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We study quasi-normal modes of black holes, with a focus on resonant (or quasi-normal mode) expansions,
in a geometric frame based on the use of conformal compactifications together with hyperboloidal foliations of
spacetime. Specifically, this work extends the previous study of Schwarzschild in this geometric approach to
spherically symmetric asymptotically flat black hole spacetimes, in particular Reissner-Nordström. The discus-
sion involves, first, the non-trivial technical developments needed to address the choice of appropriate hyper-
boloidal slices in the extended setting as well as the generalization of the algorithm determining the coefficients
in the expansion of the solution in terms of the quasi-normal modes. In a second stage, we discuss how the
adopted framework provides a geometric insight into the origin of regularization factors needed in Leaver’s
Cauchy based foliations, as well as into the discussion of quasi-normal modes in the extremal black hole limit.
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I. INTRODUCTION

Black-hole perturbation theory represents one of the corner-
stones in the development of General Relativity. Initially de-
veloped in the context of astrophysical problems, its applica-
tions nowadays are spread among many areas in gravitational
physics. Focusing on the decaying properties of propagat-
ing fields, the time evolution of perturbative fields on a back-
ground containing a black hole presents (after an initial tran-
sitory) a characteristic behavior at intermediate time scales: a
decay in terms of a discrete set of exponentially damped os-
cillations, the so-called quasi-normal modes (QNMs). Most
importantly, the decay and oscillation time scales are sig-
natures of the background spacetime. QNMs have found a
wide range of application in the settings of gravitational wave
detection, mathematical relativity, the gauge/gravity duality,
string theory, brane-world models and quantum gravity — see
e.g. [1] for a classical reference and [2–5] for a revision along
the past few decades. For spacetimes whose curvature (more
precisely the effective potential in the appropriate wave equa-
tion) does not decay sufficiently fast at large distances, e.g.
Schwarzschild, one identifies a second behavior in the final
stages the evolution. For late times, a power law decay — the
so-called tail decay — may dictate the dynamics [6, 7].

In fact, the exponentially damped oscillatory decay is not
a feature exclusive to linear fields propagating on black-hole
spacetimes, but rather a generic behavior of solutions in open
dissipative systems described by wave equations subject to
outgoing boundary conditions. Such concept of QNM is es-
sentially related to the notion of resonance in scattering the-
ory and has acquired, in recent years, a major role in other
domains. In particular, it is remarkable the synergy with re-
cent developments in the optical study of nano-resonators (cf.
[8]) as well as in the mathematical literature, where they are
usually referred to as ‘scattering resonances’ [9, 10].

When considering closed (compact) conservative systems,

with dynamics characterized in terms of self-adjoint opera-
tors, the notion of normal mode provides a powerful tool to
analyze the system, in particular by making use of the com-
pleteness of normal eigenfunctions ψn(xk) to expand the so-
lutions Ψ(t, xk)

Ψ(t, xk) =

∞∑
n=0

ηnψn(xk)eiωnt , (1)

where the amplitudes coefficients ηn are obtained from the
projection of the initial data onto the complete orthonormal
system of eigenfunctions by using the scalar inner product
(this is guaranteed by the so-called ‘spectral theorem’ asso-
ciated with self-adjoint operators). In certain respects, QNMs
represent in open systems the counterpart to normal modes in
closed systems. In this sense, it is natural to pose the ques-
tion about the possibility of writing an expression of the type
(1) for solutions of initial value problems associated with lin-
ear dissipative wave equations in terms of QNM expansions.
More precisely, it is natural to try to assess the existence of ap-
propriate space and time scales for which such dissipative so-
lutions admit well-defined approximations in terms of QNM
expansions.

However, in such dissipative scenarios, the relevant differ-
ential operator associated with the wave equation is no longer
self-adjoint. In particular, this amounts to a loss of a corre-
sponding spectral theorem, so that QNMs do not generically
constitute a complete set. Moreover, orthogonality is also
generically lost, so that even if completeness is preserved, the
straightforward projection algorithm to determine the coeffi-
cients is no longer available.

On the other hand, in the context of stationary black-
hole spacetimes, the time coordinate t usually employed to
parametrize the dynamical evolution of the fields actually fo-
liates the spacetime into time-constant surfaces extending be-
tween the bifurcation sphere B and spatial infinity i0. Within
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the setting of such Cauchy foliations, the dissipative charac-
ter comes about only after one introduces the correct outgoing
boundary conditions in the spatial asymptotic regions. As a
consequence, the eigenfunctions ψn(xk) present an undesir-
able exponentially growth near the boundaries. This property
constitutes one of the main drawbacks in the understanding of
the technical and conceptual issues involved in such attempted
‘resonant expansion’ representations of the form (1).

Indeed, in a recent article [11], black-hole perturbation the-
ory on the Schwarzschild background was revisited within the
geometrical framework provided by a spacetime foliation in
terms of horizon-penetrating hyperboloidal slices (cf. [12] for
a previous discussion of these ideas in the specific setting of
quasinormal modes, as well as [13, 14] for seminal work along
these lines). The authors argue and demonstrate numerically
that if the initial data are analytical in terms of a compactified
coordinate in the appropriate hyperboloidal slices, a superpo-
sition of the form

Φ(τ, xk) =

∞∑
n=0

ηnφn(xk)esnτ +

0∫
−∞

η(s)φ(xk; s)esτds ,

(2)
can be constructed for solutions corresponding to initial
value problems of linear wave equations in the Schwarzschild
spacetime.

Note that the spectral decomposition (2) includes not only
the (discrete) QNM expansion, but also a contribution from
the continuous spectrum along the negative real line <(s) <
0. This term, responsible for the late-time tail decay, results
from the existence of a branch cut along <(s) < 0 in the ana-
lytical extension of the corresponding propagator operator 1.

More specifically, a semi-analytical algorithm was devel-
oped allowing to calculate all the elements of the spectral de-
composition (2), i.e., the QNMs sn together with the functions
φn(xk) and φ(xk; s) (depending only on the structure of the
wave equation) as well as the amplitudes ηn and η(s) (read
from the initial data). The study in [11] led to the following
conjecture 2 :

Conjecture 1. Given analytical initial data Φ0 and Φ̇0 for
the wave equation, the spectral decomposition (2) holds for
all τ > ν where ν is the mutual growth rate of |ηnφn| and
|η(s)φ(s)|, i.e., the QNM and branch cut excitation coeffi-
cients.

1 Given the elliptic operator PV = −∆ + V (x) obtained from the wave
equation upon a Laplace transform, QNMs are associated with the poles in
the ‘analytical extension’ of the Green’s function corresponding to (PV +
s2) into the whole complex s-plane (see appendix VII A for a discussion in
a spectral setting). For effective potentials V (x) not decaying sufficiently
fast at infinity — for instance in the Schwarzschild case — a branch cut
starting at s = 0 appears in addition to the QNM first-order poles.

2 The symbol
∞∑
n=0

in expression (2) must be understood in a formal sense.

More precisely, the semi-analytical algorithm in [11] does not allow to
fully settle the convergence properties of the series in (2). Specifically,
we do not claim here QNM (extended with tails) completeness: conjecture
1 must be understood rather in terms of an ‘asymptotic expansion’. See
appendix VII A.

Even though the generic ideas introduced in [11] are aimed
at a broader context, the semi-analytical algorithm developed
there is tailored for the Schwarzschild spacetime. Neverthe-
less, the well-defined time-scale ν introduced in conjecture 1
is used in the context of the AdS/CFT correspondence [15]
(yet, some technical calculations had to be addressed by a dif-
ferent method).

In this paper, we extend the formulation of the spectral
decomposition (2) in the framework of hyperboloidal slices
for fields propagating on a spherically symmetric, not nec-
essarily vacuum, asymptotically flat spacetime. Despite the
restriction to spherically symmetric solutions, such first step
generalization already displays several features that enlighten
the theoretical discussion and introduces technical challenges
for the algorithm used in the calculation of all the elements
within the spectral decomposition (2). Specifically, our main
focus lies on the Reissner-Nordström case. Yet, one could
envisage further scenarios — for instance, solutions describ-
ing a central black hole and a surrounding shell composed
out of collision-less Einstein-Vlasov-matter [16] or, relaxing
the conditions on dimensionality and asymptotic structure,
higher-dimensional spacetimes [17, 18] and asymptotically
AdS spacetimes [19, 20] — for which the technicalities of the
methods presented here could be appropriately adapted.

In the first part, this article is framed in the study of the
geometrical aspects of the formalism as well as in the techni-
cal generalization of the semi-analytical algorithm developed
in [11] for the calculation of all elements in (2). In particular,
while reviewing the construction of the spatially compactified
hyperboloidal slices in a generic context, we explicitly iden-
tify in section II the gauge degrees of freedom associated with
the hyperboloidal foliation and the conformal compactifica-
tion. This allows us to introduce a gauge optimally adapted to
the study of black-hole perturbation theory within the present
hyperboloidal framework, which we refer to as the minimal
gauge. Then, we discuss in section III the formal aspects
for the construction of the desired spectral decomposition (2).
For this task, we first identify the correct conformally invari-
ant wave equation to be solved. Next, a Laplace transform is
applied to the wave equation in question and a spatial differ-
ential equation arises with an inhomogeneity determined by
the initial data. This system is parametrized by the complex
Laplace parameter s. The spectral decomposition (2) is then
obtained by the deformation of the inverse Laplace path inte-
gration which collects the contribution coming from the oper-
ator’s poles and branch cut in the complex s−plane. Finally,
section IV describes in detail the generalized algorithm in the
frequency domain to calculate the various ingredients of the
spectral representation (2). The algorithm is based on the ex-
pansion of the relevant functions into a Taylor series. Thus,
the corresponding spatial differential equation gives rise to a
recurrence relation determining the coefficients of the Taylor
expansion. While in [11], the algorithm was restricted to a
3-term recurrence relation, we generalize it here into an arbi-
trary (but finite) (m+ 2)-terms recurrence relation.

In a second stage, we discuss extensively the application of
the formalism to the particular case of the Reissner-Nordström
solution. In particular, we show in section V that the min-
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imal gauge leads naturally to two choices for the conformal
representations of the spacetime. It turns out that the two
geometries have different spacetime limits in the extremal
case [21, 22]. When approaching extremality, one gauge leads
to the usual extremal Reissner-Nordström black hole [23]
whilst the second one shows a discontinuous transition to the
near-horizon geometry [24, 25] (see [26] for a review on near-
horizon geometries) described by the Bertotti-Robinson met-
ric [27, 28]. Interestingly, we actually observe that the gauge
leading to the Bertotti-Robinson spacetime represents the pre-
cise counterpart, in the present geometrical framework, to the
treatment introduced by Leaver [29]. Indeed, the geometri-
cal approach based on conformally compactified spacetimes
foliated by hyperboloidal slices straightforwardly recovers all
factors introduced in [29] accounting for the correct boundary
conditions leading to the QNMs.

We work with units such that the speed of light as well as
Newton’s constant of gravity are unity, c = G = 1.

II. THE GEOMETRICAL FRAMEWORK

We begin by reviewing the construction of hyperboloidal
slices in a spherically symmetric black-hole spacetime and by
introducing a gauge which is best adapted to the present dis-
cussion of black-hole perturbation theory.

A. Schwarzschild coordinates

We start with a stationary (actually static) spherically sym-
metric line element in the form given by Schwarzschild coor-
dinates {t, r, θ, ϕ}

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dω2 , (3)

with dω2 = dθ2 + sin(θ)2 dϕ2 the metric of the unit
2−sphere. We assume that the function f(r) satisfies the fol-
lowing conditions:

(i) Asymptotic flatness expansion:

f(r) ∼ 1− 2M

r
+ o

(
1

r

)
; (4)

(ii) Killing (black-hole) horizon at rH:

f(rH) = 0 ; (5)

(iii) f(r) is a polynomial in 1/r.

While assumptions (i)-(ii) are natural for an asymptotically
flat black-hole spacetime, the assumption (iii) is motivated
by the form of well-known spherically symmetric exact so-
lutions. The tortoise coordinate r∗ = r∗(r) is fixed (up to a
constant) by

dr∗

dr
=

1

f(r)
. (6)

Along the slices of constant coordinate time t, the horizon
surface r = rH (r∗ → −∞) corresponds to the bifurcation
sphere B, while r → +∞ (r∗ → +∞) corresponds to spatial
infinity — see Fig. 1.

B. Ingoing Eddington-Finkelstein coordinates

While in [12, 30] the hyperboloidal coordinates follow di-
rectly from the coordinates {t, r, θ, ϕ}, here we first consider
an intermediate step that enforces horizon-penetrating slices
via the ingoing Eddington-Finkelstein coordinates. Besides,
we can already at this stage discuss the compactification of
the spacetime.

Spatially compactified and dimensionless ingoing
Eddington-Finkelstein coordinates {v̄, σ, θ, ϕ} are given
by

r = λ
ρ(σ)

σ
, t = λv̄ − r∗(r(σ)) , (7)

with λ a length scale of the spacetime, typically related here
to the event horizon radius rH. The line element reads

ds2 =
λ2

σ2

[
−σ2F dv̄2 − 2β dv̄ dσ + ρ2 dω2

]
, (8)

with ρ, F and β functions of the coordinate σ. In particular,
F (σ) = f(r(σ)) is the metric function, while

β(σ) = ρ(σ)− σρ′(σ) , (9)

is the radial component of the shift and therefore corresponds
to a gauge freedom in the choice of the coordinate σ — see
discussion in section II C 2.

Finally, ρ(σ) is the areal radius in the conformal representa-
tion of the spherically symmetric spacetime, whose conformal
metric is given by

ds̃2 = Ω2ds2, Ω =
σ

λ
. (10)

As such, we impose ρ to be a regular function on its domain
attaining positive values (in particular, non-vanishing). More-
over, we assume ρ(σ) to be such that β(σ) > 0 — see Eq.(9).

The outgoing and ingoing null vectors in the conformal
spacetime (normalized as g̃ab l̃ak̃b = −1) are given, respec-
tively, by

l̃a = ζ−1

[
δav̄ −

σ2F

2β
δaσ

]
, k̃a =

ζ

β
δaσ . (11)

The free boost-parameter ζ will be fixed in the next section.

C. Hyperboloidal coordinates

We finally introduce the hyperboloidal coordinates
{τ, σ, θ, ϕ} via the height technique [30]

τ = v̄ + h(σ) . (12)
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In the new coordinates, the conformal line element is

ds̃2 =− σ2F dτ2 + h′
[
2β − σ2Fh′

]
dσ2

− 2
[
β − σ2Fh′

]
dτ dσ + ρ2 dω2 . (13)

The height function h(σ) must be specified in such a way that
the spacelike hypersurfaces τ = constant foliate future null
infinity. This property is guaranteed by requiring τ to be a
good parameter of the (future) ingoing null vector, that is

k̃a∂aτ = 1 . (14)

1. The height function

In the coordinates {τ, σ, θ, ϕ}, the components of the ingo-
ing/outgoing null vectors are respectively

k̃a = δaτ +
1

h′
δaσ , (15)

l̃a =
h′

2β2

(
2β − σ2Fh′

)
δaτ −

σ2F

2β2
h′δaσ . (16)

Consistently with (14), the boost parameter ζ present in (11)
has been fixed here such that k̃τ = 1. Then, the condition

lim
σ→0

k̃a = δaτ ⇒ lim
σ→0

1

h′
= 0 , (17)

guarantees that σ = 0 (along τ = const.) is a null surface,
corresponding actually to future null infinity (as opposed to
the past character of σ = 0, along v̄ = const., arising in
ingoing Eddington-Finkelstein coordinates 3 is section II B).

Besides, we want to ensure that the components of the vec-
tor l̃a remain finite as 1/h′ → 0. Let us first assume the
generic expansion

β(σ) = β0 + β1σ +O(σ2) . (18)

The presence of the term β1 in this expansion is, however,
undesirable. Indeed, according to its definition (9), the areal
radius ρ(σ) assumes the form

ρ(σ) = β0 + ρ1σ − β1σ lnσ +O(σ2) . (19)

Thus, the condition β1 = 0 is required for eliminating the log-
arithmic singularity at σ = 0. It is also convenient to identify
β0 = ρ0.

Then, we recall the assumption (i) for the function f(r)
which, together with Eq. (7), gives rise to the expansion

F (σ) = 1− 2M

λρ0
σ +O(σ2) . (20)

3 The transformation from ingoing Eddington-Finkelstein {v̄, σ, θ, φ} to hy-
perboloidal coordinates {τ, σ, θ, φ} is a coordinate change in the con-
formal spacetime involving only the “time” coordinate. Static observers
parametrized by σ = const. are not affected by it. The limiting proce-
dure σ → 0 is taken along v̄ = const. if treated in ingoing Eddington-
Finkelstein or along τ = const. if performed in hyperboloidal coordinates.
The former leads to past null infinity I− whereas the latter to future null
infinity I +, both geometrically defined asymptotic notions — see Fig. 1.

As σ → 0, a finite value for the component l̃τ is obtained for

h′(σ) =
2ρ0

σ2

[
1 +

2M

ρ0λ
σ

]
+O(1) . (21)

This result ensures the regularity of l̃σ as well. Integrating
Eq. (21) leads to

h(σ) = −2ρ0

[
1

σ
− 2M

λρ0
lnσ

]
+A(σ) . (22)

The regular free function A(σ) represents a freedom in the
choice of the hyperboloidal foliation, to be fixed in the next
section.

Finally, the condition ∇̃aτ∇̃aτ < 0 (for having spacelike
surfaces τ = constant) imposes

0 < σ2h′ <
2β

F
. (23)

2. The minimal gauge

In the previous sections, β(σ) and A(σ) were identified as
gauge degrees of freedom. The former related to the definition
of the compact coordinate σ — and thus to the choice of the
conformal representation of the spacetime (10) — while the
latter distinguishes different hyperboloidal foliations.

Given the freedom in β, we choose it to be constant, this
leading to a gauge where

β(σ) = ρ0 ⇒ ρ(σ) = ρ0 + ρ1σ . (24)

In terms of the coordinate σ, it is very convenient to fix the
event horizon to the value σH = 1. This particular choice
constraints the relation between ρ0 and ρ1 to

ρ0 =
rH
λ
− ρ1 . (25)

The freedom provided by A(σ) can be used to specify fur-
ther geometrical properties of the hyperboloidal slices, such
as a constant mean curvature [30–33]. By allowing an angu-
lar dependence in the function A, one can even depart from
spherical symmetry [34, 35] in the coordinate description. We
restrict ourselves to the simplest case

A(σ) = 0 . (26)

We refer to the choices (24) and (26) as the minimal gauge.
Indeed, the degrees of freedom from the radial compactifi-
cation and from the hyperboloidal foliation are reduced to a
minimum and they consist merely in fixing the scaling param-
eter λ and the value ρ1. All relevant quantities in the line
element (13) are determined essentially by the properties of
the function F (σ). In particular, recalling assumption (iii), all
components of the metric tensor become polynomials in σ.
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FIG. 1. Left panel: conformal null vectors in the spatially compactified spacetime with metric g̃ab in terms of the hyperboloidal coordinates
{τ, σ}. At σ = 0 and σ = 1 the light-cones point outwards the domain σ ∈ [0, 1]. Such surfaces corresponds, respectively, to future null
infinity and the black-hole horizon. Right panel: Carter-Penrose conformal diagram for the external region of an asymptotically flat, stationary
black-hole spacetime. The time-constant surface in the (initial) Schwarzschild coordinates {t, r} extends between the bifurcation sphere B
(r = rH) and spatial infinity i0 (r →∞). Ingoing Eddington-Finkelstein coordinates {v̄, σ} ensure that σ → σH (along v̄ = const.) reaches
the event horizonH. Yet, the hypersurface σ = 0 (along v̄ = const.) corresponds to past null infinity I−. Indeed, the ingoing null vector k̃a

points towards the interior of the domain, whereas l̃a is tangent to σ = 0 (cf. expressions (11)). In the hyperboloidal coordinates {τ, σ}, the
height function ensures that σ = 0 (along τ = const.) corresponds to future null infinity I +, with k̃a ∝ δaτ and therefore tangent to σ = 0.

3. Comparison with Zenginoglu’s scri-fixing prescription

We finish this section by comparing the approach/notation
we used for the height function technique against the origi-
nal one introduced in [12, 30]. First of all, the height func-
tion h here follows from (12) — i.e. a transformation from
the ingoing Eddington-Finkelstein coordinate v̄. Zenginoglu’s
height function hZ is defined [12, 30] in terms of the original
Schwarzschild coordinate t. Taking into account the correct
signs and dimension re-scalings, we have

hZ = − (r∗ + λh) . (27)

In [12], the geometric framework is discussed in terms of the
boost function

H :=
dhZ

dr∗
= −1 +

σ2F

β
h′ . (28)

In particular, Eq. (2) in [12] specifies the conditions for
the time-constant slices to be horizon-penetrating and hyper-
boloidal. Due to our preliminary step in terms of ingoing
Eddington-Finkelstein coordinates, all conditions imposed on
H as r → rH are automatically satisfied.

In a more general formulation, the work [30] discusses
matching conditions that smoothly connect the asymptotic be-
havior of the hyperboloidal slices to Cauchy hypersurfaces in
the interior of the spacetime [36]. Moreover, the areal radius
ρ of the conformal spacetime is regarded as the new compact
coordinate and the conformal factor Ω(ρ) is a free function.
Here, we choose a compact coordinate naturally adapted to the
conformal factor via σ = λΩ, whereas the areal radius ρ(σ)
is a free function fixing the gauge. The motivation in [30] to

introduce the matching conditions and to let a free conformal
factor Ω(ρ) arises from the considered objective of applying
the hyperboloidal approach to solve numerically the full non-
linear Einstein’s equation4.

In the context of perturbation theory, however, where the
background spacetime is known a priori, adapting the radial
coordinates to the conformal factor and fixing the function
A(σ) = 0 simplifies significantly the equations under study.
Thus, the minimal gauge reduces the complexity of the prob-
lem to a minimum, where F (σ) is the only relevant function.
In fact, the minimal gauge was employed beyond spherical
symmetry in [46] in the numerical evolution of the Teukolsky
equation in the Kerr spacetime. Even though the qualitative
results do not differ from other studies (e.g. [47–51]), the ana-
lytical structure of the spacetime metric and the wave equation
become much simpler.

III. SPECTRAL DECOMPOSITION FOR BLACK-HOLE
PERTURBATIONS

A. Wave equation

1. Master wave equation

Black-hole perturbation theory is usually formulated in the
Schwarzschild coordinate system {t, r, θ, φ}. Introducing di-

4 See [37–45] for non-linear time evolutions in the context of hyperboloidal
foliations.
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mensionless coordinates t̄ = t/λ and x = r∗/λ, one typically
studies the wave equation

−Ψ,t̄t̄ + Ψ,xx − PΨ = 0 . (29)

The structure of equation (29) is generic in a large class of
fields propagating on a spherical background. For instance,
scalar, electromagnetic or gravitational perturbations differ
only in the forms for the potential P . A solution to this equa-
tion is uniquely determined once we impose the initial data

Ψ0(x) = Φ(0, x), Ψ̇0(x) = Ψ,t(0, x) , (30)

together with (generally time-dependent) boundary conditions
at inner x = xin(t) and outer x = xout(t) hypersurfaces. In
particular, in the QNM setting, outgoing boundary conditions
must be imposed at xout → +∞ and at xin → −∞. Note
that in this particular Cauchy slicing foliated by t̄ = constant,
the limits xout → +∞ and xin → −∞ correspond to spatial
infinity and the bifurcation sphere, respectively.

The coordinate changes (7) and (12) can be applied directly
to Eq. (29). Let us introduce the factorization

P(r) =
λ2

r2
f(r)P(r) . (31)

Firstly, the introduction of the compact ingoing Eddington-
Finkelstein coordinates (7) leads to

−2 v,v̄σ +

[
σ2F

β
v,σ

]
,σ

− β

ρ2
P v = 0 , (32)

with v(v̄, σ) = Ψ(t(v̄, σ), r(σ)).
When passing from (29) to (32), one can factor out the

quantity σ2F (σ), which vanishes at null infinity σ = 0 and
at the horizon F (σH) = 0. Yet, another factor of the form
σ2F (σ) is still present as the coefficient of v,σσ and the equa-
tion (32) degenerates at σ = 0 and σ = σH. As a consequence
of this latter feature, regularity conditions must be taken into
consideration when solving the equation.

We recall that the intermediate step involving the ingoing
Eddington-Finkelstein coordinates was only meant to enforce
the horizon-penetrating property and to introduce the confor-
mal compactification of the spacetime. The surface σ = 0
(along v̄ = constant) corresponds to past null infinity I −,
with the ingoing null vector k̃a pointing towards the interior
of the domain σ > 0 — see Eq. (11) (cf. also the right panel
in figure 1 and footnote 3). At the partial differential equa-
tion level, the wave equation is formulated as a characteristic
problem, for which a unique solution is obtained with the pre-
scription of data at the null hypersurfaces v̄ = 0 and σ = 0.

With the introduction of the hyperboloidal slices (12), the
limiting value σ = 0 is performed along τ = constant. In this
case, the height function h(σ) ensures that σ = 0 corresponds
to future null infinity I +. The wave equation then reads

−2h′
[
1− σ2F

2β
h′
]
V,ττ − 2

[
1− σ2F

β
h′
]
V,τσ +

σ2F

β
V,σσ

+

[
σ2F

β

]′
V,σ +

[
σ2Fh′

β

]′
V,τ −

β

ρ2
PV = 0 , (33)

with V (τ, σ) = v(v̄(τ, σ), σ).
Despite the rather complicated form of Eq. (33), it is

straightforward to see that the term proportional to V,σσ still
vanishes at both σ = 0 and σ = σH, i.e. at future null infinity
and at the black hole horizon.

At the boundaries σ = 0 and σ = σH, the characteristics
of the system never point inwards the domain σ ∈ [0, σH]
(cf. the left panel in figure 1). Therefore, the wave equation
is treated as a Cauchy problem for which the prescription of
initial data

V0(σ) = V (0, σ) and V̇0(σ) = V,τ (0, σ) , (34)

is sufficient to fix uniquely the time solution for τ > 0.
In sharp contrast with the Cauchy formulation in terms of
the original Schwarzschild coordinates {t, r, θ, ϕ}, no further
boundary conditions are required.

Note however, that this procedure is based on a direct
change of coordinates applied to the master equation (29). A
more systematic geometrical approach should be based on a
coordinate independent formulation according to the confor-
mal transformation of the spacetime gab = Ω−2g̃ab. In the
next section we discuss this procedure for the scalar field. A
complete conformal treatment of electromagnetic and gravita-
tional perturbations is beyond the scope of this work.

2. Conformal wave equation

We start with the conformally invariant wave equation [52]
for a massless scalar field U(t, r, θ, ϕ) propagating in the
background provided by the metric gab

�U − R

6
U = 0 , (35)

with R the Ricci scalar associated with the metric gab. Here,
we are particularly interested in spacetimes satisfying R = 0.

Note that Eq. (29) is recovered with the decomposition5

U(t, r, θ, ϕ) =
∑
`,m

Ψ`,m(t, r)

r
Y`,m(θ, ϕ) . (36)

In particular, the potential is given by

P(r) = `(`+ 1) + r f ′(r) . (37)

In terms of the conformal metric g̃ab, the conformally re-
scaled scalar field Ũ satisfies

�̃Ũ − R̃

6
Ũ = 0 , Ũ = Ω−1U , (38)

with

R̃ = − 6

Ω

[
�̃Ω− 2

∇̃aΩ∇̃aΩ

Ω

]
= − 6σ

βρ2

[
ρ2F

β

]′
, (39)

5 For simplicity, the indices `,m were absent in Eq. (29), (32) and (33).



7

the Ricci scalar associated with the metric g̃ab. With the de-
composition

Ũ(τ, σ, θ, ϕ) =
∑
`,m

Φ`,m(τ, σ)Y`,m(θ, ϕ) , (40)

we obtain

−2h′
[
1− σ2F

2β
h′
]

Φ,ττ − 2

[
1− σ2F

β
h′
]

Φ,τσ +
σ2F

β
Φ,σσ

+
1

ρ2

[
σ2ρ2F

β

]′
Φ,σ −

1

ρ

[
2ρ′ −

(
σ2ρ2Fh′/β

)′
ρ

]
Φ,τ

− β

ρ2
P̃ Φ = 0 . (41)

Here, the potential reads

P̃ = `(`+ 1)− σ

β

[
ρ2F

β

]′
. (42)

Inserting Eqs. (36) and (40) into (38) — and then using (7)
and (10) — the conformally re-scaled scalar field Φ relates to
V via

V (τ, σ) = ρ(σ)Φ(τ, σ) . (43)

If ρ(σ) = constant, there is no distinction between chang-
ing variables of the original master equation (29) into (33), as
done in the previous subsection III A 1, and writing the con-
formally invariant wave equation (41). Otherwise, the wave
operator differs. In particular, in the minimal gauge6, ρ(σ) is
an affine function of σ (cf. Eq. (24)). In this setting, we priv-
ilege the conformally invariant wave equation as the natural
choice, due to its geometrical formulation.

Deriving a conformally invariant master equation in a more
generic setup including, for instance, electromagnetic and
gravitational perturbation should be the topic of future works.
Yet, we expect to relate a conformally re-scaled perturbation
Φ(τ, σ) to the well-known formulation in terms of a field
Ψ(t̄, x) satisfying an equation in the form of Eq. (29) via a
re-scaling

Ψ(t(τ, σ), r(σ)) ≡ V (τ, σ) = ρ(σ)nΦ(τ, σ) , (44)

with n depending on the type of field.
We apply this assumption to Eq. (33) in order to obtain a

general form for the “conformal” wave equation

−2h′
[
1− σ2F

2β
h′
]

Φ,ττ − 2

[
1− σ2F

β
h′
]

Φ,τσ +
σ2F

β
Φ,σσ

+
1

ρ2n

[
σ2ρ2nF

β

]′
Φ,σ −

[
2n
ρ′

ρ
−
(
σ2ρ2nFh′/β

)′
ρ2n

]
Φ,τ

− β

ρ2
P̃ Φ = 0 . (45)

6 Note that the whole discussion in subsection III A 1 is independent of the
gauge choice for ρ = ρ(σ) and h = h(σ). Eqs. (32) and (33), as well
as (41), apply therefore in the generic case, and not only in the minimal
gauge.

While the potential in Eq. (42) has a geometrical meaning in
terms of the conformal Ricci scalar R̃, here we simply define
it as

P̃ = P− ρ2−n

β

[
σ2F

β
(ρn)

′
]′
. (46)

Eq. (43) provides naturally the value n = 1 to scalar per-
turbations. In section V we study a concrete example of elec-
tromagnetic and gravitational perturbations on the Reissner-
Nordström spacetime. There, we identify the value n = −1
for such fields. It is tempting to speculate that the scaling
n = −1 should follow naturally if one formulates ab initio the
master equation for electromagnetic and gravitational pertur-
bations within the conformal representation of the spacetime.

B. Laplace Transformation

We now proceed as in [11] and introduce the Laplace trans-
formation

Φ̂(σ; s) := L[Φ(τ, σ)](s) =

∫ ∞
0

e−sτΦ(τ, σ) dτ, <(s) > 0 .

(47)
Applying the Laplace transformation to Eq. (45) leads to the
ordinary differential equation (ODE)

A(s)Φ̂(s) = B(s) , (48)

with

A(s) =
σ2F

β
∂σσ +

(
1

ρ2n

[
σ2ρ2nF

β

]′
− 2s

[
1− σ2F

β h′
])

∂σ

−

(
β
ρ2 P̃ + s

[
2nρ

′

ρ −
(σ2ρ2nFh′/β)

′

ρ2n

]
+ 2s2h′

[
1− σ2F

2β h
′
])
(49)

and

B(s) = −2h′
[
1− σ2F

2β
h′
] (

sΦ0 + Φ̇0

)
− 2

[
1− σ2F

β
h′
]

Φ0,σ

−

[
2n
ρ′

ρ
−
(
σ2ρ2nFh′/β

)′
ρ2n

]
Φ0 , (50)

where Φ0(σ) = Φ(0, σ) and Φ̇0 = ∂τΦ(0, σ) are the initial
data for the wave equation (45).

1. Comparison with the Cauchy formulation

Let us relate the operator A(s) on the hyperboloidal slice to
the corresponding one on Cauchy slices t̄ = constant. First
we write the Laplace transform of the field Ψ(t̄, x) with re-
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spect to the parameter t̄ 7

Ψ̂(x; s) := L[Ψ(t̄, x)](s) =

∫ ∞
0

e−st̄Ψ(t̄, x) dt̄ . (51)

Applying the Laplace transformation to the wave equation
(29) leads to the standard formulation

D(s)Ψ̂(s) = S(s) , (52)

with

D(s) = ∂xx−(s2 +P) , S(s) = −Ψ̇0(x)−sΨ0(x) . (53)

As stated in Eq. (30), Ψ0(x) and Ψ̇0(x) are the initial data at
the Cauchy slice t̄ = 0. Note that such functions are defined
on a different time slice as compared to functions Φ0(σ) and
Φ̇(σ), which are defined in the hyperboloidal slice τ = 0.

Taking into account the relation derived from (7) and (12)

τ = t̄+ x+ h(σ(x)) , (54)

the factor e−sτ in the Laplace transform of V (τ, σ) writes as
e−s(x+h)e−st̄. This result, together with the conformal rescal-
ing (44), motivates the introduction of the factor

Z(x; s) := ρ(σ(x))nes(x+h) , (55)

to relate the Laplace transforms with respect to τ and t̄, and
therefore the action of the operators A(s) and D(s). Specifi-
cally, for functions ψ(x; s) and φ(σ; s) related as

ψ(x; s) = Z(x; s)φ(σ(x); s) , (56)

it holds

D(s)ψ(s) =
Zσ2F

β
A(s)φ(s) . (57)

In studies starting from the homogeneous equation
D(s)ψ(s) = 0, such a rescaling factor Z is introduced
after an asymptotic study of the ODE (and a bit of algebra) as
a way of imposing the desired outgoing boundary conditions
leading to QNMs8 [29, 53]. In the present discussion, it fol-
lows clean and directly from the geometrical considerations
of the hyperboloidal slices.

7 In principle one should distinguish the spectral parameter s̄ associated with
the Laplace transform in terms of t̄ from the parameter s employed for the
transformation in terms of τ . However, such spectral parameters coincide
since both t̄ and τ are natural parameters of the timelike Killing vector
ξ = λ∂t, namely ξ(t̄) = ξ(τ) = 1 (actually ξ = ∂t̄ = ∂τ ).

8 The concept of outgoing boundary conditions leading to QNMs is often
expressed solely as ψ(x; s) ∼ e∓sx for x → ±∞. Though necessary,
such conditions are not sufficient — see e.g. section 3.1.2 in [3] and ref-
erences therein. Indeed, in [11] regular solutions to the wave equation are
constructed with arbitrary decay and frequency time scales.

s∗
0

s0

ℑ(s)

s1

s2

Γ1

ℜ(s)ξ

Γ2

s∗
2

s∗
1

FIG. 2. Integration paths for the inverse Laplace transformation. The
Bromwich integral (58) is evaluated along the line Γ1 in the right-
plane <(s) > 0 (taking its upper and lower limits to +∞ and −∞,
respectively). The spectral decomposition (2) is formally obtained
from the Cauchy theorem with the deformation of the path and inte-
gration along the curve Γ1 − Γ2.

C. Spectral decomposition

The solution to the time evolution Φ(τ, σ) is formally ob-
tained via the inverse Laplace transformation (Bromwich In-
tegral)

Φ(τ, σ) =
1

2πi

∫
Γ1

Φ̂(σ; s)esτ ds , (58)

with the integration path

Γ1 = {s ∈ C | s = ξ + iχ, ξ > 0, χ ∈ (−∞,+∞)} . (59)

The spectral decomposition (2) is obtained by (maximally) an-
alytically extending the function V̂ (σ; s) into the half-plane
<(s) < 0 and then appropriately deforming the path Γ1 into
that semi-plane — see Fig. 2.

When deforming the Bromwich integration path from Γ1 to
Γ2, we gather a contribution from the QNMs sn, the branch
cut along the negative real axis s ∈ R− and, in principle, the
external semicircle, following the discussion in [11, 54, 55].
In particular, [11] presents a detailed description of the algo-
rithm and its application to the Schwarzschild case leading to

Φ(τ, xk) =

∞∑
n=0

ηne
snτφn(xk) +

0∫
−∞

η(s)esτφ(xk; s)ds

and conjecture 1.
In next section IV, we present a more general procedure to

calculate all the needed ingredients in the spectral decompo-
sition, namely: i) the QNM frequencies sn together with the
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functions φn(xk) and φ(xk, x), and ii) the QNM and branch
cut amplitudes, respectively, ηn and η(s). The former are ele-
ments intrinsic to the wave equation, whereas the latter depend
on the initial data.

IV. ALGORITHM IN FREQUENCY SPACE

A. Taylor series expansions

In [11], Eq. (48) was solved in the Schwarzschild back-
ground via a non-trivial Taylor series expansions around the
horizon σ = σH. Here, we generalize this procedure to an
arbitrary asymptotically flat spherically symmetric spacetime.

1. Homogeneous Equations

We first consider the homogeneous Laplace transformed
equation

A(s)φ(s) = 0 . (60)

In a first step, we focus on solutions which are analytic in a
neighborhood around the horizon H, gauge fixed in section
II C 2 to σH = 1. Thus, we expand φ(s) in terms of a Taylor
series

φ(σ; s) =

∞∑
k=0

Hku
k, u = 1− σ . (61)

Singular points of this ODE are given by σ = 0 and σ = ∞,
as well as by the values σ = σHj , such that F (σHj ) = 0. The
smallest real root represents the event horizon H, therefore it
must hold σH0

= 1 in the adopted gauge.
Given the unit circle

C = {σ ∈ C : |1− σ| < 1} , (62)

a necessary condition for the convergence of the series (61)
within C (and therefore up to the vicinity of future null in-
finity at σ = 0) requires that further (eventually complex)
roots of F (σ) lie outside C. In the particular case of Reissner-
Nordström, the (real) root σ1 associated with the Cauchy hori-
zon must satisfy σH1 ≥ 2.

In the minimal gauge (see section II C 2), the coefficients
of the operator A(s) are polynomials 9 in σ. Therefore, the
introduction of the Ansatz (61) into (60) gives rise to a (m +
2)-term recurrence relation, i.e. a (m + 1)-order recurrence
relation

αkHk+1 +

m∑
i=0

β
(i)
k Hk−i = 0 , k ≥ m , (63)

9 One might need to multiply the equation by an appropriate power of ρ, in
case ρ(σ) is not a constant but presents a linear term in σ — see Eq. (24).

with m ∈ N, α−1 = 0 and the coefficients αk and β(i)
k de-

pending on the structure of the operator A(s) (see Eq. (49)
and also (153) below for an illustration in the Reissner-
Nordström case).

The m + 1 initial values Hk (k = 0, . . . ,m) needed to
iterate (63) must satisfy (a suitable normalization is H0 = 1)

αkHk+1 +

k∑
i=0

β
(i)
k Hk−i = 0 , k = 0, . . . ,m− 1 . (64)

These constraints follow from extending the validity of the
relation (63) to k = 0, . . . ,m− 1 and imposing

H−k = 0, k = 1, . . . ,m . (65)

Note that (65) applied to (63) for k < 0 automatically ensures
Hk = 0 for all k < 0, i.e., the constraints (64) encode the
information about the regularity of (61) at σ = 1.

Let us now relax the conditions imposed by the constraints
(64) — or equivalently, by (65) — and construct all the m+ 1

linearly independent sequences {H(`)
k }∞k=−m (` = 0, . . . ,m)

satisfying

H
(`)
−k = δ`k , k = 0, . . . ,m (66)

αkH
(`)
k+1 +

m∑
i=0

β
(i)
k H

(`)
k−i = 0 , k ≥ 0 , (67)

with δ`k the Kronecker delta. For ` = 0, Eqs. (66) and (67) re-
cover (63)-(65), i.e., the sequence {H(0)

k }∞k=−m corresponds
to the Taylor coefficients leading to (61).

We consider now the asymptotic behavior of (67) for large
k values. From the findings in [11, 29, 53, 56], we consider
the cases where Hk behaves asymptotically as10

Hk ∼ eξk
p

kζAk , Ak = 1 +

∞∑
j=1

νj
kjp

(68)

with p = 1/2 or p = 1.
For a fixed asymptotic parameter p, an algorithm to deter-

mine the coefficients ξ, ζ and {νj}∞j=1 consists in (i) inserting
(68) back into the recurrence relation (63), (ii) multiplying the
result by e−ξk

p

k−ζ , (iii) expanding the resulting expression in
terms of y = k−p around y = 0, and (iv) equating the coeffi-
cients of the asymptotic expansion order by order [11].

From the perspective of the asymptotic expansion, the free-
dom to construct the m + 1 linearly independent solutions is
captured by the existence of m + 1 asymptotic coefficients
ξ(`), ζ(`) and {ν(`)

j }∞j=1 (` = 0, . . . ,m). Thus, the asymptotic

10 The assumptions until the end of this section are corroborated by the sce-
narios studied in [11, 15, 57, 58]. A more rigorous statement relating such
behaviors, the (polynomial in k) form of the coefficients αk , β(i)

k and the
convergence region given by the unit circle C requires further work that
goes beyond the scope of this paper.
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behavior of each sequence {H(`)
k }∞k=−m is given by a linear

combination

H
(`)
k ∼λ

(`)
(0) e

ξ(0)kp
(0)

kζ
(0)

A
(0)
k + . . .

+λ
(`)
(`)e

ξ(m)kp
(m)

kζ
(m)

A
(m)
k , (69)

with λ``′ generic coefficients.

We also assume that
∣∣∣eξ(0)∣∣∣ > 1, whereas, for ` = 1, . . . ,m,∣∣∣eξ(`) ∣∣∣ < 1, i.e., the asymptotic (0)-mode grows for large k

while the (`)-modes (` = 1, . . . ,m) decay. Moreover, we
label the asymptotic parameters in such a way that

0 <
∣∣∣eξ(m)

∣∣∣ ≤ ∣∣∣eξ(m−1)
∣∣∣ ≤ . . . ≤ ∣∣∣eξ(1)∣∣∣ < 1 .

Note that the sequences {H(`)
k }∞k=−m are obtained accord-

ing to (67), by fixing their initial seeds via (66). When it-
erating (67) forwardly, we cannot control the asymptotic be-
havior and, in general, the growing mode will dominate. Our
aim is to introduce a new set of linear independent sequences
{I(`)
k }∞k=−m still satisfying the recurrence relation (67), but

also eliminating the growing asymptotic behavior11.
For this task, we first identify directly H(0)

k = I
(0)
k , i.e.,

I
(0)
k satisfies, on the one hand, the constraints (64) needed for

the regularity properties of (60) at σ = 1 and, on the other

hand, it generically grows asymptotically as∼ eξ(0)kp
(0)

kζ
(0)

.
Then, we successively filter the asymptotic modes by defining

I
(`)
k =

∑̀
`′=0

κ
(`)
`′ H

(`′)
k , (` = 1, . . . ,m) . (70)

For each ` = 1, . . . ,m, there are (` + 1) constants κ(`)
`′ to

be fixed. To determine such constants, we prescribe a trunca-
tion kmax and consider (70) at (` + 1) values k = kmax + l

(l = 0, . . . , `). The asymptotic behavior of I(`)
kmax+l is then ap-

proximated via the algorithm from [11] applied to the desired

decaying behavior ∼ eξ
(`)kp

(`)

kζ
(`)

. This procedure provides
us with (` + 1) equations to fix κ

(`)
`′ . Having imposed the

desired decaying behavior to the sequence {I(`)
k }∞k=−m, we

normalize it to I(`)
0 = 1 by letting I(`)

k → I
(`)
k /I

(`)
0 .

Summarizing the discussion above, we have constructed
(m + 1) linearly independent sequences {I(`)

k }∞k=−m (` =
0, . . . ,m) which are solutions to the recurrence relation (67)
and satisfy:

(1) There is one specific solution I(0)
k with

I
(0)
k = 0 for k < 0 . (71)

11 In [11], this procedure is done via a backward iteration of the recurrence
relation. Appendix VII B discusses this strategy in the current context.

(2) As k → ∞, the coefficients I(`)
k decay for ` = 1, . . . ,m.

In contrast, the coefficients I(0)
k are assumed to diverge as

k →∞.

The solutions I(`)
k (` = 1, . . . ,m) are refereed to as de-

caying solutions.

(3) For all ` = 0, . . . ,m, the sequences are normalized to

I
(`)
0 = 1 . (72)

(4) For the first few negative indices −m ≤ k < −`, the
decaying solutions I(`)

k (` = 1, . . . ,m) satisfy

I
(`)
k = 0 . (73)

2. Inhomogeneous equation

We now proceed to the general algorithm to solve the
Laplace transformed equation (48). According to the previ-
ous section, we seek a solution Φ̂(σ; s) of the form

Φ̂(σ; s) =
∞∑
k=0

ak(1− σ)k . (74)

The coefficients ak satisfy the inhomogeneous recurrence re-
lation

αkak+1 +

m∑
i=0

β
(i)
k ak−i = qk , (75)

with qk the coefficients for the expansion of the source (50)

B(σ; s) =

∞∑
k=0

qk(1− σ)k . (76)

As in [11], we initially consider an inhomogeneity of polyno-
mial kind, i.e., with

qk = 0 for k < 0 and k > Kmax . (77)

The analytic limit Kmax → ∞ is taken in the end of this
section. Finally, we restrict ourselves to regular solutions sat-
isfying {

ak = 0 for k < 0
ak → 0 as k →∞ .

(78)

We seek the solution ak to the inhomogeneous recurrence re-
lation in the form

ak =

m∑
`=0

ck,`I
(`)
k , (79)

i.e., as a linear combination of the solutions I(`)
k to the homo-

geneous relation. In order to fix the coefficients ck,` we must
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impose, together with (75), m further conditions. In particu-
lar, the conditions

m∑
`=0

c′k,`I
(`)
k−p = 0, p = 0, . . . ,m− 1 , (80)

extend Eq. (64) in [11] to the present general case. Eqs. (79)
and (80) constitute the generalization of the Ansatz in [11] for
the solution of the recurrence relation.

In order to justify (80), we introduce the discrete derivative

c′k,` = ck+1,` − ck,` . (81)

As a consequence, we find that

ck+1,` = ck,` + c′k,`

ck−i,` = ck,` −
i∑

j=1

c′k−j,` (i ≥ 1) . (82)

The first one recasts the definition (81), whereas the second
one follows again from such definition by writing

i∑
j=1

c′k−j,` =

i∑
j=1

ck−j+1,` −
i∑

j=1

ck−j,` ,

and shifting the index j′ = j − 1 in the first sum of the right-
hand-side to get

i∑
j=1

c′k−j,` =

i−1∑
j′=0

ck−j′,` −
i∑

j=1

ck−j,` = ck,` − ck−i,` .

Combining these partial results with the Ansatz (79) we may
write

ak+1 =

m∑
`=0

ck,`I
(`)
k+1 +

m∑
`=0

c′k,`I
(`)
k+1 (83)

ak−i =

m∑
`=0

ck,`I
(`)
k−i −

i∑
j=1

( m∑
`=0

c′k−j,`I
(`)
k−i

)
. (84)

If we now impose, for all k ∈ Z

ak−i =

m∑
`=0

ck,`I
(`)
k−i , (85)

we must require, for j = 1, . . . , i, the following relation to
hold

m∑
`=0

c′k−j,`I
(`)
k−i =

m∑
`=0

c′k′,`I
(`)
k′−(i−j) = 0 ,

with k′ = k − j. Thus, the m supplementary conditions (80)
necessary to determine the coefficients ck,`, uniquely follow
from the expression above for i = 1, . . . ,m.

A key element in the algorithm in [11] is the introduction of
a discrete Wronskian determinant associated with two numer-
ical sequences {ak}∞−∞ and {bk}∞−∞ (cf. Eq. (55) in [11]).

We are now in position to generalize such a discrete Wron-
skian determinant to a set of m + 1 numerical sequences, as
required in the present generalized setting 12. We insert (83)
and (85) into the original recurrence relation (75) to get

m∑
`=0

ck,`

[
αkI

(`)
k+1 +

m∑
i=0

β
(i)
k I

(`)
k−i

]
+ αk

m∑
`=0

c′k,`I
(`)
k+1 = qk .

Since I(`)
k satisfies the homogeneous recurrence relation (63),

this expression reduces to

αk

m∑
`=0

c′k,`I
(`)
k+1 = qk . (86)

The combination of Eqs. (80) and (86) leads to

Ŵk


c′k,0
c′k,1
c′k,2

...
c′k,m

 =


qk/αk

0
0
...
0

 , (87)

with the matrix Ŵk defined by

Ŵk :=


I

(0)
k+1 I

(1)
k+1 · · · I

(m)
k+1

I
(0)
k I

(1)
k · · · I

(m)
k

I
(0)
k−1 I

(1)
k−1 · · · I

(m)
k−1

...
...

. . .
...

I
(0)
k−(m−1) I

(1)
k−(m−1) · · · I

(m)
k−(m−1)

 . (88)

This matrix provides us with a general definition for the dis-
crete Wronskian determinant, namely

Wk = det Ŵk . (89)

Let us further define the sub-matrix Ŵk,` as the one result-
ing from Ŵk after removing the first row and the column
(I

(`)
k+1 I

(`)
k · · · I(`)

k−(m+1))
T , i.e.

I
(0)
k · · · I

(`−1)
k I

(`+1)
k · · · I

(m)
k

I
(0)
k−1 · · · I

(`−1)
k−1 I

(`+1)
k−1 · · · I

(m)
k−1

...
. . .

...
...

. . .
...

I
(0)
k−(m−1) · · · I

(`−1)
k−(m−1) I

(`+1)
k−(m−1) · · · I

(m)
k−(m−1)


︸ ︷︷ ︸

=:Ŵk,`

.

(90)

12 We assume that neither αk nor β(m)
k vanish for a given integer k. Ap-

pendix C in [11] discusses the modifications in the algorithm accounting
for such cases in 2−order recurrence relations. Its generalization for a
m+1-order recurrence relations is actually relevant in scenarios involving
odd-dimensional spacetimes, indeed a subject of current work [58].
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Analogously to Eq. (89)

Wk,` = det Ŵk,` . (91)

With the help of Eqs. (87)-(91) we are now able to write down
an explicit expression for the solution ak.

We begin by deriving a compact expression for the Wron-
skian determinant. First we define

Ŵα
k :=


αkI

(0)
k+1 αkI

(1)
k+1 · · · αkI

(m)
k+1

I
(0)
k I

(1)
k · · · I

(m)
k

I
(0)
k−1 I

(1)
k−1 · · · I

(m)
k−1

...
...

. . .
...

I
(0)
k−(m−1) I

(1)
k−(m−1) · · · I

(m)
k−(m−1)

 ,

and

Ŵαβ
k := IβŴα

k ,

with

Iβ :=


1 β

(0)
k β

(1)
k · · · β(m−1)

k
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Note that

αkWk = det Ŵα
k = det Ŵαβ

k . (92)

Now, since the I(`)
k satisfy the homogeneous recurrence rela-

tion, the first row of Ŵαβ
k explicitly reads{

αkI
(`)
k+1 +

m−1∑
i=0

β
(i)
k I

(`)
k−i

}m
`=0

=
{
−β(m)

k I
(`)
k−m

}m
`=0

.

Thus, we obtain

det Ŵαβ
k = −β(m)

k det


I

(0)
k−m I

(1)
k−m · · · I

(m)
k−m

I
(0)
k I

(1)
k · · · I

(m)
k

I
(0)
k−1 I

(1)
k−1 · · · I

(m)
k−1

...
...

. . .
...

I
(0)
k−(m−1) I

(1)
k−(m−1) · · · I

(m)
k−(m−1)

 = −β(m)
k (−1)mWk−1 . (93)

In the above expression, the determinant Wk−1 comes about
once we swap the 1st and 2nd row, thereafter the 2nd and 3rd
row and so on, until the first row is shifted to being the very
last one. At each swap, we gain a factor−1. Since there are in
total m swaps in this (m+ 1)× (m+ 1) dimensional matrix,
a final factor (−1)m appears as well.

Combining (92) with (93) gives the simple result

αkWk = (−1)m+1β
(m)
k Wk−1 ,

and therefore the desired result

Wk = W−1

k∏
j=0

(−1)m+1
β

(m)
j

αj
. (94)

We proceed now to find the solution ak. Thanks to the prop-
erty (71) in assumption (1), the normalization (72) in assump-
tion (3) and (73) in assumption (4), we obtain

W−1 = W−1,0 =

m∏
`=1

I
(`)
−` . (95)

Moreover, for k ≤ −2, Wk = 0 and therefore the system (87)
cannot be inverted. Still, we want to enforce (80) for all k. In

particular, Eq. (80) reads for k < 0

Ŵk,0


c′k,1
c′k,2

...
c′k,m

 =


0
0
...
0

 . (96)

If we assume that Ŵk,0 is invertible (Wk,0 6= 0), we may
conclude13 that for ` = 1, . . . ,m

c′k,` = 0 (k < 0)⇒ ck,` = c̄` = const. (k ≤ 0) (97)

The constants c̄` can be determined from (79). Indeed, taking
m negative k values yields a system of m equations to deter-
mine the c̄′`s. Since ak = 0 for k < 0, and assuming the
system to be invertible, we obtain simply

ck,` = 0 for ` = 1, . . . ,m and k ≤ 0 . (98)

For ` = 0 though, the ck,0 with k ≤ 0 are arbitrary and unde-
termined.

13 The passage from the strict inequality k < 0 to k ≤ 0 follows from the
definition of c′k,` in Eq. (81).
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We now concentrate on the solution of (87) for k ≥ 0
with “initial conditions” c0,` = 0 for ` = 1, . . . ,m and a
free, undetermined parameter c0,0. The solution of this sys-
tem emerges through the Cramer’s rule as

c′k,` = (−1)`
qk
αk

Wk,`

Wk
. (99)

With c0,` = 0 for ` = 1, . . . ,m, we get from (82)

ck,0 = c0,0 +

k−1∑
j=0

qj
αj

Wj,0

Wj
(100)

ck,` = (−1)`
k−1∑
j=0

qj
αj

Wj,`

Wj
, ` = 1, . . . ,m. (101)

It then follows, from (79), that

ak = I
(0)
k

(
c0,0 +

k−1∑
j=0

qj
αj

Wj,0

Wj

)

+

m∑
`=1

(−1)`I
(`)
k

k−1∑
j=0

qj
αj

Wj,`

Wj
. (102)

The constant c0,0 is determined by imposing (78). Since
qk = 0 for k > Kmax and, according to assumption (2), I(0)

k
diverges in this limit, we must have

c0,0 = −
Kmax∑
j=0

qj
αj

Wj,0

Wj
. (103)

Hence

ak = −I(0)
k

Kmax∑
j=k

qj
αj

Wj,0

Wj
+

m∑
`=1

(−1)`I
(`)
k

k−1∑
j=0

qj
αj

Wj,`

Wj
.

(104)
In this expression, the Kmax can be taken arbitrarily large and
we account for that by considering the formal series obtained
by letting Kmax → ∞. Besides, we can explicitly substitute
the expression for Wj according to (94) to get

ak =
1

W−1

(
−I(0)

k

∞∑
j=k

qjΞj,0 +

m∑
`=1

(−1)`I
(`)
k

k−1∑
j=0

qjΞj,`

)
,

(105)
with

Ξk,` = Wk,`
(−1)m+1

αk

k∏
j=0

αj

β
(m)
j

. (106)

B. Quasi-normal modes and amplitudes

In accordance to [11], the QNM frequencies sn are specific
values in the complex s−plane for which the procedure de-
scribed in the previous section fails. According to (105), this

occurs whenever W−1 vanishes. Specifically, and thanks to
(95), this occurs when

I
(1)
−1 = 0 . (107)

This condition, together with property (4) in section IV A 1,
leads to I(1)

k = 0 for all k < 0. Thus, the two solutions I(0)
k

and I
(1)
k become linearly dependent. In fact, they coincide

here due to the normalization (3).
Having identified the condition in the present setting for the

location of the QNMs, which depends only on the wave equa-
tion in question and is a property of the spacetime alone, we
proceed to calculate the QNM amplitudes and the jump func-
tion along the branch cut, resulting from the specific choice of
initial data.

1. Discrete amplitudes

Let us first recall the simplified notation introduced in [11]
for the recurrence relation (75)

A(s) · {ak} = {qk} , (108)

with the operator A(s) defined by

[A(s) · {ak}]k := αkak+1 +

m∑
i=0

β
(i)
k ak−i . (109)

Assuming thatW−1 has simple poles at discrete values sn, we
may write

ak(s) =
ηnI

(0)
k

s− sn
+ gk(s) . (110)

Furthermore, we introduce a second operator Cn via

Cn(s) =
A(s)−A(sn)

s− sn
. (111)

In the limit s → sn, the decompositions (110) and (111)
together with the condition for homogeneous solutions, (63)
lead to

A(sn) · {gk} = {qk} − ηnCn(sn) · {I(0)
k } . (112)

For s 6= sn, the k = 0 solution to (112), according to (105),
would be

g0 = − 1

W−1

∞∑
j=0

(qj − ηnCj) Ξj,0 , (113)

with

Cj :=
[
Cn(s) · {I(0)

k }
]
j
. (114)

Since W−1 → 0 in the limit s → sn, a finite value for g0 is
obtained only if

ηn =

∞∑
j=0

qjΞj,0

∞∑
j=0

CjΞj,0

. (115)
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For a given set of initial data, the ηn are the amplitudes asso-
ciated with each QNM sn and Eq. (115) generalizes the result
from [11].

2. Branch cut amplitude

We end this section by considering the situation in which
we approach the negative real axis in the complex s−plane.
Depending on whether we approach the axis from above or
from below we might encounter different solutions for the in-
homogeneous recurrence relation. We begin by defining

a±k = lim
ε→0

ak(s± i|ε|) , (116)

and we assume the symmetry condition (with upper asterisk ∗

denoting complex conjugation)

a−k = [a+
k ]∗ , (117)

that follows from V (τ, σ) being a real valued function.
Since the difference dk = a+

k − a
−
k satisfies the homoge-

neous recurrence relation and satisfies dk = 0 for k < 0, it
must be proportional to I(0)

k , so we may write

dk = a+
k − a

−
k = d0 I

(0)
k . (118)

According to the k = 0 value in (105), we have

d0 = −
∞∑
j=0

qj

(
Ξ+
j,0

W+
−1

−
Ξ−j,0

W−−1

)
. (119)

Apart from properties (1)-(4) mentioned previously, let us also
assume that when getting to the negative real axis from above
or from below14:

5. Only the values of I(1)
k are different;

6. The recurrence relation coefficients αk and β(`)
k do not

differ.

Then, the contribution at the branch cut is due to

Dj =
W+
j,0

W+
−1

−
W−j,0

W−−1

, (120)

which can be conveniently re-expressed in terms of a quantity
D

(1)
0 , defined as 15

D
(1)
j =

I
(1)
j

+

I
(1)
−1

+
−
I

(1)
j
−

I
(1)
−1
−

= D
(1)
0 I

(0)
j , (121)

14 In the cases studied, this assumption has always been found to be realized.
15 The last equality is valid because D(1)

j satisfies the homogeneous recur-

rence relation with D(1)
k = 0 for k < 0.

with

D
(1)
0 = 2i=

(
I

(1)
0

+

I
(1)
−1

+

)
. (122)

To show the specific relation between Dj and D(1)
0 , we first

write the determinant Wj,0 in Eq. (91) explicitly as

Wj,0 = εi1i2···imI
(1)
j−(i1−1)I

(2)
j−(i2−1) · · · I

(m)
j−(im−1) , (123)

with εi1i2···im the Levi-Civita symbol. In the above expres-
sion, a sum is assumed for each index ip = 1, . . . ,m (p =
1, . . . ,m). Then, with the help of assumption (5), together
with Eqs. (95) and (121), we have

Dj =
D

(1)
0

m∏
`=2

I
(`)
−`

εi1i2···imI
(0)
j−(i1−1)I

(2)
j−(i2−1) · · · I

(m)
j−(im−1)

=
D

(1)
0

m∏
`=2

I
(`)
−`

Wj,1 . (124)

Substituting now the above expression back into Eq. (119) and
recalling the definition of the branch cut amplitude from [11]
in terms of d0 as η(s) := i d0/(2π), we finally obtain

η(s) = =

(
1

πW+
−1

) ∞∑
j=0

qjΞj,1 . (125)

V. REISSNER-NORDSTRÖM SPACETIME

We apply the program presented in the previous sections to
the Reissner-Nordström solution. A stationary charged black
hole spacetime is characterized by the metric function

f(r) = 1− 2M

r
+
Q2

r2
=
(

1− r+

r

)(
1− r−

r

)
. (126)

Here M and Q are, respectively, the mass and charge of the
black hole, while r± are the coordinate values of the horizons
given by

r± = M
[
1±

√
1− ε2

]
, ε =

Q

M
, (127)

r+ corresponding to the event horizon and r− to the Cauchy
horizon. The Schwarzschild spacetime is recovered when ε =
0, while the extreme black-hole solution is obtained with ε =
1. Note that the approach to extremality can lead to different
geometries [22, 25].

A convenient alternative parametrization to this spacetime
is given in terms of

κ =
r−
r+
⇒ ε = 2

√
κ

1 + κ
. (128)
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The Schwarzschild and extremal black-hole limits correspond
to κ = 0 and κ = 1, respectively. This new parameter sim-
plifies the expressions we are going to study. In particular, the
coordinate locations of the horizons are re-written as

r+ =
2M

1 + κ
, r− =

2Mκ

1 + κ
. (129)

The propagation of scalar, electromagnetic and linear gravi-
tational fields in the Reissner-Nordström spacetime is dictated
by the master wave equation (29) introduced in section III A
in terms of the potential (cf. [59–62])

P(r) = `(`+ 1) +
r+

r

(
µ− κ q r+

r

)
, (130)

with

µ =
1

r+
×


2M

−3M
[
1−
√

1 + ε2A
]

−3M
[
1 +
√

1 + ε2A
]

=


1 + κ

− 3
2

[
1 + κ−

√
(1 + κ)2 + 4κA

]
− 3

2

[
1 + κ+

√
(1 + κ)2 + 4κA

] , (131)

q =

 2
−4
−4

. (132)

Specifically, the three (ordered) alternative expressions cor-
respond respectively to scalar, electromagnetic and gravita-
tional perturbations. In the expressions above, A stands for
A =

(
2
3

)2
(`+ 2)(`− 1).

We are interested, however, in the conformally re-scaled
wave equation (45) in section V B, with the potential re-
defined as (46). For the study of such equation, it will be
more convenient to re-parametrize µ and q as

q = 3n− 1

µ = n(1 + κ)− (1− n)m± (133)

m± =
1 + κ± 3

√
(1 + κ)2 + 4κA

4
.

As discussed in section III A 2, the value n = +1 for scalar
perturbations is a consequence of their natural conformal re-
scaling. For electromagnetic (m−) or gravitational (m+) per-
turbations, the value n = −1 is justified in section V B.

A. The hyperboloidal foliation

The hyperboloidal slices are constructed according to the
procedure discussed in sections II B and II C. Interestingly, in
the context of the minimal gauge, two choices for the con-
formal representation of the spacetime appear as natural. The
first one follows closely the steps in [11, 34, 35, 46] and it
consists in fixing the areal radius ρ(σ) to a constant — see
Eq. (24). The second one maps the Cauchy horizon r− into a
coordinate σ− that does not depend on the charge parameter

κ. As we are going to discuss, the latter provides the geometri-
cal counterpart to the framework introduce by Leaver [29] and
it allows us to discuss the near-horizon limit of the extremal
black hole.

1. Areal radius fixing

As discussed in section II C 2, the minimal gauge is com-
pletely fixed by the free parameters λ and ρ1. In this section
we discuss the first conformal representation case correspond-
ing to fixing the areal radius ρ(σ) to a constant value ρ0. With
this aim, and keeping the notation in [11], we choose

λ = 2r+, ρ1 = 0 , (134)

which implies ρ0 = 1/2. This choice is equivalent to com-
pactifying the spacetime and defining the height function via

r =
r+

σ
, h(σ) = − 1

σ
+ (1 + κ) ln(σ) . (135)

As a consequence, the conformal line element reads

ds̃2 =
1

4
dω2 − σ2 (1− σ) (1− κσ) dτ2

+ [1 + σ(1 + κ)] [1 + κ(1 + κ)(1− σ)] dσ2

+

(
1− 2σ2 [1 + κ(1 + κ)(1− σ)]

)
dτ dσ .(136)

As prescribed, the event horizon H is given by σ = 1 while
σ = 0 locates I +. Furthermore, the Cauchy horizon r− is
mapped to the value σ− = κ−1. In particular, we are inter-
ested in the exterior region σ ∈ [0, 1].

The transformation (135) and, consequently, the line ele-
ment (136) is well defined in the whole range of the parame-
ter κ ∈ [0, 1]. In particular, the limit κ → 1 corresponds to
(the standard) extremal Reissner-Nordström (see below and
e.g. [23]). However, the algorithm from section IV, based
on Taylor expansions, is only valid if σ− ≥ 2 — see discus-
sion about convergence radius in Eq. (62). Specifically, in this
particular coordinate system, methods based on a Taylor ex-
pansion around σ = 1 applies only for κ ∈ [0, 1/2].

2. Cauchy horizon fixing

One way to avoid the limitation imposed in the range of the
parameter κ is to fix the location of the Cauchy horizon to a
value that does not depend on κ. It is convenient to write σ−
in terms of a constant c, as

σ− = c−1 . (137)

Together with the choice λ = 2r+, this fixes the parameters
in the minimal gauge to

ρ0 =
1− κ

2(1− c)
, ρ1 =

κ− c
2(1− c)

, (138)
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which then leads to the compactification and height function

r = 2r+
ρ(σ)

σ
, ρ(σ) =

1− κ+ σ(κ− c)
2(1− c)

,

h = − 1− κ
σ(1− c)

+ (1 + κ) lnσ .
(139)

By fixing the Cauchy horizon at σ− = c−1 > 2, we en-
sure that the algorithm based on Taylor expansions around the
event horizon σ = 1 is always valid.

3. Extremality and singular limits

After having introduced the elements of these particular hy-
perboloidal coordinates, we comment on a geometric aspect
relevant in the discussion below, namely the metric type of
null infinity, with a focus on the extremal limit.

With this aim, we evaluate the metric type of the vector
normal to the hypersurface defined by Ω(σ) = 0, with Ω(σ) =
σ/λ, as

∇̃aΩ∇̃aΩ =
σ2F (σ)

λ2β2

=
σ2(1− σ)(1− cσ)(1− c)2

r2
+

(
1− κ+ σ(κ− c)

)2 . (140)

In the compactification scheme of subsection V A 1, with a
gauge enforcing the constancy of the areal radius through c =
σ−1
− = κ, one obtains

lim
σ→0
∇̃aΩ∇̃aΩ = 0 , c = κ , (141)

for all values of κ, including the extremal case κ = 1. Null in-
finity is therefore a null hypersurface both in the subextremal
and extremal cases, in agreement with the standard extremal
limit of Reissner-Nordström. The situation is more delicate
for choices c 6= κ, such as in subsection V A 2. In this case,
for κ < 1 the limit of (140) at σ → 0

lim
σ→0
∇̃aΩ∇̃aΩ = 0 , κ ∈ [0, 1) , c 6= κ . (142)

We find that null infinity for subextremal Reissner-Nordström
is a null hypersurface, as obtained in the previous gauge c =
κ. On the other hand, in case of (naively) calculating the limit
σ → 0 of the expression (140) for κ = 1 one would get

lim
σ→0
∇̃aΩ∇̃aΩ = r−2

+ = M−2 , κ = 1, c 6= κ , (143)

suggesting that, in this conformal scheme, the conformal
boundary for the extremal case κ = 1 is timelike 16. However,
we note that the change of coordinates in Eqs. (139) is actu-
ally ill-defined for κ = 1, since the transformation reduces to
r(σ) = r+ = constant. This suggests some kind of singular

16 Such timelike null infinity is typical of anti-de Sitter-like (AdS) spacetimes.

behavior in the process of considering the limit of spacetimes
as κ→ 1, when c 6= κ.

In order to clarify this issue, and since the timelike character
of null infinity does not depend on the particular value of c (at
least as long as c 6= κ), let us consider for concreteness the line
element of the conformal metric in the gauge of section V A 2
defined by transformations (139). In addition, we choose for
simplicity c = 0 or, equivalently, σ− →∞. Then

ds̃2 =
1− κ
4ρ2

(
− (1− κ)σ2(1− σ) dτ2

−
(

1− 2σ2 − 2κ(1− σ) [(2− κ(1− σ)]

)
dτ dσ

+ [1 + σ − κ(1− σ)] dσ2

)
+ ρ2 dω2. (144)

The pathological behavior for κ = 1 in this gauge is appar-
ent in the line element. However, a regularization is obtained
through the introduction of an appropriate re-scaling of the
time coordinate

T = (1− κ)τ . (145)

The combined transformations (139) and (145), for κ < 1,
lead to [25]

ds̃2 =
1

4ρ2

(
− σ2(1− σ) dT 2

−
(

1− 2σ2 − 2κ(1− σ) [(2− κ(1− σ)]

)
dτ dσ

+(1− κ) [1 + σ − κ(1− σ)] dσ2

)
+ ρ2 dω2 .(146)

This expression makes now also sense in the limit κ → 1,
defining the line element

ds̃2
ext = −(1− σ) dT 2 + dT dσ + σ2 dω2 . (147)

The corresponding physical manifold ds2 = Ω−2 ds̃2, called
the Bertotti-Robinson metric, is the near-horizon limit of the
extremal black hole. Its topology is a direct product of 1 + 1
AdS spacetime with a sphere of constant radius, indeed with
a timelike null infinite in accordance with the expression in
(143). We are therefore in the presence of two different ex-
tremal limits of Reissner-Nordström, an illustration of the sub-
tleties to be considered when discussing the limits of space-
times [21, 22].

4. Geometric insights into Leaver’s treatment

The previous discussion on singular limits of spacetimes
is not academical. On the contrary, it is directly relevant
to Leaver’s treatment of QNMs in Reissner-Nordström [29]
since, as we show below, the latter corresponds to the gauge
choice in subsection V A 2, namely the fixing of the Cauchy
horizon coordinate position with σ− = ∞. Since, as seen in
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V A 3, such coordinates suffer a singular extremal limit, the
question is raised about the QNM calculation following [29]
in the extremal limit.

Let us justify the connection between Leaver’s treatment in
[29] and the coordinates introduced in V A 2. For this, let us
consider the coordinate u in the Taylor expansion (61), a co-
ordinate that naturally emerges in the geometric discussion in
terms of hyperboloidal slices. Indeed, under the choice c = 0
leading to the line element (144) and fixing the Cauchy hori-
zon at σ− = ∞, such coordinate u is written in terms of the
original coordinate r as

u =
r − r+

r − r−
. (148)

This is precisely the coordinate introduced by [29], here iden-
tified within a natural geometric setting. The key point in the
present discussion refers to the fact that the treatment in [29]
(based on Cauchy slices) requires the introduction of regular-
ization factors in the Taylor expansion in order to deal with the
QNM asymptotic conditions. Remarkably, and as it happened
in [11], such factors arise in the present discussion directly as
a consequence of the geometric treatment in terms of hyper-
boloidal slices. As a matter of fact, the factor Z in Eq. (55)
reads

Z(r) = ρnes[
r∗
λ +h]

= Cρn
(r+

r

)sκ
e−sκrκ

(
1− κr+

r

)−sκ
ub , (149)

where C is a constant. The parameters

sκ =
(1 + κ)s

2
, rκ =

r

(1 + κ)r+
, b =

s

2(1− κ)
, (150)

are adapted to the normalization used in [29].
For n = −1, the factors in (149) coincide exactly with

the ones appearing multiplying the Taylor expansion in [29].
More specifically, the first factor (an appropriate power of ρ)
was introduced in [29] to reduce the number of terms in the re-
currence relation — see section V B — whereas the rest were
introduced to incorporate the boundary conditions appropriate
for QNMs.

In contrast, in the present discussion the factor ρn is mo-
tivated as a direct consequence of using the conformal wave
equation, whereas the rest of the factors are a straightforward
consequence of the use of hyperboloidal slices.

Note that [29] considers only electromagnetic and gravita-
tional perturbations. Therefore we are led to the conclusion
that the appropriate conformal re-scaling factor introduced in
section III A 2 is n = +1 for scalar field and n = −1 for
electromagnetic and linear gravitational fields

To summarize the discussion in this section V A, we iden-
tify two relevant outcomes of the present geometric approach:

(i) It is the simultaneous combination of a conformal ap-
proach and the use of the hyperboloidal slices that ren-
ders a geometric explanation of the factors in Leaver’s
Taylor expansion approach to QNMs.

(ii) Such geometric perspective provides an insight into the
extremal limit corresponding to Leaver’s QNM calcu-
lation. Indeed, according to the discussion above, the
approach to extremality in [29] (i.e. c = 0) would cor-
respond to the Bertotti-Robinson spacetime rather than
the standard extremal Reissner-Nordström. A natural
question to assess is the relation between the limit val-
ues of QNMs in such approach to κ→ 1 and the QNMs
directly calculated in the standard extremal Reissner-
Nordström spacetime [63].

B. Laplace analysis

We now proceed to write explicitly all the elements for the
Laplace analysis of the Reissner-Nordström spacetime in the
hyperboloidal minimal gauge. We consider here the two cases
discussed in the previous section, namely V A 1 and V A 2.

1. Areal radius fixing

Here, the areal radius is fixed to ρ0 = 1/2 and the Cauchy
horizon depends on the charge parameter as σ− = κ−1.
According to the discussion in section III A, in this particu-
lar gauge there is no distinction between considering a wave
equation based on a conformally invariant framework (45) or
simply applying a coordinate transformation into the well-
known formulation (29).

The Laplace operator (49) and the source function (50) read

A(s) = σ2 (1− κσ) (1− σ) ∂σσ +

(
(2− 3σ)σ

+κσ2 (4σ − 3) + s
[
1− 2σ2 − 2κ (1 + κ)σ2(1− σ)

])
∂σ

−

(
`(`+ 1) + σ(µ− κqσ) + sσ [2 + (2− 3σ)κ(1 + κ)]

+ [1 + (1− σ)κ(1 + κ)] [1 + σ(1 + κ)] s2

)
, (151)

B(s) = − [1 + (1− σ)κ(1 + κ)] [1 + σ(1 + κ)]

(
sΦ0 + Φ̇0

)
+

(
1− 2σ2 [1 + κ (1 + κ) (1− σ)]

)
Φ0,σ

−σ [2 + (2− 3σ)κ(1 + κ)] Φ0 . (152)

With the expansion around the horizon (61), we obtain a
3-order recurrence relation. According to our notation — see
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Eqs. (63) and (75) — we have m = 2 and coefficients

αk = (k + 1) [s+ (1− κ)(1 + k)] ,

β
(0)
k = −`(`+ 1)− µ− 2(k + s+ 1)(k + s) + sκ2 (1 + 2k)

+κ [(k + s)(3k − s+ 1) + q + 2k] (153)

β
(1)
k = µ− 1 + (k + s)2 − [(k + s)(s+ 3k) + 2q − 3]κ

−(sκ+ 4k + 3s)sκ2

β
(2)
k = κ (κs+ k + s+ 1) (κs+ k + s− 2) + κq .

A study of the asymptotic behavior of the solutions to the
homogeneous recurrence relation shows — cf. the discussion
around (68).

I
(0)
k ∼ eξ

√
kkζ , I

(1)
k ∼ e−ξ

√
kkζ , I

(2)
k ∼ υkkς , (154)

with

ξ = 2
√
s, υ =

κ

κ− 1
, (155)

ζ =
1 + κ

2
s− 3

4
, ς = −

(
1 +

κ2

1− κ
s

)
. (156)

As expected, assumption (2) in section IV A is valid only for
κ ∈ [0, 1/2]. Indeed, for κ > 1/2, I(2)

k is no longer a decay-
ing solution and its growth reflects the fact that the Cauchy
horizon σ− = κ−1 < 2 has entered the unit circle (62).

2. Cauchy horizon fixing

In this case, the Cauchy horizon is fixed at σ− =∞ and the
areal radius reads

ρ(σ) =
1− κ(1− σ)

2
.

Since ρ(σ) is no longer a constant, Eqs. (33) and (45) differ in
this gauge. As stated previously, from the theoretical perspec-
tive, we regard the conformally invariant wave equation as the
most natural choice, due to its geometrical formulation. Thus,
the Laplace operator (49) reads17

A(s) = (1− κ)σ2 (1− σ) ∂σσ +

(
σ [2− σ (1 + 2n)]

− (1− n)σ2

ρ
− 2s(σ2 − 2ρ2)

)
∂σ − s2(σ + 2ρ)

−2s

[
σ − κρn− κ(1− n)σ2

2ρ

]
− (1− κ)

(
`(`+ 1)

+σ + (1− n)

[
1− 1− κ+ σ(1 + m±)

2ρ

])
, (157)

17 In the Cauchy fixing gauge, expressing explicitly the dependence of the
parameter m and q in terms of n — cf. (133) — simplifies the form of the
operator A(s). This accounts for the appearance of parameters n and m±
in Eq. (157). In particular, terms going as ρ−1 vanish for n = 1.

with the source given by

B(s) = −(σ + 2ρ)

(
sΦ0 + Φ̇0

)
− 2(σ2 − 2ρ2) Φ0,σ

−2

[
σ − κρn− κ(1− n)σ2

2ρ

]
Φ0 . (158)

The choice of Eq. (45) (instead of (33)) is also justified from
a practical point of view, as the Taylor expansion (61) leads to
a simpler recurrence relation. Indeed, the recurrence relation
for scalar perturbations is actually of order 2 (m = 1) with
coefficients

αk = (k + 1) [s+ (1− κ)(1 + k)]

β
(0)
k = −(1− κ) [1 + ` (`+ 1) + 2k (k + s+ 1)]

+s [κ− 2 (k + s+ 1)] (159)

β
(1)
k = [k + s(1 + κ)] [s+ k(1− κ)] .

The asymptotic behaviors for the solutions of the homoge-
neous recurrence relation are

I
(0)
k ∼ eξ

√
k(1−κ)kζ , I

(1)
k ∼ e−ξ

√
k(1−κ)kζ , (160)

with ξ and ζ still given by (155) and (156).
For electromagnetic/gravitational perturbations (n = −1),

we obtain the 3-order recurrence relation (m = 2)

αk = (k + 1) [s+ (1− κ)(1 + k)]

β
(0)
k = − (1− κ) [` (`+ 1) + µ]− 2 (k + s+ 1) [s+ k(1− κ)]

+κ (k − 3) [(1− k)(1− κ)− s]
β

(1)
k = [−1 + µ+ κ` (`+ 1) + 12κ] (1− κ)

+ (k + s)
2

(1 + κ) + 2κ (s− 5) [k + s (1− κ)] (161)
− (k + 2s− 5) (2k − s)κ2

β
(2)
k = −κ [s(1 + κ) + k − 3] [s+ (k − 3)(1− κ)] .

Apart from (160), there exists here a third solution to the ho-
mogeneous recurrence relation whose asymptotic behavior is

I
(2)
k ∼ κkk−6 . (162)

C. Results

We end this section with the application of the algorithm
from section IV to the Reissner-Nordström spacetime. As a
representative example, we show here results for scalar and
gravitational fields, whereas the discussion in Appendix VII B
is exemplified by an electromagnetic perturbation. The qual-
itative discussion, though, does not depend on the specific
choice of the parameters in the effective potential.

We first calculate the QNM frequencies as the zeros of the
Wronskian determinantW−1 (95). The algorithm for this pro-
cedure is described in [11] (cf. section IV.D.2 in that ref-
erence). The results were obtained by dividing the interval
κ = [0, 0.5] (areal radius fixing gauge) or κ = [0, 0.99]
(Cauchy horizon fixing gauge) into an equidistant κ-grid of
size ∼ 10−2 − 10−3.
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Fig. 3 displays the results for scalar perturbations with
` = 0 (red circle), ` = 1 (blue triangle) and ` = 2 (magenta
square). The solid points are the values for the Schwarzschild
solution κ = 0, whereas the empty points mark the value
κ = 0.5 for which the specific algorithm from section IV
ceases to be valid in the “areal radius fixing” gauge. As ex-
pected, the results for κ ∈ [0, 0.5] coincide in both gauges.
Moreover, in the “Cauchy horizon fixing” gauge we can cal-
culate further until κ . 1. The value κ = 1 is not available in
this gauge because the limiting process is discontinuous and it
leads to the near-horizon geometry. It is interesting to notice
that the looping structure in the higher QNMs for the scalar
field with angular mode ` = 0 is not an artifact of the numer-
ical resolution, but it actually reflects the parametric depen-
dence of the QNMs on κ18.

QNM scalar perturbation

ℜ(s)

ℑ(s)

κ = 0.5
κ = 1.0

κ = 0.0

ℓ = 2

ℓ = 1

ℓ = 0

0.50−0.5−1−1.5−2−2.5−3−3.5

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

FIG. 3. Quasi-normal modes for scalar perturbations for ` = 0
(red circle), ` = 1 (blue triangle) and ` = 2 (magenta square).
The solution was obtained in the “areal radius fixing” gauge (κ ∈
[0, 0.5]) and the “Cauchy horizon fixing” gauge (κ ∈ [0, 0.99]). The
Schwarzschild value (κ = 0) is given by solid points, while the
empty points mark the limit of validity for the method in the “areal
radius fixing” gauge (κ = 0.5). Even though the extremal limit in the
“Cauchy horizon fixing” gauge leads to the Robinson-Bertotti space-
time, a continuous extrapolation from the values for κ . 1 into the
extremal value κ = 1 is consistent with the results obtained in the
literature [63] (star points).

The limitation in the calculation of the QNMs in the “areal
radius fixing” gauge for κ ≤ 0.5 is a consequence of the
method — see discussion around Eq. (62) — and not an in-
trinsic issue of QNMs. Other methods — such as the one19

employed in [15] — can be used to calculate the modes in the
full range κ ∈ [0, 1]. In particular, this alternative method was
used, on the one hand, to confirm the looping structure in the

18 We do not have an explanation for this behavior and a clarification would
require further work.

19 The work [15] describes an alternative method to calculate not only the
QNMs, but also the discrete amplitudes ηn. The method, however does
not allow us to calculate the branch cut amplitude η(s).

higher QNMs for the scalar field with angular mode ` = 0. On
the other hand, the method from [15] allows us to calculate the
QNMs for the extremal Reissner-Nordström case κ = 1 (star
points in Fig. 3).

The results are in accordance with the literature [63] and
they are consistent with a continuous extrapolation of the val-
ues obtained in the “Cauchy horizon fixing” gauge. This al-
lows us to answer the question posed in point (ii) at the end
of section V A 4: the discontinuous spacetime limit at κ → 1
does not reflect in a discontinuous limit in the QNMs. This
naturally raises the issue of a possible “QNM-isospectrality”
between extremal Reissner-Nordström and the near-horizon
Bertotti-Robinson metric.

Once QNM frequencies are obtained, we address the reso-
nant expansion aspects of the algorithm. That is, we proceed
to the calculation of the amplitudes ηn related to each QNM
and to the branch cut η(s) for given initial data. As a represen-
tative example, we consider a gravitational perturbation with
angular mode ` = 2 and the initial data

V0(σ) = σ(1− σ) V̇0(σ) = 0 . (163)

In particular, we show in Fig. 4 the invariants ηnφn(σ) and
η(s)φ(s;σ), both calculated at I + (i.e. σ = 0).

The left panel shows the dependence of the QNM ampli-
tude ηn as a function of κ for the “areal radius fixing” gauge
for κ ∈ [0, 0.5] (solid lines) and the “Cauchy horizon fixing”
gauge κ ∈ [0, 0.99] (dashed lines). In particular, the inset dis-
plays the value around κ . 1 where we observe a tendency
towards zero. A full understanding of this limiting behavior
would require the control of boundary data. Indeed, since the
limiting spacetime in the “Cauchy horizon fixing” gauge has a
timelike boundary involving the geometry of AdS2, a unique
solution to the wave equation is no longer obtained only with
the initial data (163), since boundary conditions at σ = 0 are
required as well. In [15], the QNM amplitudes of asymptoti-
cally AdS spacetimes are obtained after reformulating the cor-
responding wave equations to include the Dirichlet boundary
conditions.

The right panel of Fig. 4 shows |η(s)φ(s;σ)| around s = 0
for κ = 0.5 (“areal radius fixing” gauge) and κ = 0.9
(“Cauchy horizon fixing” gauge). The behavior of the branch
cut amplitude around the origin is responsible for the late-time
tail decay. Indeed, assuming that

η(s)φ(s;σ) ∼ sγ , (164)

we obtain

Vtail(τ, σ) =

∫ 0

−∞
η(s)φ(s;σ)esτds

∼
∫ 0

−∞
sγesτds ∼ τ−(γ+1) . (165)

From the plot in Fig. 4, one can read the behavior γ = 2,
which should lead to the expected tail decay τ−3 along fu-
ture null infinity [7]. Indeed, Fig. 5 shows the complete time
dependence according to the spectral decomposition (2) for
κ = 0.5 (“areal radius fixing” gauge) and κ = 0.9 (“Cauchy
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FIG. 4. Left panel: quasi-normal mode amplitudes ηnφn(σ) at σ = 0 as functions of the charge parameter κ for the first four quasi-normal
modes. The solid lines display the results in the “areal radius fixing” gauge (κ ∈ [0, 0.5]), while the dashed lines correspond to the “Cauchy
horizon fixing” gauge (κ ∈ [0, 0.99]). The inset focuses on the behavior around κ = 1 and it shows that the amplitudes vanish in the limit to
the Robinson-Bertotti spacetime. Right panel: branch cut amplitudes at σ = 0 for κ = 0.5 (“areal radius fixing” gauge) and κ = 0.9 (“Cauchy
horizon fixing” gauge). Both behave as s2, leading to a late time decay in the form τ−3 — see Fig. 5.

horizon fixing” gauge). Specifically, we have considered only
the first 4 dominant QNMs in the spectral decomposition (2).
Moreover, the integration along the branch cut is performed
here just in the interval s ∈ [−0.2, 0) which is enough to fo-
cus on the late times. For comparison, the figure also brings
the evolution obtained via an explicit time integration of the
wave equation with the code [46], the inset displaying the
match between both methods for τ ∼ 0. Notice the remark-
able agreement between the spectral decomposition (2) and
the time evolution — see last paragraph in appendix VII A for
a discussion concerning the assessment of conjecture 1.

VI. DISCUSSION

In this article we have studied the spectral decomposition
of solutions to dissipative linear wave equations formulated
on spherically symmetric, stationary and asymptotically flat
spacetimes containing a black hole. Focus has been placed
on a particular geometric frame that exploits the use of con-
formal compactifications together with a foliation in hyper-
boloidal hypersurfaces. Specifically, we extend the results
in [11] by (i) defining the so-called minimal gauge, as the sim-
plest hyperboloidal gauge adapted to a spherically symmetric,
stationary and asymptotically flat, black-hole spacetime and
by (ii) generalizing the semi-analytical algorithm based on a
Taylor expansion that enables us to construct the ingredients
{sn, φn, ηn}∞n=1 as well as {φ(s), η(s)}s∈R− of the spectral
decomposition (2). Such extensions involve non-trivial tech-
nical generalizations allowing us now to deal with multiple
horizon settings and higher-order recurrence relations in the
underlying algorithm. Moreover, we have detailed the discus-
sion on how this geometrical framework gives rise naturally to
the regularization factors needed in the usual Cauchy-based
foliation to incorporate the appropriate boundary conditions

leading to QNMs.

As a particular example, we have applied the formalism to
the Reissner-Nordström spacetime. In a first stage we have
focused on the geometric content of the framework, showing
that the minimal gauge leads to two natural different confor-
mal hyperboloidal compactifications, referred in this paper as
“areal radial fixing” and “Cauchy horizon fixing”. The former
fixes the areal radius of the conformal spacetime ρ to a given
constant value, leading to a system in which the coordinate
value of the Cauchy horizon depends on the charge parame-
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FIG. 5. Time dependence according to the spectral decomposi-
tion (2). The solid red line is obtained for κ = 0.5 in the “areal
radius fixing” gauge, whereas the dashed blue line is for κ = 0.9 in
the ”Cauchy horizon fixing” gauge. The black solid line corresponds
to the explicit time evolution with the code [46]. The inset focus on
the match between both methods around τ = 0.
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ter κ. The latter, instead, fixes the coordinate location of the
Cauchy horizon to a value independent of the charge parame-
ter.

While both gauges reduce in the Schwarzschild limit κ = 0
to the coordinate system used in [11], they lead to different
geometries in the limit to extremality. For κ = 1, the “areal
radial fixing” gauge provides the usual extremal Reissner-
Nordström black-hole limit, while the “Cauchy horizon fix-
ing” gauge has the near-horizon geometry as limit. This so-
lution — the so-called Bertotti-Robinson spacetime — is the
direct product of AdS2 with a sphere of constant radius. Even
though the distinct spacetime limits were previously discussed
in [24, 25], they were recovered in this work via different
choices for the conformal compactification of the spacetime.
It would be insightful to study the topic of spacetime limits in
a more generic context within the realm of conformal methods
in General Relativity [64].

On the top of that, we have also identified the “Cauchy hori-
zon fixing” gauge as the geometrical counterpart to Leaver’s
treatment of QNMs in Reissner-Nordström [29]. It is well-
known that Leaver’s methodology is not valid at κ = 1
(cf. e.g. [29, 63]). Due to the understanding of the limiting
process in the “Cauchy horizon fixing” gauge, we conclude
that the limitation in Leaver’s algorithm is not just technical,
but rather a consequence of the geometry involved.

Note that the original algorithm [29] was modified in [63]
to treat the extremal case exclusively. The strategy20 was to
perform the Taylor expansion around the point r0 = r+/2 in-
stead of r0 = r+. Even though the conclusion is that “the
numerically computed values are consistent with the values
earlier obtained by Leaver”, we would like to stress that the
comparison between both works is not as straightforward as
expected. Indeed, from the geometrical point of view, the
spacetime studied in Onazawa et. al [63] corresponds to the
extremal limit achieved within the “areal radial fixing” gauge.
Leaver’s approach — being based on the “Cauchy horizon fix-
ing” gauge — has a discontinuous limit to extremality into the
Bertotti-Robinson spacetime.

An interesting open question is to determine whether such
Bertotti-Robinson spacetime admits some natural conditions
in the AdS boundary leading to the same QNMs as the ones
in the usual extremal limit. The assessment of such QNM-
isospectrality between extremal Reissner-Nordström and the
corresponding near-horizon geometry could offer insight into
correlations between geometrical properties at the horizon and
at null infinity [66–69] in extremal black hole settings.

In a second stage, we have applied the algorithm developed
in section IV to construct the solution — in general, after an
initial transitory — to the dissipative wave equation in terms
of the spectral decomposition (2). In this context, the “areal
radial fixing” gauge has a technical limitation. Since the co-
ordinate value of the Cauchy horizon depends on the charge
parameter κ, the convergence radius of the Taylor expansion
reduces as the Cauchy horizon approaches the event horizon.

20 The same strategy was recently used in the context of the extremal Kerr
black hole [65] as well.

In particular, the algorithm is valid for the values κ ∈ [0, 1/2].
Working in the “Cauchy horizon fixing” gauge is a natural
first solution to this limitation. As already mentioned, how-
ever, this option changes the geometry of the limiting extremal
spacetime.

An alternative solution would be to follow [63, 65] and
adapt the algorithm to a Taylor expansion around r0 = r+/2
for all values of κ (and not only to the extremal case). In our
compactified radial coordinate, this corresponds to an expan-
sion around the regular point σ0 = 1/2. In this case, assump-
tion (I) in section IV A is not valid anymore as one obtains, in
fact, two independent solutions satisfying Eq. (71). The ex-
ploration of this particular possibility requires a specifically
dedicated study.

We conclude by pointing out that the geometrical frame-
work and/or the semi-analytical algorithm developed here are
promising and potentially valuable tools in several fields. In
the new era of gravitational wave astronomy, we intend to fur-
ther explore the extraction of highly-accurate waveforms for
binary black-hole systems in the large-mass-ratio regime [70–
76], apart from studying models extending beyond General
Relativity [77, 78]. On the other hand, resonant expansions
in optical systems have proved to be an efficient tool in the
study of the near-field properties of nano-resonators [8]. The
algorithm developed here, conveniently adapted to the disper-
sive case with a frequency-dependent permittivity, could shed
light into the ambiguities in the determination of the QNM
expansion coefficients in such optical setting 21. Finally, on a
purely mathematical ground, the issues here raised in the cal-
culation of QNMs in singular spacetime limits define a non-
trivial problem on “resonance isospectrality” in the setting of
the spectral analysis of non-selfadjoint operators[79].
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VII. APPENDIX

A. Spectral elements and resonant asymptotic expansions

We sketch here briefly the basic spectral elements needed
to characterize QNMs, with a focus on the notion of resonant
expansion, in an attempt of better seizing conjecture 1.

Let us consider the wave equation in R× Rn, with n odd
(
∂2
t −∆ + V (x)

)
Φ(t,x) = 0 ,

Φ(0,x) = Φ0(x) ,
∂tΦ(0,x) = Φ1(x) ,

(166)

with ∆ the Laplacian in Rn, V (x) a bounded potential and
Φ0(x) and Φ1(x) prescribed initial data22. Defining the ellip-
tic operator in Rn

PV = −∆ + V , (167)

Eq. (166) becomes, under Laplace transformation(
PV + s2

)
Φ̂(s,x) = S(s,x) , (168)

with S(s,x) a source defined in terms of the initial data, as
S(s,x) = sΦ0(x) + Φ1(x).

A key element in the spectral analysis of Eq. (166) is pro-
vided by the notion of the resolventRV (s) of PV . Such opera-
tor is defined, between the appropriate domain and codomain
functional spaces, as the inverse of the operator on the left-
hand-side of Eq. (168), that is23

RV (s) =
(
PV + s2 Id

)−1
. (170)

For appropriate potentials V , the resolvent can be shown to
be analytical in the right half-plane <(s) > 0 of the complex
spectral parameter. Then, under the suitable assumptions on
V , a meromorphic extension of RV (s) exists in the left half-
plane <(s) < 0. Scattering resonances, i.e. QNMs frequen-
cies sn, are then defined as poles in such meromorphic exten-
sion. For potentials V not decaying sufficiently fast at infinity,
the extension ofRV (s) to the whole s-complex plane presents
a more complicated analytical structure. In particular, as com-
mented in footnote 1, in the Schwarzschild case a branch cut
starting at s = 0 appears in addition to the QNM poles, giving
rise to a tail contribution at late times. This is also the case

22 Assumptions on the initial data functional spaces are required, e.g.
Φ0(x) ∈ H1(D) and Φ1(x) ∈ L2(D), with D an appropriate domain
D ⊂ Rn.

23 The resolventRV (s) is intimately related to the Green functionGs(x−y)
of
(
PV + s2

)
, characterized as

(
PV + s2

)
Gs(x− y) = δ(n)(x− y),

so that the Green function is the integral kernel of the resolvent operator

RV (s)(Φ)(x) =

∫
Rn

Gω(x− y)Φ(y)dny . (169)

The resolvent of PV is usually defined as RV (λ) = (PV − λ Id)−1,
with λ as spectral parameter. In the present scattering context, one takes
λ = ω2 as spectral parameter, with ω the Fourier parameter in Eq. (1).
Finally, the discussion in terms of the Laplace transform (cf. e.g. section
I), with parameter s = iω, leads to the version (170) of the resolvent.

in the here studied Reissner-Nordström (cf. [9, 10] and ref-
erences therein for a spectral analysis discussion of scattering
resonances, as well as [80] for a more heuristic account, in
particular addressing tails and initial transient issues).

The elements introduced above allow us to address a central
point in this work, namely conjecture 1 concerning the spec-
tral decomposition (2) of the scattered field. A claim on QNM
completeness (together with tail functions) would require: (i)
the identification of some appropriate functional space for the
scattered fields, and (ii) a claim on the convergence of the se-
ries in (2) in such linear space. No claim is made here in this
respect. It is known that QNM completeness is a property of
very particular potentials (cf. e.g. [81] where QNM complete-
ness is shown for a Pöschl-Teller potential) and does not hold
in general. On the other hand, for suitable potentials, sound
results hold for resonant or QNM expansions, if understood
as asymptotic expansions. It is in this sense that, in principle,
the series in (2) must be interpreted.

To illustrate this point on asymptotic expansions, we refer
to the results on resonant expansions of scattered waves by
Lax and Phillips [82] and Vainberg [83]. For concreteness,
for bounded potentials V under the appropriate hypotheses
(namely on their support) the following kind of result can be
shown (cf. e.g. [9, 10] for full details and background): for
any a > 0 the scattered field solution to Eq. (166) can be
written as a ’resonant expansion’ in terms of QNMs

Φ(t,x) =
∑

<(sj)>−a

uj(x)esjt + Ea(t) , (171)

where {sj}∞j=1 are the resonances of PV —namely the
poles of the meromorphic extension of RV (s), as discussed
above— and uj are the corresponding resonant states, deter-
mined also in terms of the resolvent RV (s) as 24

uj = i Ress=sj (RV (s)Φ1 + sRV (s)Φ0) . (172)

The QNM sum in (171) is finite if the resonant frequencies sn
do not accumulate near the imaginary axis and, crucially for
our discussion on asymptotic series, constantsCa and Ta exist
such that the error Ea(τ) can be bound for τ ≥ Ta as

||Ea(t)||H1 ≤ Cae−aτ (||Φ0||H1 + ||Φ1||L2) , τ ≥ Ta .(173)

The key point we want to stress here is that the bound (173) on
the error Ea(τ) is not uniform in a. This means that we can
indeed incorporate more QNMs into the resonant expansion
by enlarging the “band” in the left half-complex plane defined
by each fixed a, but nothing guarantees that the constant Ca
does not explode in the process. As a consequence, in general
actual convergence cannot be shown and we must treat the
QNM expansion rather as an asymptotic series.

24 Note that the resonant state uj(x) is obtained through the application of the
resolvent RV (s) on the source S(s,x) in (168), consistently with its link
with the Green function. Note, comparing (2) and (171) that the ’mean-
ingful’ quantity is indeed the combination uj = ηjφj , and not ηj and φj
separately. This justifies the term invariant for the amplitudes in Fig. 4.
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Once we have insisted in the, a priori, asymptotic character
of the QNM expansion in conjecture 1, let us bring attention
to the remarkable result shown in Fig. 5: the extraordinary
agreement —at all time scales— between the explicit time
evolution of the initial data and its ’spectral expansion’ (2)
poses the prospect of an actual ’full’ convergence in some ap-
propriate space and, therefore, QNM and tail completeness
in the Reissner-Nordström case. Such a possibility should be
studied with tools different from the ones in the present work.

B. Backward recurrence relation

A key element in the algorithm from [11] when construct-
ing the decaying solutions in assumption (2) is the usage of
a backward iteration of the homogeneous Eq. (63). Here,
we review how to construct the decaying solutions with such
a technique in the present context and discuss the instability
issues arising from the backward iteration.

According to the algorithm from section IV A, inserting the
Ansatz (68) back into the recurrence relation (63) and multi-
plying the result by e−ξk

p

k−ζ , leads to

0 = αke
−ξkp[1−(1+k−1)p](1 + k−1)ζAk+1

+

m∑
i=0

β
(i)
k e−ξk

p[1−(1+ik−1)p](1− ik−1)ζAk−i . (174)

For a fixed asymptotic parameter p, we expand the above ex-
pression in terms of y = k−p around y = 0, with the help of
the Series command in Mathematica. The quantities ξ,
ζ and {νj}2Jmax

j=1 are determined by equating the coefficients
of the expansion order by order.

The dependences of ξ and ζ on the physical parameters of
the problem — s, κ and ` in the case of Reissner-Nordström
— are easily obtained from the lowest coefficients of the ex-
pansion. Examples of ξ, ζ for the Reissner-Nordström case
are given by Eqs. (154)-(156), (160) and (162).

There are two numerical parameters controlling the approx-
imation: Jmax and kmax. The former is the truncation value
that approximatesAk —cf. Eq. (68)— whereas the latter fixes
all Taylor expansions introduced in section IV.

Once a numerical resolution kmax and Jmax is fixed, we ap-
proximate the values Ikmax+1, Ikmax , . . . , Ikmax−m+1 and iter-
ate the Eq. (63) backwards to obtain

Ik−m = −
αkIk+1 +

m−1∑
i=0

β
(i)
k Ik−i

βmk
, k = kmax, . . . , 0 .

(175)

Unfortunately, the existence of several decaying solutions
may lead to an unstable backward iteration. Indeed, the de-
caying solutions actually grow as we iterate the recurrence re-
lation backwards to lower values of k. Therefore any numer-
ical error in one decaying solution will excite modes related
to another decaying solution. Depending on the power p of
the exponential behavior, the numerical error may grow and
contaminate the solution.

The phenomena is easily understood with a concrete exam-
ple. Let us consider the 3−order recurrence relation with co-
efficients (153). Here we treat an electromagnetic perturbation
for κ = 0.1. We fix the Laplace parameter to s = 1+i, the an-
gular mode ` = 3 and the numerical resolution to kmax = 200
and Jmax = 10.

The right-hand-side of Eq. (174), calculated at k = kmax,
provides error estimates E(1) and E(2) for the approximated
asymptotic values of the solutions I(1)

kmax
and I

(2)
kmax

— see
Eqs. (154)-(156). The error E(1) excites I(2)-modes that be-
have as υk (|υ| < 1). For k < Nmax, the error growth is faster
than the behavior of I(1)

Nmax
itself. Thus the instability occurs

— see the left panel of Fig. 6. On the contrary, the error E(2)

excites I(1)-modes behaving merely as e−ξ
√
k, which does not

affect the solution I(2)
k — see right panel of Fig. 6.

Figure 6 displays these unstable solutions which we denote
here by Ĩ(`)

k . However, we can construct new solutions I(`)
k

and filter the instability of the raw solutions Ĩ(`)
k via the linear

combination

I
(`)
k =

m∑
`′=`

κ``′ Ĩ
(`′)
k . (176)

The coefficients of the linear combination (176) are fixed by
imposing (72) and (73). Fig. 6 depicts the filtered solution I(`)

k
constructed via the backward recurrence relation.
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