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We construct analytically solvable Hill equations with smooth potentials and smooth solutions using a
method of Wu and Shih. We then use Floquet-Bloch theory to analyze the band structure and find the
Floquet-Bloch fundamental system of solutions of the resulting differential equation. Three examples of
constructed potentials and their corresponding solutions are worked out. © 2018 Optical Society of America
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1. INTRODUCTION

Many problems in physics and engineering require solution of a
second-order differential equation taking the form

d2Ψ
dz2 + Q(z)Ψ(z) = 0. (1)

If a periodic system is considered, then Q(z + d) = Q(z), where
d is the period. We then call Eq. (1) a Hill equation. In quantum
mechanics, for example, the periodic Schrödinger Equation has
the form Q(z) = (2m/h̄2)[E−V(z)], where V(z + d) = V(z) is
a periodic potential [1]. We can also describe one-dimensional
photonic crystals with a periodic refractive index n(z+ d) = n(z)
using Eq. (1). In the case of normal incidence, we deal with
Hill equations with Q(z) = k2

0n2(z), where k0 is the vacuum
wavenumber of light propagating through the crystal, to find
the electric field inside the crystal [2]. Being able to construct
analytically solvable Hill equations of continuous potentials
could be a useful tool for modeling optical systems. For brevity,
we will refer to Q(z) as a potential throughout the remainder of
this paper.

Hill equations are often analyzed using Floquet-Bloch the-
ory because it provides a way of finding both their band struc-
tures and their solutions in terms of the Floquet-Bloch functions
(also called the Floquet-Bloch fundamental system of solutions).
Those solutions are convenient because one of their properties
allows us to map them over all space when they are known on
one period [3].

The overall number of analytically solvable Hill equations
is small. Some examples are discontinuous periodic potentials,
including piecewise constant potentials and sawtooth potentials
[2, 4]. Several solvable Hill equations with continuous periodic
potentials were found in the 1980’s [5–8], but their solutions

are not immediately smooth, which limits their use in physical
problems. However, they can be modified to become smooth,
while still satisfying their corresponding Hill equations [9, 10].

In this paper we generate three new analytically solvable
Hill equations and their solutions using a method introduced by
Wu and Shih [8]. We then use Floquet-Bloch theory to find the
band structure of each potential and the forms of the Floquet-
Bloch solutions in each region of the band structure. All three
newly obtained analytically solvable Hill equations have con-
tinuous periodic potentials Q(z), thus, making the following
analysis somewhat relevant to the studies of optical rugate
filters, which are based on 1D photonic crystals with a sinu-
soidal refractive index profile [11].

2. CONSTRUCTING HILL EQUATIONS AND SOLUTIONS

The details of derivation were presented by Wu and Shih [8].
To begin, we choose a relatively simple Hill equation with a
periodic smooth potential f (z) having period d

d2Ψ
dz2 + f (z)Ψ(z) = 0. (2)

If ψ0(z) is a periodic particular solution to Eq. (2), then f (z)
satisfies

f (z) = − 1
ψ0

d2ψ0

dz2 . (3)

We use f (z) and ψ0(z) to construct a more complicated Hill
equation whose potential takes the form

Q(z, a) =
a

[ψ0(z)]4
+ f (z), (4)

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of the Optical Society of America B 2

where a is an arbitrary real constant. The solutions to the Hill
equation with this potential are

ψ1(z) = A1ψ0(z) cos[Φ1(z)], (5)

ψ2(z) = A2ψ0(z) sin[Φ1(z)], (6)

where the phase integrals Φ1(z) and Φ2(z) are

Φ1,2(z) =
√

a
∫ z

0

dr
[ψ0(r)]2

+ C1,2. (7)

The constants A1, A2, C1, and C2 are chosen to satisfy the
normalization conditions ψ1(0) = 1, ψ′1(0) = 0, ψ2(0) = 0,
and ψ′2(0) = 1. Φ1(z) and Φ2(z) may have to be modified to
make them continuous, as was done in [9, 10]. Finally, these
normalized solutions are used to construct the Floquet-Bloch
fundamental system for this Hill equation.

The initial particular solution ψ0(z) should be chosen bearing
in mind that we would prefer to have Eqs. (4) and (7) continuous
without modification. Motivated by this, we pick a particular
solution in the form

ψ0(z) =
1√
g(z)

, (8)

where g(z) is a smooth, nonvanishing, and integrable periodic
function of period d. Following the procedure laid out by Wu
and Shih, we derive Eqs. (4) and (7) in their respective forms

Q(z, a) = a[g(z)]2 +
1
2

1
g(z)

d2g
dz2 −

3
4

1
[g(z)]2

(
dg
dz

)2

, (9)

and
Φ1,2(z) =

√
a
∫ z

0
g(r)dr + C1,2. (10)

It should be noted that if a is very large or g(z) varies sufficiently
slowly with z, Eq. (9) and (10) arise in the WKB approximation,
as remarked by Renne [12].

3. FLOQUET-BLOCH THEORY

The Hill differential equation gives rise to several fundamental
systems of solutions, but the one of particular interest to us is
the Floquet-Bloch system [3, 13, 14]. It always contains at least
one (nontrivial) solution F1(z), called the Floquet-Bloch wave,
with the property

F1(z + d) = ρ1F1(z), (11)

where ρ1 is a nonzero complex-valued constant. In many cases a
second (nontrivial) solution F2(z) exists with the corresponding
property

F2(z + d) = ρ2F2(z). (12)

The constants ρ1,2 are called Floquet (translational) multipliers,
and they satisfy the relation

ρ1 =
1
ρ2

= eiξd, (13)

where ξ is called the Bloch wavenumber. The Floquet-Bloch
waves can also be written as

F1(z) = P1(z)eiξz and F2(z) = P2(z)e−iξz, (14)

where both P1(z) and P2(z) are smooth periodic functions of
period d. Once the solutions F1(z) and F2(z) are known on one

period (such as on the interval 0 < z < d), they can be calculated
over other periods through recursive application of Eqs. (11) and
(12).

The Floquet-Bloch waves can be constructed as

v(d) 6= 0 : F1,2(z) = u(z) +
ρ1,2 − u(d)

v(d)
v(z), (15)

u′(d) 6= 0 : F1,2(z) =
ρ1,2 − v′(d)

u′(d)
u(z) + v(z), (16)

v(d) = u′(d) = 0 : F1(z) = u(z), F2(z) = v(z), (17)

where u(z) and v(z) are smooth, normalized solutions of Eq. (1),
i.e. u(0) = 1, u′(0) = 0, v(0) = 0 and v′(0) = 1. The forms of
F1(z) and F2(z) are determined by the band structure of the pe-
riodic potential Q(z). The dispersion relation we use to analyze
the band structure is

cos(ξd) =
u(d) + v′(d)

2
. (18)

Using Eqs. (13) and (18) we can rewrite the Floquet multipliers
in the form

ρ1,2 = cos(ξd)± i
√

1− cos2(ξd). (19)

Regions where | cos(ξd)| < 1 are called allowed bands. In
these regions both Floquet-Bloch waves are bounded, oscillat-
ing, complex-valued nonperiodic functions. In addition, the
solutions are complex conjugates of one another

|F1,2(z + d)| = |F1,2(z)|,
Re[F1(z)] = Re[F2(z)],
Im[F1(z)] = −Im[F2(z)]. (20)

Regions where | cos(ξd)| > 1 are called bandgaps. In these
regions both Floquet-Bloch waves are real-valued; one of them
decays along the axis of propagation while the other one is
unbounded (and thus represents an unphysical solution in an
infinite periodic structure)

|F1(z + d)| < |F1(z)|,
|F2(z + d)| > |F2(z)|. (21)

Between the allowed bands and bandgaps, there lie bound-
aries called bandedges where | cos(ξd)| = 1. As a result, the
Floquet multipliers become identical, ρ1 = ρ2 ≡ ρ = ±1, and
the Floquet-Bloch waves become identical periodic functions
F1(z) = F2(z) ≡ F(z). If ρ = 1, the period of F(z) is d and if
ρ = −1, the period of F(z) is 2d. If so, another solution to the
Hill equation is needed to complete the Floquet-Bloch system,
and the most common choice is a function called the hybrid
Floquet mode, taking the form

G(z) = eiξz [zP1(z) + P2(z)] , (22)

which is a solution of Eq. (1) with the property

G(z + d) = ρG(z) + ρdF(z). (23)

In terms of the smooth normalized solutions, the hybrid Floquet
mode is constructed as

v(d) 6= 0 : G(z) =
ρd

v(d)
v(z), or

u′(d) 6= 0 : G(z) =
ρd

u′(d)
u(z). (24)
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Finally, there are vanishing gaps, also called incipient bands.
A vanishing gap is a special kind of bandgap, one that, first,
satisfies | cos(ξd)| = 1 and, second, contains an allowed band
in the neighbourhood of each of its points. For example, on
a band structure diagram of two independent parameters, a
vanishing gap can appear as a point or line [15]. Once again,
ρ1 = ρ2 ≡ ρ = ±1, but in addition, unlike on bandedges,
ρ = u(d) = v′(d), and the Floquet-Bloch waves F1(z) and F2(z)
are linearly independent, periodic functions, given by Eq. (17).
Thus, in terms of the values of smooth normalized solutions u(z)
and v(z) at the point z = d, the vanishing gaps are determined
by the conditions

u(d) = v′(d) = ±1, v(d) = u′(d) = 0. (25)

Similar to a bandedge, if ρ = 1, the period of both Floquet-
Bloch waves is d and if ρ = −1, their periods are 2d. Then, any
superposition of the Floquet-Bloch waves becomes periodic as
well, i.e. in the vanishing gaps any solution of the Hill equation
is a periodic function.

4. NEW EXAMPLE A

To begin, we choose the particular solution to Eq. (2) to be

ψ0A(z) =
1√

1 + q cos2(z)
, q > −1. (26)

The constant q must be bounded from below by −1 to avoid
singularities in the potential. As mentioned in the previous
section, the choice of Eq. (26) is motivated by the desire to find
a relatively simple form for Eq. (7). Following the algorithm of
Wu and Shih, we construct a periodic potential

QA(z, a, q) = 1 + a
[
1 + q cos2(z)

]2
−

2(2 + q)
1 + q cos2(z)

+
3(1 + q)

[1 + q cos2(z)]2
, (27)

and its normalized solutions

uA(z) =

√
1 + q

1 + q cos2(z)
cos[ΦA(z)], (28)

vA(z) =
1√

a(1 + q)
1√

1 + q cos2(z)
sin [ΦA(z)] , (29)

where

ΦA(z) =
√

a
[[

1 +
q
2

]
z +

q
4

sin(2z)
]

. (30)

Fig. 1. The normalized solutions uA(z) (dashed black line) and
vA(z) (solid black line) to the Hill equation with potential QA(z)
(thick gray line), for a = 1/2 and q = 3/2. These solutions are
continuously differentiable without requiring modification.

The potential and its normalized solutions are illustrated in
Fig. (1). It has been constructed with a period of π. To stretch
the periods, we need only make the substitution z → (π/d)z,
which allows us to perform all derivations in this section using
the modified potential QAd = (π2/d2)QA of period d. It can
easily be checked that Eqs. (28) and (29) satisfy the normalization
requirements uA(0) = 1, u′A(0) = 0, vA(0) = 0, and v′A(0) = 1.
The potential QA(z) is biperiodic with alternating strong and
weak oscillations. The relative amplitudes of these oscillations
can be modified by varying parameter a. Biperiodic potentials
are a subject of interest in various optical systems [16, 17].

A. Determining Band Structure

To analyze the band structure of this potential we refer to the
dispersion relation Eq. (18). As with the Casperson and Wu-Shih
potentials, we find that cos(ξd) = uA(d) = v′A(d), leading to

cos(ξd) = cos
[

π
√

a
2

(q + 2)
]

. (31)

Eq. (31) indicates that the band structure consists of one bandgap
for a < 0, one allowed band for a > 0, and one bandedge at
a = 0 separating them.

We then identify incipient bands of this potential by finding
all pairs of parameters (a, q) that satisfy Eq. (25). This leads to

a =
4m2

(q + 2)2 , m = 1, 2, 3, ... . (32)

We also find a degenerate incipient band where q = 0 and a > 0.
As was the case with the Takayama, Casperson and Wu-Shih
potentials, all incipient bands are composed of continuous lines
[9, 10].

The overall band structure is illustrated in Fig. (2). We should
note that the band structure of a typical photonic crystal is
plotted as normalized wavenumber (frequency) of propagat-
ing light versus one of the parameters of the crystal. Here, the
band structure is plotted as a versus q, implying that a plays
a role somewhat similar to the normalized frequency of light
propagating in a photonic crystal.
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Fig. 2. The band structure for the potential QA. The bandedge
at a = 0 (dark horizontal line) separates the bandgap (white
background) and the allowed band (gray background). The
incipient bands (dashed dark gray lines) are determined by
Eq. (32). In addition, there is a degenerate incipient band for
q = 0, a > 0. The first four incipient bands are labeled.

B. Floquet-Bloch System for Allowed Bands and Bandgaps
The Floquet-Bloch fundamental system in the allowed bands and
bandgaps consists of two linearly independent Floquet-Bloch
waves. To find them for potential A, we begin by using Eq. (19)
to obtain the Floquet multipliers

ρ1,2A = exp
[
± i

π
√

a
2

(q + 2)
]

. (33)

Together with Eqs. (28) and (29), we can compose the Floquet-
Bloch waves, using Eq. (15), as

F1,2A(z) =

√
1 + q

1 + q cos2(z)
exp[± i ΦA(z)]. (34)

Note that the Floquet-Bloch solutions are bounded, complex-
valued, continuously differentiable, and nonperiodic in the al-
lowed bands. The form of Eq. (34) also makes it clear that they
are complex conjugates of one another and obey Eq. (20). How-
ever, ΦA(z) is imaginary in the bandgap, which turns the os-
cillations in Eq. (34) into an exponential decay for F1A(z) and
an exponential growth for F2A(z). Examples of solutions in the
allowed band and bandgap are featured in Figs. (3) and (4),
respectively.

Fig. 3. The real and imaginary components of the Floquet-Bloch
waves F1A(z) and F2A(z) in the allowed band, for a = 1/2 and
q = 3/2. The real components Re[F1A(z)] and Re[F2A(z)] (solid
black line) coincide, while the imaginary components Im[F1A(z)]
(dashed gray line) and Im[F2A(z)] (solid gray line) are mirror
images of each other.

Fig. 4. The Floquet-Bloch solutions F1A(z) and F2A(z) in the
bandgap, for a = −1/200 and q = 3/2. The solution F1A(z)
decays, while F2A(z) rapidly grows.

C. Floquet-Bloch System for Bandedges
At the bandedge we find that ΦA(z) = 0 for all z, leaving only
the solution F1A(z) = F2A(z) ≡ FA(z) available. The Hill equa-
tion is a second-order differential equation, so a second solution
is needed to complete the Floquet-Bloch fundamental system.
We turn to the hybrid Floquet mode, given by Eq. (24).

The first solution, the periodic Floquet-Bloch wave FA(z), is
simply found by setting a = 0 in Eq. (34). In this case, FA(z)
coincides with uA(z), i.e.

FA(z) =

√
1 + q

1 + q cos2(z)
. (35)

To find the second solution GA(z), we first take the limit a→ 0
in Eq. (29) and obtain

vA(z) =
(1 + q/2)z + (q/4) sin(2z)√

(1 + q)[1 + q cos2(z)]
. (36)

This form of vA(z) is suitable for use with Eq. (24), which gives
us the hybrid Floquet mode

GA(z) =

[
z +

q
2(2 + q)

sin(2z)

]
FA(z). (37)

An example of the Floquet-Bloch solutions at the bandedge is
shown in Fig. (5).

Fig. 5. The Floquet-Bloch wave FA(z) and hybrid Floquet mode
GA(z) at the bandedge, for a = 0 and q = 3/2. The solution
FA(z) oscillates periodically while GA(z) grows without bound.
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D. Floquet-Bloch System for Incipient Bands
Incipient bands for this potential are determined by the condi-
tion (32). The corresponding incipient periodic Floquet-Bloch
waves coincide with the normalized solutions uA(z) and vA(z),
given by Eqs. (28) - (30), where we implement the condition (32).
This leads to

F1A(z) =

√
1 + q

1 + q cos2(z)
cos[ΦA(z)] , (38)

F2A(z) =
2 + q

2m
√

1 + q
1√

1 + q cos2(z)
sin[ΦA(z)] , (39)

with

ΦA(z) = m
[

z +
q

2(2 + q)
sin(2z)

]
. (40)

Even and odd values of m correspond to incipient Floquet-Bloch
waves with periods of d and 2d, respectively. Examples for
m = 2 and m = 3 are shown in Figs. (6) and (7).

Finally, in the degenerate incipient band (q = 0, a > 0), the
Floquet-Bloch waves reduce to

F1A(z) = cos(
√

az), (41)

F2A(z) =
1√
a

sin(
√

az). (42)

Fig. 6. The Floquet-Bloch waves F1A(z) (dashed black line) and
F2A(z) (solid black line) in the incipient band determined by
q = 3/2 and m = 2. Both oscillate with period d = π, as
expected for even values of m.

Fig. 7. The Floquet-Bloch waves F1A(z) (dashed black line) and
F2A(z) (solid black line) in the incipient band determined by
q = 3/2 and m = 3. Both oscillate with period 2d = 2π, as
expected for odd values of m.

5. NEW EXAMPLE B

As the second example we consider the particular solution

ψ0B(z) =
1√

1 + q[cos(z) + k cos(2z)]
, (43)

where k > −1/3 is a constant. Define Cqk = 1 + q(1 + k). To
avoid singularities in the potential, q and k must satisfy the
restriction 0 < Cqk < 2. Using Eq. (9) we construct the potential

QB(z, a, q, k) = a [1 + q[cos(z) + k cos(2z)]]2−
1
2

q[cos(z) + 4k cos(2z)]
[1 + q[cos(z) + k cos(2z)]]

−

3
4

q2[sin(z) + 2k sin(2z)]2

[1 + q[cos(z) + k cos(2z)]]2
. (44)

The corresponding normalized solutions are

uB(z) =

√
Cqk

1 + q[cos(z) + k cos(2z)]
cos[ΦB(z)] , (45)

vB(z) =
1√

a Cqk

1√
1 + q[cos(z) + k cos(2z)]

sin[ΦB(z)] , (46)

where the phase integral ΦB(z) is given by

ΦB(z) =
√

a
[

z + q
[

sin(z) +
k
2

sin(2z)
]]

. (47)

This potential and the solutions to its corresponding Hill
equation are shown in Fig. (8). As was the case in the first ex-
ample, we can apply all derivations in this section to a modified
potential QBd = (4π2/d2)QB of period d if we perform the
substitution z→ (2π/d)z.

Fig. 8. The triperiodic potential QB(z) (thick gray line) and the
normalized solutions uB(z) (dashed black line) and vB(z) (solid
black line) to the corresponding Hill equation, for a = 5/2, k = 5,
and q = 1/12.

For large a (a > 2), the second and third terms of Eq. (44)
are responsible for the low-amplitude oscillations peaking at
half-integer multiples of π in Fig. (8). One of the properties of
this potential is that we can adjust a to control the contributions
of the low-lying oscillations, and then further adjust k to control
the relative amplitudes of the higher-amplitude peaks at integer
multiples of π.
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A. Band Structure

Using the dispersion relation (18), with u(z) and v(z) given by
Eqs. (45) and (46), we find

cos(ξd) = cos(2π
√

a). (48)

The resulting band structure is shown in Fig. (9). As in the first
example, this band structure has a single allowed band for a > 0,
a single bandgap for a < 0, and a bandedge between them at
a = 0. However, the incipient bands are horizontal lines whose
position is given by

a =
m2

4
, m = 1, 2, 3, ... . (49)

There is also a degenerate incipient band where q = 0 and a > 0.

Overall, the band structure is similar in appearance to that of
the Takayama potential [10] and is shown in Fig. (9).

Fig. 9. The band structure for the potential QB. The bandedge
at a = 0 (dark horizontal line) separates the bandgap (white
background) and the allowed band (gray background). The hor-
izontal incipient bands (dashed dark gray lines) are determined
by Eq. (49). The first six incipient bands are shown.

B. Floquet-Bloch System for Allowed Bands and Bandgaps

Once again we use Eq. (15) to construct the Floquet-Bloch waves
in the allowed bands and bandgaps,

F1,2B(z) =

√
Cqk

1 + q[cos(z) + k cos(2z)]
exp[± i ΦB(z)]. (50)

As was the case for example A, we see that in the bandgap
Eq. (48) becomes purely imaginary, turning the complex oscilla-
tions in Eq. (50) into a real exponential decay/growth. Examples
of the Floquet-Bloch solutions in the allowed band and bandgap
are provided in Figs. (10) and (11), respectively.

Fig. 10. The Floquet-Bloch waves F1B(z) and F2B(z) in the al-
lowed band, for a = 5/2, k = 5, and q = 1/12. The real compo-
nents Re[F1B(z)] and Re[F2B(z)] (solid black line) coincide, while
the imaginary components Im[F1B(z)] (dashed gray line) and
Im[F2B(z)] (solid gray line) are opposite in sign.

Fig. 11. The Floquet-Bloch solutions F1B(z) and F2B(z) in the
bandgap, for a = −1/50, k = 5 and q = 1/12. The solution
F1B(z) decays, while F2B(z) rapidly grows.

C. Floquet-Bloch System for Bandedges

The bandedge a = 0 gives us a single Floquet-Bloch wave
F1B(z) = F2B(z) ≡ FB(z), and we again turn to Eq. (24) to create
the hybrid Floquet mode GB(z). This leads to the Floquet-Bloch
solutions of the form

FB(z) =

√
Cqk

1 + q[cos(z) + k cos(2z)]
, (51)

GB(z) =
[

z + q
[

sin(z) +
k
2

sin(2z)
]]

FB(z). (52)

Examples of those solutions are shown in Fig. (12). The Floquet-
Bloch solutions for potentials QA(z) and QB(z) at the bandedge
are very similar in appearance; one can compare Figs. (5) and
(12).
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Fig. 12. The Floquet-Bloch wave FB(z) and hybrid Floquet mode
GB(z) in the bandedge, for a = 0, k = 5, and q = 1/12. The
solution FB(z) oscillates periodically while GB(z) grows without
bound.

D. Floquet-Bloch System for Incipient Bands

Picking locations on the band structure that satisfy Eq. (49) al-
lows us to identify the incipient bands. As in example A, the
incipient periodic Floquet-Bloch waves coincide with the solu-
tions uB(z) and vB(z), and can be rewritten as

F1B(z) =

√
Cqk

1 + q[cos(z) + k cos(2z)]
cos[ΦB(z)] , (53)

F2B(z) =
2

m
√

Cqk

1√
1 + q[cos(z) + k cos(2z)]

sin[ΦB(z)] , (54)

where

ΦB(z) =
m
2

[
z + q

[
sin(z) +

1
2

k sin(2z)
]]

. (55)

In Fig. (13) we see an example of incipient Floquet-Bloch waves
when m is odd and ρ = −1; both waves have a period of 2d = 4π.
Likewise, in Fig. (14) is shown an example of incipient Floquet-
Bloch waves when m is even and ρ = 1; both waves have a
period d = 2π.

Fig. 13. The Floquet-Bloch waves F1B(z) (dashed black line) and
F2B(z) (solid black line) in the incipient band determined by
k = 5, q = 1/12 and m = 1. Both oscillate with period 2d = 4π,
as expected for odd values of m.

Fig. 14. The Floquet-Bloch waves F1B(z) (dashed black line) and
F2B(z) (solid black line) in the incipient band determined by
k = 5, q = 1/12 and m = 2. Both oscillate with period d = 2π,
as expected for even values of m.

6. NEW EXAMPLE C

Our third example begins with the particular solution

ψ0C(z) =

√
1 + q sin(z)
1 + q cos(z)

, (56)

where −1 < q < 1 is a constant. This example is somewhat
different from the previous two. As we mentioned in section
2, we try to pick a solution ψ0 in the form given by Eq. (8),
where, in particular, g(z) is a nonvanishing function. As one
can see that is the case with the first two examples, but not
with the current one. As a result, the phase integrals given
by Eq. (7) might have jump discontinuities and further ad-
justments might be needed to construct smooth normalized
solutions of the corresponding potential. However, the frame-
work remains the same. Using Eq. (4) we construct the potential

QC(z, a, q) =
a[1 + q cos(z)]2 + (1/4)q2 cos2(z)

[1 + q sin(z)]2
−

3
4

q2 sin2(z)
[1 + q cos(z)]2

−

1
2

[
q2 sin(z) cos(z) + q cos(z)− q sin(z)

[1 + q cos(z)][1 + q sin(z)]

]
. (57)

Its normalized solutions are

uC(z) =

√
1 + q +

1
4a

q2

(1 + q)

√
1 + q sin(z)
1 + q cos(z)

cos[Φ1C(z)], (58)

vC(z) =
1√

a(1 + q)

√
1 + q sin(z)
1 + q cos(z)

sin[Φ2C(z)]. (59)

Their respective phase integrals are given by

Φ1,2C(z) =
√

a

[
2√

1− q2
arctan

[
q + tan(z/2)√

1− q2

]
+

ln[1 + q sin(z)]

]
+ D1,2, (60)

where

D1 = D2 + arctan
[

1
2
√

a
q

(1 + q)

]
, (61)

D2 = −2
√

a
1− q2 arctan

[
q√

1− q2

]
. (62)
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The above solutions uC(z) and vC(z) have jump discontinu-
ities at points zj = d/2 + jd, j = 1, 2, 3, ..., where d = 2π is
the period of potential QC(z). We construct smooth versions of
those solutions by redefining the phase integrals (60) as

Φ1,2C(z) =
√

a

[
2√

1− q2

[
(j− 1)π+

arctan

[
q + tan(z/2)√

1− q2

] ]
+ ln[1 + q sin(z)]

]
+ D1,2 ,

(63)

where j = 1 for −π < z < π, j = 2 for π < z < 3π, etc.
The potential QC(z) and its smooth normalized solutions are

shown in Fig. (15). Unlike potentials A and B, QC(z) is more
sawtooth-like in appearance. For large values of a (a > 3), the
low-amplitude oscillations peaking at odd integer multiples of
π can be made negligible.

As in the examples A and B, derivations in this section apply
to a modified potential QCd = (4π2/d2)QC of period d after
performing the substitution z→ (2π/d)z.

Fig. 15. The normalized solutions uC(z) (dashed black line) and
vC(z) (solid black line) to the Hill equation with potential QC(z)
(thick gray line), for a = 1 and q = 3/2.

A. Band Structure

We again use the dispersion relation (18), with u(z) and v(z)
given this time by Eqs. (58) and (59), to find

cos(ξd) = cos
[

2π

√
a

1− q2

]
. (64)

The locations of the bandgap, allowed band, and bandedge are
identical to those of the first two examples. The incipient bands
come in the form of lines given by

a =
m2

4
(1− q2), m = 1, 2, 3, ... . (65)

The degenerate incipient band is found where q = 0 and a > 0.
The resulting band structure, shown in Fig. (16), is identical to
that of the Wu-Shih potential, save for a multiplicative factor of
1/4 for the incipient bands [9].

Fig. 16. The band structure for the potential QC. The bandedge
at a = 0 (dark horizontal line) separates the bandgap (white
background) and the allowed band (gray background). The
incipient bands (dashed dark gray lines) are determined by
Eq. (65). The first six incipient bands are illustrated.

B. Floquet-Bloch System for Allowed Bands and Bandgaps

Using Eq. (15) to construct the Floquet-Bloch waves in the al-
lowed bands and bandgaps, we find

F1,2C =
√

1 + q

√
1 + q sin(z)
1 + q cos(z)

exp[± iΦC(z)]. (66)

In the allowed band Eq. (66) takes the form of complex oscil-
lations, while in the bandgap it turns into a real exponential
decay/growth. The Floquet-Bloch solutions in the allowed band
and bandgap are provided in Figs. (17) and (18) respectively, dis-
playing very similar properties to their counterparts of examples
A and B.

Fig. 17. The Floquet-Bloch waves F1C(z) and F2C(z) in the
allowed band, for a = 3/2 and q = 1/2. The real compo-
nents Re[F1C(z)] and Re[F2C(z)] (solid black line) coincide, while
the imaginary components Im[F1C(z)] (dashed gray line) and
Im[F2C(z)] (solid gray line) are opposite in sign.
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Fig. 18. The Floquet-Bloch solutions F1C(z) and F2C(z) in the
bandgap, for a = −1/50 and q = 1/2. The solution F1C(z)
decays, while F2C(z) rapidly grows.

C. Floquet-Bloch System for Bandedges
At the bandedge we once again have for the Floquet-Bloch waves

F1C(z) = F2C(z) ≡ FC(z) =
√

1 + q

√
1 + q sin(z)
1 + q cos(z)

. (67)

Then, we use Eq. (24) to construct the hybrid Floquet mode
GC(z) in the form

GC(z) =

{
2(j− 1)π + 2 arctan

[
q + tan(z/2)√

1− q2

]
−

2 arctan

[
q√

1− q2

]
+

√
1− q2 ln [1 + q sin(z)]

}
FC(z) . (68)

The above bandedge Floquet-Bloch solutions (67) and (68) are
shown in Fig. (19).

Fig. 19. The Floquet-Bloch wave FC(z) and hybrid Floquet mode
GC(z) at the bandedge, for a = 0 and q = 1/2. The solution
FC(z) oscillates periodically, while GC(z) grows without bound.

D. Floquet-Bloch System for Incipient Bands
As was the case for potentials A and B, the Floquet-Bloch waves
in the incipient bands coincide with the smooth solutions uC(z)
and vC(z). They are constructed by choosing pairs of parameters
a and q that satisfy Eq. (65).

Fig. 20. The Floquet-Bloch waves F1C(z) (dashed black line)
and F2C(z) (solid black line) in the incipient band determined
by q = 1/2 and m = 2. Both oscillate with period d = 2π, as
expected for even values of m.

Fig. 21. The Floquet-Bloch waves F1C(z) (dashed black line)
and F2C(z) (solid black line) in the incipient band determined
by q = 1/2 and m = 3. Both oscillate with period 2d = 4π, as
expected for odd values of m.

Figures 20 and 21 show the incipient periodic Floquet-Bloch
waves when m = 2 and m = 3, respectively.

7. SUMMARY

We used the Wu-Shih procedure to construct three analytically
solvable Hill equations with smooth potentials and solutions.
We found the band structure of each potential using the disper-
sion relation for the Bloch wavenumber. All three band struc-
tures share similarities with those of the Takayama, Casperson,
and Wu-Shih potentials. They all have a single allowed band
and a single bandgap, separated by a bandedge boundary, as
well as a set of incipient bands in the form of continuous lines
dividing their respective allowed bands. We then constructed
Floquet-Bloch solutions in every characteristic region (allowed
band, band gap, bandedge, incipient band) of the band struc-
ture of each potential. The use of the Wu-Shih procedure along
with Floquet-Bloch theory has the possibility of being useful
for constructing potentials that model optical structures with
continuous refractive index, in particular, rugate filters.
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