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Abstract. We consider the problem of building inhomogeneous cosmological models

in scalar-tensor theories of gravity. This starts by splitting the field equations of these

theories into constraint and evolution equations, and then proceeds by identifying exact

solutions to the constraints. We find exact, closed form expressions for geometries

that correspond to the initial data for cosmological models containing regular arrays

of point-like masses. These solutions extend similar methods that have recently been

applied to Einstein’s equations, and provides sufficient initial conditions to perform

numerical integration of the evolution equations. We use our new solutions to study the

effects of inhomogeneity in cosmologies governed by scalar-tensor theories of gravity,

including the spatial inhomogeneity allowed in Newton’s constant. Finally, we compare

our solutions to their general relativistic counterparts, and investigate the effect of

changing the coupling constant between the scalar and tensor degrees of freedom.

1. Introduction

Scalar-tensor theories of gravity are among the oldest and best studied generalisations

of Einstein’s theory. They were originally introduced by Jordan in 1949 [1, 2], before

being refined by Brans and Dicke in 1961 [3] and then being generalised to theories with

arbitrary coupling parameters by Bergmann [4], Wagoner [5] and Nordtvedt [6]. They

can be seen to contain the dimensionally reduced theories that one recovers from string

theory [7], as well as the canonical version of the Horndeski class of scalar-tensor theories

that have recently found popularity in cosmology [8]. Phenomenologically, scalar-tensor

theories of gravity have found application in modelling the possible variations of the

constants of nature [9, 10], as well as providing the archetypal class of theories that are

used to quantify allowed deviations from Einstein’s theory [11].

In this paper we study inhomogeneous cosmological solutions of the scalar-tensor

theories of gravity introduced by Brans and Dicke. While much work has been performed

on understanding virtually every aspect of these theories (see e.g. [12, 13]), it is still

the case that very little is known about their cosmological solutions away from the

limits of homogeneity and isotropy. To date, the only studies in this area have been

limited to highly symmetric matter configurations [14] or theories with well chosen

self-interaction potentials [15]. We address this deficit by studying inhomogeneous
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cosmological configurations that admit no global symmetries, but which allow progress

to be made using exact methods. We expect the space-times that result from our

investigation to shed light on the consequences of structure formation in these theories,

including the degree to which Newton’s constant is allowed to vary in space.

In general, the effect that large-scale structures have on the expansion of the

Universe has proven to be a subject of much contemporary interest [16, 17, 18], yet has

so far only really been studied in the context of Einstein’s equations. The interest in

this subject arises principally due to the non-commutativity of averaging and evolution

under non-linear field equations, which means the large-scale average expansion of an

inhomogeneous Universe can evolve in a non-trivial way. This has potentially serious

implications for the interpretation of data in the real Universe, where the effects

of inhomogeneity have been suggested to have consequences for everything from the

existence of dark energy [19] to the recent tension between local and global measurements

of the Hubble constant [20].

Well defined inhomogeneous cosmological models are needed to study these

possibilities, and to precisely quantify any effects that arise. Various approaches have

been taken to construct such models in recent years, including the application of

numerical, perturbative and analytic techniques. Here we are interested in the set

of models that have come to be known as ‘black hole lattices’ [21]. These are based on

the Lindquist-Wheeler models first proposed in Ref. [22], and which describe a closed

universe filled with Schwarzschild-like masses (or black holes) as an initial value problem.

The construction of initial data in these situations can often be performed analytically,

if the initial hypersurface is taken to be extrinsically flat [23] or has constant mean

curvature [24], and is often sufficient to determine some of the large-scale properties of

the cosmology as a whole. It also provides the basis for investigating the evolution of

such a universe, using either perturbative [25, 26] or numerical techniques [27, 28, 29, 30].

In this paper we apply the techniques developed in the study of general relativistic

black hole lattices to the Brans-Dicke theory of gravity, to find exact initial data

for universes that contain arrays of regularly arranged point-like masses in universes

governed by these theories. This extends the results of previous studies to new theories of

gravity, allowing the general relativistic results to be considered within a wider context.

It also significantly extends what is currently known about inhomogeneous cosmological

models in scalar-tensor theories of gravity - a field that is severely restricted by the

additional complexity of the field equations.

This paper is organised as follows: In Section 2 we briefly review the Brans-Dicke

theory of gravity, before deriving the relevant constraint equations for our initial data

problem. In Section 3 we investigate solutions to these equations, including expressions

for the proper masses and scalar charges for each of the point-like objects. Section 4

then contains a review of Friedmann cosmology in Brans-Dicke theory, and proceeds to

compare the scale of our inhomogeneous models to these perfectly homogeneous and

isotropic solutions. Finally, we conclude in Section 5.
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2. The Brans-Dicke theory of gravity

2.1. Field equations

The Brans-Dicke scalar-tensor theory of gravity requires us to introduce an additional

scalar field φ, as well as the metric gµν , in the Lagrangian density:

L =
1

16π

√
−g
(
φR− ω

φ
∇µφ∇µφ

)
+ Lm(gµν , ψ), (1)

where ω is the constant coupling parameter of the theory, and Lm(gµν , ψ) is the

Lagrangian density of the matter fields, ψ. The non-minimal coupling between φ and

R results in new gravitational phenomena, while the coupling of only gµν to ψ ensures

that the Einstein equivalence principle is maintained.

Varying the resulting action with respect to the metric gµν , gives the following field

equations:

φGµν +

(
�φ+

ω

2φ
(∇φ)2

)
gµν −∇µ∇νφ−

ω

φ
∇µφ∇νφ = 8π Tµν , (2)

while varying with respect to the scalar field φ, yields

�φ =
8π T

(3 + 2ω)
, (3)

where Tµν are the components of the energy-momentum tensor, and T is its trace. The

locally measured gravitational ‘constant’ in these theories can then be shown to be given

by

G =
(4 + 2ω)

(3 + 2ω)

1

φ
, (4)

and hence can vary in space-time whenever φ is non-constant. These equations can

be seen to reduce to Einstein’s theory in the limit ω → ∞, when φ → constant, and

Equation (2) reduces to Einstein’s equations.

2.2. Constraint equations in vacuum

We now wish to derive the Hamiltonian and momentum constraint equations that

correspond to the field equations in (2) and (3). This is done by performing the usual

3 + 1 decomposition, using the irrotational time-like unit normal nµ and the projection

tensor hµν = gµν + nµnν . All quantities can then be split into a temporal part, by

contracting with nµ, and a spatial part, by projecting with hµν . In particular, the

Gauss-Codazzi-Mainardi equations can be used to project the Einstein tensor such that

2Gµνn
µnν = (3)R +K2 −KµνK

µν , (5)

where Kµν = −h ρ
µ h

σ
ν ∇ρnσ is the extrinsic curvature of the hypersurfaces orthogonal

to nµ, K is its trace, and (3)R is the Ricci curvature scalar of the space orthogonal to

nµ. As well as this we find

−h ν
µ Gνσn

σ = DνK
ν
µ −DµK, (6)



4

where Dµ is the torsion-free covariant derivative on the hypersurface orthogonal to nµ

that is compatible with hµν , and which is defined such that DµKνρ = h σ
µ h

τ
ν h

χ
ρ ∇σKτχ

(for example). For general relativity in vacuum, the left-hand sides of equations (5) and

(6) are zero. For Brans-Dicke theory, however, this will not be true – the left-hand side

will instead be a function of the scalar field, φ.

When Tµν = 0, we can use Equation (2) to write the Hamiltonian constraint as

(3)R +K2 −KµνK
µν = 2

�φ
φ

+
2

φ
nµnν∇µ∇νφ+

ω

φ2
(∇φ)2 +

2ω

φ2
nµnν∇µφ∇νφ , (7)

where we have used gµνn
µnν = −1. The first and second terms on the right-hand side

of Equation (7) can then be used to write

2

φ
(�φ+ nµnν∇µ∇νφ)

=
2

φ
Knµ∇µφ+

2

φ
(−Knµ∇µφ+ gµν∇µ∇νφ+ nµnν∇µ∇νφ)

=
2

φ
Knµ∇µφ+

2

φ
(−Knµ∇µφ+ hµν∇µ∇νφ)

=
2

φ
Knµ∇µφ+

2

φ

(
∇ν(n

ρnµ)h ν
ρ ∇µφ+ hµν∇µ∇νφ

)
=

2

φ
Knµ∇µφ+

2

φ

(
∇ν(h

ρ
µ )h ν

ρ ∇µφ+ hµν∇µ∇νφ
)

=
2

φ
Knµ∇µφ+

2

φ

(
∇ν(h

ρ
µ∇µφ)h ν

ρ

)
=

2

φ
Knµ∇µφ+

2

φ
DµD

µφ ,

while the third and fourth terms can be written as
ω

φ2
(gµν∇µφ∇νφ+ 2nµnν∇µφ∇νφ)

=
ω

φ2
((hµν − nµnν)∇µφ∇νφ+ 2nµnν∇µφ∇νφ)

=
ω

φ2
(hµν∇µφ∇νφ+ nµnν∇µφ∇νφ)

=
ω

φ2
(DµφD

µφ+ nµ∇µφn
ν∇νφ) .

Combining these results we then have that the Hamiltonian constraint can be written

as

(3)R +K2 −KµνK
µν − 2K

φ̇

φ
− 2

φ
D2φ− ω

φ2
φ̇2 − ω

φ2
DµφD

µφ = 0 , (8)

where ˙ = nµ∇µ and D2 = DµD
µ. Similarly, for the momentum constraint we have

DµK
µ
ν −DνK (9)

=
�φ
φ
h µ
ν nµ +

ω

2

(∇φ)2

φ2
h µ
ν nµ −

ω

φ2
h µ
ν n

ρ∇µφ∇ρφ−
1

φ
h µ
ν n

ρ∇µ∇ρφ .
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The first and second terms on the right-hand side of this equation can immediately be

seen to vanish, as h µ
ν nµ = 0. The third term, on the other hand, is simply −ωφ̇Dνφ/φ

2.

Finally, the last term can be written as

−1

φ
h µ
ν n

ρ∇µ∇ρφ = −1

φ
h µ
ν ∇µ(nρ∇ρφ) +

1

φ
h µ
ν (∇µn

ρ)∇ρφ

= −1

φ
Dνφ̇−

1

φ
K ρ
ν ∇ρφ .

Combining these results we have that the momentum constraint can be written as

DµK
µ
ν −DνK +

1

φ
K µ
ν Dµφ+

1

φ
Dνφ̇+

ω

φ2
φ̇Dνφ = 0 . (10)

Equations (8) and (10) are the final version of the Hamiltonian and momentum

constraint equations we wish to use, and can be seen to be consistent with other similar

results derived in the literature [31].

Finally, we wish to write the scalar field equation (3) as a set of constraint and

evolution equations. This is most conveniently done by introducing the new variables

π ≡ φ̇ and ψµ = Dµφ. The set of evolution equations for φ, π and ψµ are then given in

vacuum by

φ̇ = π

π̇ = Dµψ
µ +Kπ + ṅµψµ

ψ̇µ = Dµπ + ṅµπ + nµṅ
νψν +K ν

µ ψν

with the only constraint being

ψµ −Dµφ = 0 .

This last equation is, of course, just the definition of the variable ψµ, and must therefore

be satisfied identically. We note that these equations are the same as those considered

in Ref. [33], for a minimally coupled scalar field in Einstein’s theory‡.
The only equations that need to be satisfied, in order to fully specify the initial

data of a vacuum space-time in this theory, are therefore just (8) and (10). In the next

section of this paper we will solve these equations in order to find initial data for a

universe filled with point-like masses.

3. Initial data

3.1. Time-symmetric initial data

In order to simplify the constraint equations we can choose the extrinsic curvature

to vanish, such that Kµν = 0. A hypersurface that satisfies this condition is time-

symmetric, and in a cosmological context corresponds to a maximum of expansion. It

also provides an analogous situation to the general relativistic studies that have already

‡ Except for a missing term +K ν
µ ψν , on the right-hand side of Eq. (13) of that paper.
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been performed for this situation [23]. In this case the Hamiltonian and momentum

constraint equations then become

(3)R− 2

φ
D2φ− ω

φ2
φ̇2 − ω

φ2
DaφD

aφ = 0 , (11)

and
1

φ
Daφ̇+

ω

φ2
φ̇Daφ = 0 , (12)

and where we are now using Latin indices to denote coordinates on the 3-dimensional

initial hypersurface, such that Da is a covariant derivative with respect to the metric

hab of this space.

At this point we can see that Equation (12) is satisfied if either φ̇ = 0 or φ̇ ∝ φ−ω.

The former of these corresponds to a scalar field that is also time-symmetric at the initial

hypersurface. The latter case is not time-symmetric, and offers a potentially interesting

scenario to study, but in this case we are unable to find solutions to the corresponding

Hamiltonian equation. We therefore restrict our attention to the φ̇ = 0 case, for which

the Hamiltonian constraint (11) becomes

(3)R = (ω + 2)ψ̃aψ̃
a + 2Daψ̃

a , (13)

where we have defined ψ̃a ≡ ψa/φ = Daφ/φ. This single equation is a profound

simplification of the initial system of constraint equations, but it is still a non-linear

differential equation for the variable ψ̃ in terms of the 3-curvature (3)R. We will now

show that through a change of variables we can express this as a set of linear equations,

which therefore admit solutions that can be linearly superposed.

Let us now suppose that the geometry of initial hypersurface can be written as

ds2 = Ω4(r, θ, ϕ) ds̄23 (14)

where ds̄23 = dr2 + sin2 r(dθ2 + sin2 θdϕ2) is the line-element of a hypersphere, and r,

θ and ϕ are hyperspherical polar coordinates. A positive spatial curvature of this kind

is required for the posited maximum of expansion, and in a conformal geometry of this

type the 3-curvature (3)R becomes Ω−4 (3)R̄ − 8Ω−5D̄2Ω, where (3)R̄ is the 3-curvature

of the conformal hypersurface (which equals six for a 3-sphere), and where D̄2 is the

Laplacian on the conformal hypersurface (see equations (3.5)-(3.11) in Ref. [32]).

The change of variables we wish to perform is then given by

Ω = χaσ1−a and φ = χsσ−s , (15)

where a is a constant, s = (1 − 2a ± τ)/(2 + ω) and τ =
√

1 + 4a(1− a)(3 + 2ω). In

this case, the constraint equation (13) is satisfied by any solutions of the following two

linear equations:

D̄2σ = κ1 σ (16)

D̄2χ = κ2 χ , (17)
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where D̄2 is the Laplacian operator on the conformal hypersphere described by ds̄2 and

κ1 and κ2 are constants. If we choose s = (1− 2a− τ)/(2 + ω), then κ1 satisfies

κ1 =
3(2 + ω)− (1 + 2a(3 + 2ω)− τ)κ2

(7 + 4ω − 2a(3 + 2ω) + τ)
. (18)

If one were to choose s = (1 − 2a + τ)/(2 + ω), then the sign of τ would need to also

be changed in this expression. However, in what follows we will use the first choice of s

(this will be explained when we compare our solution to known exact solutions).

Equations (16) and (17) are both Helmholtz equations, which have the following

smooth solutions [33]:

σ(r, θ, ϕ) =
N∑
i

αi
sin {
√

1− κ1(π − ri)}
sin {
√

1− κ1 π} sin {ri}
, (19)

χ(r, θ, ϕ) =
N∑
i

γi
sin {
√

1− κ2(π − ri)}
sin {
√

1− κ2 π} sin {ri}
, (20)

where {αi} and {γi} are two sets of constants. Each of the terms in each of these two

sums can be seen to diverge at ri = 0, and remain smooth and single valued everywhere

else. Both σ and χ therefore contain N poles, which we take to be located at N distinct

locations on the conformal hypersphere. The meaning of ri, as used in each of the

different terms in these two equations, should therefore be taken to mean the value of

the r coordinate after rotating coordinates so that the pole for that particular term

appears at r = 0. In this sense, we are using a different set of hyperspherical polar

coordinates for each term, so that we can write every term in the same form.

3.2. Comparison with the Brans solution

The solutions given in Equations (19) and (20) contain 2N + 3 free parameters:

αi, γi, ω, κ2 and a. At this point it is instructive to compare our solution with the

spherically symmetric, vacuum Brans solution, in order to understand these degrees of

freedom. The line-element for the Brans solution is given by [13]

ds2 = −e2α0

(
1− B

r

1 + B
r

) 2
λ

dt2 + e2β0
(

1 +
B

r

)4
(

1− B
r

1 + B
r

) 2(λ−c−1)
λ

ds̄2, (21)

where ds̄2 = dr2 + r2(dθ2 + sin2 θdϕ2), λ2 ≡ (c+ 1)2 − c(1− ω c/2) and c, B, α0 and β0
are constants. This solution also has a scalar field φ which can be written as

φ = φ0

(
1− B

r

1 + B
r

) c
λ

, (22)

where φ0 is another constant. By comparing this solution with Equations (14) and (15)

and requiring that s = (1− 2a− τ)/(2 + ω), the following identification can be made:

s =
c

λ
and a =

λ− c− 1

2λ
. (23)
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For the choice of s = (1−2a+ τ)/(2 +ω), our solution satisfies the constraint equations

if we identify s with −c/λ and a with 1− (λ− c− 1)/λ. This shows that the choice in

the sign of τ in the parameter s is degenerate with the identification of χ and σ with

either
(
1− B

r

)
or
(
1 + b

r

)
.

Now it is known that if c = −1/(2 + ω), then Equation (21) reduces to the

Schwarzschild solution as ω →∞ [3]. Making this choice for c then gives us

s = −
√

2√
2 + ω

√
3 + 2ω

and a =
1

2
− 1 + ω√

2
√

2 + ω
√

3 + 2ω
, (24)

as well as

κ1 =
3− 2κ2 + κ2

√
6+4ω
2+ω

2 +
√

6+4ω
2+ω

, (25)

which can be seen to become s = a = 0 and κ1 = 3/4 in the limit ω →∞. This reduces

the number of free parameters in our solutions to 2(N + 1): αi, γi, ω and κ2. We will

further investigate the meaning of these remaining degrees of freedom in what follows.

3.3. Proper mass

In order to determine the proper mass of each of the point-like objects in our solution,

we need to view them from infinity in the asymptotically flat region on the far side of

the Einstein-Rosen bridge. This means taking the limit ri → 0, which gives

ds2 →
(
γi
ri

+Bi

)4a(
αi
ri

+ Ai

)4−4a

ds̄2, (26)

where

Ai = − αi
√

1− κ1
tan {

√
1− κ1π}

+
∑
j 6=i

αj
sin {
√

1− κ1(π − rij)}
sin {
√

1− κ1π} sin {rij}
, (27)

Bi = − γi
√

1− κ2
tan {

√
1− κ2π}

+
∑
j 6=i

γj
sin {
√

1− κ2(π − rij)}
sin {
√

1− κ2π} sin {rij}
, (28)

where rij is the coordinate distance between points i and j (after rotating so that mass

i appears at r = 0). We have also used the fact that in the limit ri → 0, then ds̄23 → ds̄2

as sin2 r → r2. If we now define a new coordinate r′i ≡ α 2−2a
i γ 2a

i /ri, it can immediately

be seen that in the limit ri → 0 we have r′i →∞. Inserting this into Equation (26) gives

ds2 →
(

1 + 4
(1− a)α 1−2a

i γ 2a
i Ai + aα 2−2a

i γ 2a−1
i Bi

r′i

)
ds̄ ′2 , (29)

where ds̄ ′2 = dr′i
2 + r′i

2dΩ2. Similarly, in the limit r → ∞ the static, spherically

symmetric Brans solution in Equation (21) becomes

ds2 → e2β0
(

1 + 4
(c+ 1)

λ

B

r

)
ds̄2. (30)

which, up to an overall constant rescaling of units, can be compared to Equation (29)

to give B(c+ 1)/λ = (1 − a)α 1−2a
i γ 2a

i Ai + aα 2−2a
i γ 2a−1

i Bi. We now recall that the
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parameter B in the Brans solution is related to its mass m by B = mλ/2 [3]. Recalling

c = −1/(2 + ω), we can now read off that

mi = 2

(
2 + ω

1 + ω

)(
γi
αi

)2a−1

((1− a)γiAi + aαiBi) . (31)

We take this to be the proper mass of each of the point masses in our solution.

3.4. Scalar charge

As well as mass, we can also derive an expression for the scalar charge, qi, of each of

the objects in our solution. For this we will define the scalar charge to be given by

qi ≡
1

4π

∫
φ,an

adA , (32)

where na is the unit inward pointing normal and dA is an area element as r → 0, such

that na = (−σ−2+2aχ−2a, 0, 0) and dA = σ4−4aχ4ar2 sin θ dθ dϕ. Just as for the proper

mass, we evaluate σ and χ in the asymptotic limit r → 0. This gives an expression for

the scalar charge of the ith mass as

qi = s

(
γi
αi

)s+2a−1

(γiAi − αiBi) , (33)

which has a pleasing symmetry with the expression for the proper masses given in

Equation (31). It is straightforward to verify that in the limit ω → ∞, we recover

qi → 0, as expected. These results show that the proper mass, mi, and scalar charge,

qi, of each mass are directly related to the values of the parameters αi and γi, and that

by specifying that value of mi and qi for each of our points we are essentially setting the

values of αi and γi. This leaves only the values of ω and κ2 as the remaining two degrees

of freedom. The former of these corresponds to a choice of the gravitational theory

being considered, as it appears as a coupling constant in the generating Lagrangian.

We interpret the latter as corresponding to the amount of scalar field in the background

cosmology, as explained below.

3.5. Background scalar field

Figures 1 - 4 depict the conformal factor Ω and scalar field φ for different choices of

the parameter κ2. In each of these diagrams we have set ω = α = γ = 1, and taken

a surface at r = π/2 in a lattice of eight point-like masses at the following coordinate

positions (r, θ, ϕ): (
0, π

2
, π
2

) (
π
2
, 0, π

2

) (
π
2
, π
2
, 0
) (

π
2
, π
2
, π
2

)(
π, π

2
, π
2

) (
π
2
, π, π

2

) (
π
2
, π
2
, π
) (

π
2
, π
2
, 3π

2

)
Such an arrangement of points are all equally spaced from their nearest neighbours,

and hence constitute a regular lattice on the hypersphere. The slice taken through this

configuration in Figures 1 - 4 is a great sphere, and is chosen so that six of the eight

points are positioned within that sphere, shown by the tubes in the figures representing
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Figure 1: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.1.

Figure 2: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.4.

Figure 3: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.75.

the conformal factor Ω. In each of the figures, the distance of the surface from the

centre is the value of the field (Ω or φ) at that point, whilst the angular positions of the

surfaces correspond to individual points on the great sphere r = π/2.

In Figure 3, for κ2 = 0.75 there is no scalar charge on any of the masses, as the value

of the scalar field is represented by a constant unit sphere. Mathematically this can be

seen in Equation (25), where we have that κ1 = κ2 for κ2 = 0.75. Setting all of the αi
parameters to be equal to each other, and likewise for γi, then implies from Equations

(27) and (28) that γiAi = αiBi. Finally it is manifest from Equation (33) that qi = 0.
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Figure 4: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.9.

For values of κ2 < 0.75 the scalar field is largest at the positions of the masses at a

maximum value of 1, whereas for κ2 > 0.75 the scalar field is smallest at the positions

of the masses (as shown by the dimples in Figure 4). Changing the value of κ2 can

therefore be interpreted as increasing or decreasing the background value of the scalar

field. We note that changing the value of κ2 has very little effect on the geometry of the

initial hypersurface itself, but that changing κ2 or ω has a very significant effect on the

scalar field distribution (with the shape of the corresponding figures again approaching

a spherical shape in the limit ω → ∞). The distribution of φ in Figures 1-4 can be

directly linked to the distribution of Newton’s constant, G, via Equation (4).

3.6. General relativistic limit

We wish to investigate how (and if) the lattice cosmologies constructed above differ

from their general relativistic counterparts, and how they approach them in the limit

ω → ∞. Of principle interest in this regard will be the scale of the cosmological

region of each of the respective solutions. In order to extract this quantity we define

aBDL
0 ≡ (χ2aσ2−2a) |vertex, where the right-hand side is being evaluated at the vertex of

one of the primitive “cells” from which the lattice is constructed (i.e. at one of the

points which is furthest away from all nearby masses). A similar quantity, aGRL
0 , can be

constructed to measure the scale of the cosmological region in the corresponding general

relativistic lattice.

We now wish to compare the values of aBDL
0 and aGRL

0 for two lattices that contain

the same number of objects, located at the same positions, and with the same total

proper mass. We again choose to consider the 8-mass cubic lattice, as discussed in

the previous section. We find that the quantity aBDL
0 /aGRL

0 changes as a function of

the coupling parameter of the theory, ω, but also as a function of the parameter that

controls the background value of the scalar field κ2, where κ2 ≤ 1. In order to uniquely

specify a solution in the case of the Brans-Dicke lattices we also need to specify a value

for the proper mass and scalar charge of each black hole. Regarding the proper mass,

we set this to be the value found in the general relativistic case, as shown in Table VI

of Ref. [23]. There, the ratio of effective mass to proper mass was found to be 0.11.
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Figure 5: Ratio of scale factors aBDL
0 /aGRL

0 for the BD and GR lattice cosmologies, for

different values of ω and κ2 (with m = 9.48 and γ = 1). The inset shows a close-up of

the intersection of the lines with κ2 ≥ 0.3 and the y-axis.

Setting the effective mass to unity, for simplicity, then yields mi = m = 9.48, and here

we take this to set the value of the αi parameters. For the scalar charge, we find that

scale factor of the cosmology is insensitive to the specific value chosen for qi, therefore

we can instead set γi = 1 for simplicity. We display our results in Figure 5.

All our results show a convergence towards the general relativistic value of the scale

factor as ω → ∞, as expected. For ω . 103, however, our solutions are very different

from the general relativistic ones, with the scale factor taking a smaller value in every

case. These plots make it clear that scale of the cosmological solutions is strongly

dependent on κ2 for small values of ω, but that in the limit ω →∞ all dependence on

κ2 drops out. Finally we interpret the independence of the value of the scalar factor

to the particular value of q as demonstrating that the majority of the gravitational

influence of each point particle is dominated by its mass, and not its scalar charge.

4. Comparison with Brans-Dicke Friedmann cosmology

In this section we will make a comparison between the initial data for an inhomogeneous

universe described above, and the corresponding homogeneous and isotropic dust-filled

Friedmann cosmologies that exist in Brans-Dicke theory. Our approach to this is to

compare cosmologies that contain the same total mass and background scalar field

value, at a moment of time-reversal symmetry (as is implied by Kµν = 0).

To do this we need to solve the field equations for homogeneous and isotropic dust-
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filled space-times, which are given by

H2 =
8πρ

3φ
− k

a2
−H φ̇

φ
+
ω

6

φ̇2

φ2
, (34)

φ̈

φ
=

8πρ

φ(2ω + 3)
− 3H

φ̇

φ
, (35)

where ρ = ρ0a
3
0/a

3, H = ȧ/a and where over-dots denote differentiation with respect to

the proper time of comoving observers.

We can immediately note that if we require H = φ̇ = 0 then Equation (34) implies

that the spatial curvature k must be positive (and given by k = 8πρa2/3φ, assuming ρ

and φ are both positive valued quantities). Choosing units where k = 1, we find that

there exist solutions given by [34]

a(t) =
3φ0

8πρ0a30
− 2πρ0a

3
0

φ0(3 + 2ω)
(t− t0)2 , (36)

where φ0 and t0 are constants, and where φ = φ0a
−2. This clearly corresponds to a

universe with a time-symmetric evolution, with a maximum of expansion at t = t0. The

intrinsic geometry of the hypersurface at maximum of expansion is therefore given by

ds2 =
9φ2

0

64π2ρ20a
6
0

ds̄2 =
9π2φ2

0

16M2
ds̄2 , (37)

where in the last equality we have used the fact that ρ = M/V = M/2π2a3, and where

M and V are the mass and spatial volume of the hypersphere. This gives us the scale of

the maximum of expansion of such a universe in terms of the total mass of the matter

content, M , and the constant associated with the scalar field, φ0.

In order to find suitable inhomogeneous solutions to compare to Equation (37)

we choose to consider solutions in which M = Nm, where N is the total number of

identical point-like masses in the inhomogeneous solution and m is the proper mass of

each of them. This condition means we compare cosmological models that contain the

same total mass. The second condition we need to implement is on the value of φ0. To

do this, we require that the background value of the scalar field in the inhomogeneous

solutions must equal that of the Friedmann cosmology. Using the fact that the scalar

field in the inhomogeneous solutions is given by φ = χsσ−s, and equating it to the value

of φ at the maximum of expansion of the Friedmann models, we find

χsσ−s =
16M2

9π2φ0

⇒ φ0 =
16M2

9π2χsσ−s
, (38)

where χ and σ are to be given values associated with the cosmological background.

There is clearly some freedom in choosing how this should be done, as both quantities

are in general non-constant functions of spatial position. Here we proceed as in the

previous section and choose to take their value at the location that is farthest from all

masses, at the vertex of one of the primitive cells of the lattice, as this is the closest thing

to taking a “background value” in an inhomogeneous cosmology. Correspondingly, we

will also evaluate the scale factor in the inhomogeneous solutions at the same point, in
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Figure 6: Ratio of scale factors aBDF
0 /aGRF

0 for the BD and GR Friedmann cosmologies,

for different values of ω and κ2 (with m = 9.48 and γ = 1).

order to make a fair comparison. This means that we can now write the scale factors for

Brans-Dicke lattice (BDL) cosmologies, and the corresponding Brans-Dicke Friedmann

(BDF) cosmologies, as

aBDL
0 = χ2aσ2−2a and aBDF

0 =
4Nm

3πχsσ−s
, (39)

where χ and σ are both to be evaluated at the locations farthest from all masses. A

comparison of aBDL
0 and aBDF

0 will then give a numerical quantification for the effects of

structurisation of matter in Brans-Dicke cosmologies.

In order to consider specific models, we again choose to consider the 8-mass model

discussed above, and again choose the proper mass of each of our sources to have

mi = m = 9.48 (so that the total mass in the corresponding Friedmann solution is

M = 75.84). We also set the parameter γi = 1 for each particle, as before. Under these

conditions, we plot two quantities. The first is the ratio of scales in the Friedmann

cosmologies for the Brans-Dicke theory and general relativistic case, in Figure 6. The

value of aBDF
0 approaches the general relativistic value as ω → ∞, as expected, and

similarly to Figure 5. For small ω the scale of the Brans-Dicke Friedmannian cosmology

is much larger than its general relativistic counterpart, which contrasts the behaviour

in Figure 5.

The second quantity is the ratio of scales in the lattice and Friedmann cosmologies

in just the Brans-Dicke theory, in Figure 7. The value of aBDL
0 /aBDF

0 for the 8-mass lattice

can be clearly seen to approach the general relativistic value of 1.236 [23] as ω → ∞.

For small ω, on the other hand, the scale of the lattice cosmology is much smaller

than its Friedmann counterpart, by as much as 50% for κ2 = 0.1. It is interesting
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Figure 7: The ratio of scales aBDL
0 /aBDF

0 , for the Brans-Dicke lattice and Friedmann

cosmologies (with m = 9.48 and γ = 1).

that there are small values of ω where the theory is far from a general relativistic

one (for example, ω = 10, κ2 = 0.1) but the process of constructing either a lattice

cosmology or a fluid one makes no difference as far as the ratio of scale factors is

concerned (for these values this ratio is approximately 1). We can therefore construct

cosmologies where there is no backreaction. However, the reader should also note that

the Brans-Dicke coupling parameter is constrained to be ω &40,000 to 2σ, from solar

system tests [35]. Our global scale of our models show rapid convergence to their

general relativistic counterparts for values of ω this large, and should therefore should

not be expected to give any detectable difference on very large scales if the governing

theory is to be compatible with solar system constraints. Nevertheless, in such cases the

scalar field can still vary considerably in the vicinity of the masses themselves, and may

also give potential deviations from general relativity in their future evolution, as more

extreme environments are encountered. Theory independent variations on the Newton’s

constant can also be used to constrain these models, and can be found in Ref. [9]-[10].

Such constraints tend to be imposed on the time variation of G, and are found from a

number of different observations to be constrained at the level Ġ/G . 10−12 per year.

Numerical evolution of our initial data would allow us to investigate the behaviours that

are compatible with these bounds, but this will be left for future studies.

5. Discussion

We have provided, for the first time, exact initial data for a cosmological model in

scalar-tensor theories of gravity that contains a regular array of point-like particles.

This was achieved by first deriving the relevant constraint equations (in Section 3),
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and then by imposing the condition that the extrinsic curvature vanishes on the initial

hypersurface. We found a simple set of solutions to these constraint equations, in terms

of a pair of conformal factors, which reduces in the appropriate limits to the known

static, spherically symmetric vacuum Brans solution. Comparison to this exact solution

then allowed us to derive expressions for the proper mass and scalar charge for each of

the particles in our cosmologies. We find that the scalar charge of each of the black holes

vanishes in the general relativistic limit, when ω → ∞, and that the spatial variation

of Newton’s constant depends on both the scalar charge of the individual bodies as well

as a cosmological background value.

We have considered the general relativistic limit of a specific realisation of our lattice

solution (Figure 5), as well as a comparison between the Friedmann solutions of Brans-

Dicke and general relativity at a maximum of expansion (Figure 6), and a comparison

between discrete and continuous cosmological solutions in Brans-Dicke theory alone

(Figure 7). This was done in Sections 3 and 4. In all cases it was found that our new

solutions approach the expected general relativistic limits as ω → ∞, and that order

one deviations from the general relativistic results were possible when ω was small.

Our solutions were also found to be sensitive to the value of the parameter κ2, which

controls the background value of the scalar field. These results can be considered as

three comparisons between a set of four cosmological models, as shown in Figure 8.

The branch labelled “1” corresponds to the comparison between discrete and

continuous cosmologies, as initiated in Ref. [23] and reviewed in Ref. [21]. The work in

Sections 3 and 4 of this paper provide the first (and currently only) steps to understand

branches “2”, “3” and “4” of this graph. Our analyses were performed by calculating

the ratio of the line-elements in the respective models and theories, at the vertex of a

primitive cell of the lattice. Future steps to understanding this problem further would be

to investigate how the number and distribution of massive bodies affects the cosmological

properties of the space-time in these theories, and to numerically evolve this initial data

to recover the geometry of the full space-time. We leave this for subsequent studies.

BD Lattice GR Lattice

BD Friedmann GR Friedmann

ω →∞
“2”

“4”

ω →∞
“3”

“1”

Figure 8: Schematic diagram showing four different cosmologies, and the comparisons

that are possible between them.
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