an Empyrean PANalytical powder X-ray diffractometer (Cu 

K= 0.154 nm), and a 200 kV American FEI Tecnai G2F20 transmission 

electronmicroscope (TEM). Magnetisation measurements were performed with a 

vibratingsample magnetometer (Quantum Design). ESR measurements were 

performed using aJEOL JES-FA200. Differential scanning calorimetry (DSC) 

measurements wereperformed with a TA DSC 2920 in the temperature range -181 

oC to 130 oC with aSapphire reference. Seebeck measurements were performed 

with an MMR technologies,Inc. SB-100 Seebeck measurement system and K-20 

temperature controller.

 

3 Results and Discussion 

The morphology of the powder extracted from the reactor is detailed in Fig.1. 

 



 

 

 

Figure 1: Photograph (A) and SEM micrographs (B,C) of iron-filled graphitic 

carbon 

foam. 

 

The SEM micrographs in Fig.1B,C show an interconnected network. The mass 

contrast observed in backscattered electron SEM images revealed a high volume 

fraction of the heavier iron, Fig.Supp.1. 



 

The XRD data in Fig.2 shows the progressive disappearance of Fe3C features as a 

consequence of annealing. 

 



 

Figure 2: XRD analyses of the iron-filled graphitic carbon foam showing 

structural variation as a consequence of annealing for (A) 2h and (B) 35h. 



 

The intense diffraction peak observed at 2 ≈ 45 degrees is that of the 110 reflection 

of -Fe. The TEM micrograph in Fig.Supp.2 is that of a typical iron/graphitic-carbon 

interface. Raman spectroscopy revealed the G and D peaks with a sp3-rich 

arrangement, in agreement with ref. 13-15 (Fig.Supp.3). 

 

On the Raman spectrum shown in Fig.Supp.3 two bands could be detected at 

approximately ~1300 cm-1 and ~1600 cm-1. The first band (D band) is associated to 

the disordered induced scattering produced by imperfections or loss of hexagonal 

symmetry in the carbon structure and or presence of sp3-defects. The second band 

(G band) can instead be assigned to the Raman active 2E2g mode which is generally 

observed in graphite like materials [43-45]. These observations are in agreement 

with those reported in ref. [13-15]. 

 

The room temperature variation of magnetization with applied magnetic field, Fig.3A, 

revealed ferromagnetic hysteresis with saturation magnetisation Ms = 180 emu/g, 

comparable to that of bulk iron (220 emu/g), and a coercivity Hc = 29 Oe . However, 

the ZFC characteristic shows a depletion of magnetization greater than the trend at 

approximately 130 K, Fig.3B. 

 

ESR analyses through 130 K revealed further evidence for a transition in magnetic 

ordering below 130 K, Fig.4. The broad differential absorptions typical of 

ferromagnetic systems have minor superimposed features with g-factor values of 

1.99 (attributable to the -electron contribution [36,37]). 



 

 

Figure 3: Magnetization versus (A) applied magnetic field strength at room 

temperature, and (B) temperature with no applied field (ZFC). 

 



However, at a temperature less than 130 K there is also a significant narrow feature 

with a g-value of 4.16. This observation is compatible with the presence of magnetic 

contributions from both -Fe (fcc) and -Fe (bcc) at temperatures below 130 K [36- 

38]. The diminution of the ZFC magnetisation at 130 K also suggests that the -Fe is 

in the antiferromagnetic state [21,24]. 



 

Figure 4: ESR spectra at (A) 300 K, (B) 130 K and (C) 77 K. 



 

DSC measurements show a decline in specific heat capacity in the temperature 

range at approximately 130 K; this is further evidence for a significant structural 

transition at low temperature, Fig.5. The temperature dependence of the Seebeck 

coefficient, S, (Fig.6) is of the smoothly varying form generally observed in 

unmodified carbon nanotube networks, which comprises semiconductor- and metal-

like terms, 

 

𝑆 = A𝑇 + (B|𝜆| /𝑇 + C)exp(‒ 𝜆/𝑇 ) (1) 

 

where A, B, and C are constants and λ is the band-gap temperature of the 

semiconductor-like component [39]. The fitting of the data in Fig.6 to Equation 1 was 

achieved with A: 0.0257 V/K2, B: -0.0041V/K, C: -20 V/K,  536 Kthe sign and 

magnitude of these values are comparable with those extracted from carbon 

nanotube networks [39,40]. 

 

There are no large peaks associated with the Kondo effect in Fig.6 [41,42]; meaning 

there is no interaction of the magnetic moments of the filling with the spin of the 

conduction -electrons in the graphitic carbon. 

 



 

Figure 5: Specific heat capacity versus temperature obtained from the DSC 

measurement. 

 

 

Figure 6: Variation of the Seebeck coefficient with the temperature. The solid 

line is the fit to Equation (1) with the values of parameters given in the text. 

 



4 Conclusion 

In conclusion, iron-filled graphitic carbon foam exhibits ferromagnetic ordering at 

room temperature and both ferromagnetic and antiferromagnetic ordering at 

temperatures below 130 K. There is no significant interaction between the magnetic 

moments in the iron and those due to the spin of -electrons in the graphitic carbon. 
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