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ABSTRACT 

Home health care service (HHC) provides daily medical 

services in patients’ homes. The service aims to satisfy the 

patients’ requirements, which must be done by one or more 

qualified staff visiting them within the right time and 

minimising operational cost. The homecare staff-scheduling 

problem (HSSP) is an extension of the HHC problem involving 

planning routes for caregivers visiting n patients. This paper 

proposes the route scheduling system based on a genetic 

algorithm approach for solving the HSSP. The focus is to 

introduce the novel techniques consisting of adaptive-opt 

(OPT), external k-nearest neighbour swapping (EKN), and 

internal nearest neighbour search (INN) to incorporate with the 

GA while also increasing the performance for solving the 

HSSP. In addition, the trade-off ratio between the percentage of 

improvement and the execution time is also concerned. The 

ratio provides the most suitable structure of the proposed GA 

that can continue to consider other issues for HHC service such 

as the dynamic scheduling that requires execution speed for re-

calculating the service plan when some service activities are 

cancelled immediately. 

Our empirical study reveals that the proposed techniques 

can produce improved solutions on two simulated datasets and 

an adapted case study instance compared to the original GA. 

(200 words)   
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1 INTRODUCTION 

Home healthcare service plays a fundamental and essential 

role in daily life. The service starts with the patients’ 

requirements, which must be done by qualified caregivers. The 

staff members should possess the right skills and qualifications 

for the given task, for example, speaking languages, license to 

administer medicines, etc. The staff members referred to as 

caregivers are typically equipped with private cars or bikes, the 

use public transport or walking to patient’ homes from the 

homecare office under a specific time window, usually between 

08:00 to 16:30.  This problem is referred to here as “Homecare 

Staff Scheduling Problem (HSSP)”. The HSSP also includes 

many factors such as task size, staff members’ preferences, cost 

under specified time and capacity, along with other 

corresponding constraints. Due to the increase of elderly people 

in any areas already steering towards an aging society, HHC 

service providers are facing increasing operational costs for the 

service. Therefore, effective scheduling of the homecare service 

is essential to provide healthcare with minimum cost. In 

general, the experienced senior caregivers manually plan the 

less optimal schedules. Organisations providing the HHC 

service are either a charity service funded by the government or 

a private company having varying procedures for the HHC 

service in detail.  However, the principal of the service 

procedure can be summarised firstly by the patients register and 

their requirements sent to the homecare office, then the 

sequence of service routes planned considering the information 

received before assigning caregivers to offer medical services 

at patients’ homes in each service route. Fig.1 illustrates a 

general overview of HSSP where there are five people, from 

Patient-A to Patient-E, who require home homecare service. 

Fig. 1. Overview of homecare staff scheduling problem 

(HSSP) 

In this paper, we focus on how to arrange effective routes 

for caregivers offering the HHC with minimum distance, which 

is the majority phase for solving the HSSP. To increase the 

performance of the method for planning the service solution, 

there are three local searches especially designed for HSSP, 

which consist of adaptive-opt(OPT), external k-nearest 

neighbour swapping (EKN) and internal nearest neighbour 

search (INN), which are introduced to incorporate into the GA. 

Also the proposed algorithms will apply to stimulate and adapt 

real-life situations for measuring its performance.  
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The rest of this paper is organised in the following sections. 

A literature review in section 2.  Descriptions of the HSSP 

details, the proposed techniques and parameter settings are 

explained in sections 3. In section 4, I evaluate the proposed 

model and methods with simulated, adapt and real-world 

instances. The summary of results that the proposed method has 

efficiency for generating service schedule in practical in section 

5. 

2 RELATED WORK ON HSSP 

HSSP has received intensive attention after the pioneering 

work in the UK from 1974 [1]. Since then, several techniques 

such as mathematical, heuristics and meta-heuristics have been 

investigated for solving HSSP in different regions and problem 

domains. As part of mathematical programming methods, Felici 

and Gentile [1] presented an integer programming model that 

maximises the total satisfaction of the nursing staff. Bard and 

Purnomo [2] adopted the column generation scheme to solve the 

problem regarding minimising the nursing staff members’ 

violating preferences. The fuzzy theory was applied to a multi-

objective integer programming model in order to determine the 

changeable factors that influence nurse satisfaction [3]. 

Bredström and  Rönnqvist [4] proposed a mathematical 

programming model combined with a classic OPT to handle 

vehicle routing and nurse scheduling problem under time 

windows and additional temporal constraints. Experimental 

results illustrated a positive effect. Constantino et al. [5] 

proposed a new deterministic heuristic algorithm to solve a nurse 

scheduling problem consisting of two phases; a constructive 

scheduling phase and an improvement phase. A heuristic method 

to plan home healthcare service has been compared with the 

mixed integer linear programming based approach for caregivers 

routing in [6]. The heuristic approach is not able to reach the 

optimal solution for real problems, but the empirical results 

showed better computation times.   

Genetic algorithm (GA) was applied in [7] and adaptive-
penalty GA was employed in [8] to determine the optimal 
number of doctors. Harmony search, a metaheuristic algorithm, 
was used for the nurse scheduling problem in a hospital in 
Malaysia [9]. Artificial bee colony optimisation [10] was 
implemented for nurse scheduling problems. Particle-swarm-
based approach (PSO) had been applied to generate a schedule 
for caregivers [11],[12]. Hiermann et al. [13] presented a general 
framework for solving homecare scheduling problems in 
Austria. This problem was generated by a random technique in 
the first phase before assigning four metaheuristics: variable 
neighbourhood search, a memetic algorithm (MA), scatter 
search and a simulated annealing hyper-heuristic to improve the 
solution. The results of this research show that the MA gives 
significantly better objective values overall for all instances 
compared to other methods. 

A recovery scheme for the GA was added to tackle the more 
complex problem for HSSP.  Chang-Chun Tsai et al.[14] 
proposed a new two-stage model for HSSP to reduce infeasible 
solutions in GA explicitly designed for our nurse preference 
scheduling. Braekers et al. [15] introduced a mixed model based 
on neighbourhood search heuristic. The aim of this research 
focuses on the multi-objective problem that concerns the trade-

off relationship between costs and client inconvenience 
regarding multiple travelling salesperson problems (MTSP). 

Concerning research topics, the majority of research papers 
emphasises the single-purpose problem, such as Akjiratikarl et 
al. [11] developed a model for the vehicle routing problem. 
Bredström and Rönnqvist[4] focused on settings where the 
service required multiple-caregivers for operations 
simultaneously, while Trautsamwieser et al.[16] raised issues of 
mandatory working and staff’s break regulations. Mutingi and 
Mbohwa[17] applied machine learning techniques to handle 
with preferences, workload balance of the service.  

In this paper, we contribute a novel route scheduling 

approach based on the GA that exploits local searches designed 

particularly for HSSP for supporting the multiple caregivers’ 

operation while minimising travel cost.  

3  DESCRIPTIONS OF THE HSSP 

3.1 Problem details and model 

The problem description given below is derived from 

interviews with a homecare staff member at a hospital and 

adapted from [11]. 

 Caregivers are recommended to provide daily service 

between 4 to 6 patients as the higher number of patients may 

lead to fatigue and exertion. 

 Each patient has the same priority which cannot demand 

specified service time. However, in some cases, i.e. patients 

with multiple disabilities can have a higher priority for the 

arrangement.  

 Each caregiver starts and terminates from the homecare 

office at 08:00 and 16:30. 

 The assigned jobs and each task must be completed under 

time slot windows. 

 Geolocation (Latitude and Longitude coordination) defines 

the location of patient homes. 

 Operating time is set at the default operating length of 1 hour. 

 Caregivers are social workers focusing on the hygiene of 

food, medicine, accommodation and psychological 

counselling 

 Lunchbreaks are taken into consideration. Time allocated is 

half an hour. 

Firstly, we give the mathematical notations of the model: 

𝑁    = {0,1,2,3, … , 𝑛, 𝑛 + 1} : The set of locations on the map, which includes the 

patients’ locations and the homecare office. Usually 0 and 𝑛+1 are the 

index of the homecare office 

𝑖, 𝑗  =  the index of locations where  i , j ∈N  as well as j ≠ i  and j >  i   

𝑆    = {1,2,3, … , 𝑠}  : The set of caregivers 

𝑅    = {1,2,3, … , 𝑟} : The set of service routes 

𝐶𝑖𝑗   =  cost of travel  between 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗  depending          

on modes of transportation  

𝑑  𝑖,𝑗
𝑟,𝑑 =  distance between  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖  to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗  in 𝑟𝑜𝑢𝑡𝑒𝑟  on 𝑑𝑎𝑦𝑑  

𝑛     = The number of tasks  

𝑟     = The number of routes 

𝐷    = The number of days for scheduling 

𝑤𝑘
𝑟,𝑑= The working time at task k in minutes  

𝑡𝑖,𝑗   = The travel time between 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗  in minutes 

TW  = Time window 
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(1) 
 

(2) 
 

(3) 
 

(4) 

(5) 

 
 (6) 

(7) 

(8) 

 
 

Mintravel cost     ∑ ∑ ∑ 𝑃𝑖,𝑗
𝑟,𝑑  ∙ 𝐶𝑖,𝑗

𝑟,𝑑

𝑖,𝑗∈𝑁𝑟∈𝑅𝑑∈𝐷

. 𝑑𝑖,𝑗
𝑟,𝑑 

             Note that 𝑑  𝑖,𝑗
𝑟,𝑑  may be different from 𝑑  𝑗,𝑖

𝑟,𝑑    

             Subject to 

𝑃𝑖,𝑗
𝑟,𝑑 = {

 1, if a journey is made from 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖  to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗

0, otherwise
 

∑ ∑ 𝑃𝑖,𝑗
𝑟,𝑑 = 1

𝑖,𝑗∈𝑁𝑟∈𝑅

                                       ∀𝑑 ∈ 𝐷  

 

∑ 𝑃0,𝑗
𝑟,𝑑 = 1

𝑗∈𝑁

                                               ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷  

  

∑ 𝑃𝑗,(𝑛+1)
𝑟,𝑑 = 1

𝑗∈𝑁

                                         ∀𝑟 ∈ 𝑅 , ∀𝑑 ∈ 𝐷  

∑ 𝑃𝑖,ℎ
𝑟,𝑑

𝑖∈𝑁

− ∑ 𝑃ℎ,𝑗
𝑟,𝑑

𝑗∈𝑁

= 0                            ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷  

𝑠𝑖
𝑟,𝑑 + 𝑤𝑖

𝑟,𝑑 + 𝑡𝑖,𝑗 ≤ 𝑇𝑊 − 30               ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷         

𝑤𝑗
𝑟,𝑑 = (𝑒𝑗

𝑟,𝑑   − 𝑠𝑗
𝑟,𝑑)  + 𝑇𝑃𝐾𝑗

𝑟,𝑑           ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷       

The objective function (1) minimises the total of the travel 

cost, which includes the total of distances travelled by 

caregivers and the total travel cost varies in different modes of 

transportation. Constraints (2) are the binary constraints for 

variable𝑃𝑖,𝑗
𝑟,𝑑

. Constraints (3) ensures that each patient is visited 

once only. Constraints (4) - (5) show that each route begins and 

ends at the homecare office. Constraint (6) confirms that each 

task location is visited and left while (7) guarantees that each 

job starts and terminates within a time window. Parking time is 

set as a constant value of 15 minutes while lunchtime is defined 

at 30 minutes. Constraints (8) estimates the working time of a 

task 𝑤𝑖
𝑟,𝑑

 calculated by a finishing time 𝑒𝑖
𝑟,𝑑

 , starting time 𝑠𝑖
𝑟,𝑑

, 

and parking time 𝑇𝑃𝐾𝑖
𝑟,𝑑

 of task j.  Note that in this study 

caregivers are homogenous. All caregivers earn daily pay and 

𝑤𝑗
𝑟,𝑑

 is set as a constant value at 75 minutes. 

Note that the concept of dynamic scheduling and the 

requirement of multiple caregivers are not included in this 

paper.  

3.2 Proposed route scheduling approach 

The goal of the route scheduling approach is to create 

effective routes for caregivers to offer the homecare service, at 

different task locations, with the shortest route.  In this section, 

the components of the proposed GA-based approach are 

described as follows:  

3.2.1 Chromosome representation 

Based on the work of A. E. Carter and C. T. Ragsdale[18],  

the planned solution is encrypted in a two-part chromosome 

representation which signifies possible sequences of service or 

solution. Fig. 2 shows an example of a chromosome containing 

three routes (m =3) where Route-1 starts from the homecare 

office going to TA, TI, TC, TE, TD, and then going back to the 

office. Route-2 begins from the office going to TK, TG, TL and 

going back to the office. The last one is Route-3 starting at the 

office before offering services at TB, TJ, TF, TH, and then going 

back to the office respectively while TM and TN are two 

examples of overload task-locations, which cannot be included 

daily due to the time-slot constraint.  

Homecare Office

A

I

C

E

B

J

F

H

D

K

G

L

N

M

A I C E D K G L B J F H

Chromosome

5 3 4M N 2

n-scheduled tasks

u-unscheduled tasks

m-routes

Route-1

Route-2

Route-3

Route-1 Route-2 Route-3

 

Fig. 2. Design of chromosome representation where n = 12, u = 2,          
and r = 3 

3.2.2 Mating operators 

Two-part crossover and modified two-part mutation are 

used to generate new offsprings. Crossover rate Pc is defined as 

the ratio of the number of genes that will be crossed over to the 

population size which ranges between [0,1] while the mutation 

operator flips or alters one or more bit values randomly in a 

chromosome. Mutation rate Pm is defined as the ratio of the 

number of genes that will be mutated to the population size 

ranging between [0,1]. These operators assist the offspring 

exploration for searching the optimal global solution. 

3.2.3 Parent selection 

The roulette wheel is a popular parent selection procedure 

to choose some individuals to become parent chromosome 

members for producing offsprings. The probability of selection 

depending upon the total of distance travelled by caregivers. 

3.2.4 Adaptive-GA 

Two essential parameters: Pc and Pm are controlled in GA. 

Both parameters affect the quality of reproduction conducing to 

a variety of computational time significantly. They are usually 

set as constant values. In this paper, both are allowed to tune 

values while the GA runs automatically. Feedback from the 

fitness value is used to control Pc and adaptive Pm as shown in 

Algorithm 1. 
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3.2.5 Adaptive-2OPT (OPT) 

OPT is defined as the most important searching technique to 

improve the solution. The OPT starts by a random two pairs of 

edges, i.e., 𝑇𝐴𝑇𝐵
̅̅ ̅̅ ̅̅  and 𝑇𝐶𝑇𝐷

̅̅ ̅̅ ̅̅ . If  𝑇𝐴𝑇𝐵
̅̅ ̅̅ ̅̅  and 𝑇𝐶𝑇𝐷

̅̅ ̅̅ ̅̅  are not adjacent 

edges, then pairs from 𝑇𝐴𝑇𝐶
̅̅ ̅̅ ̅̅  and 𝑇𝐵𝑇𝐷

̅̅ ̅̅ ̅̅ ̅ are removed and 

reconnected. The new planned service path is then re-

calculated. If an improvement is found, the solution is updated, 

otherwise it returns the original solution. The process iterates 

until the move limit is reached.  Fig. 3 is an example of a service 

route of six patients’ locations represented as connecting edges 

on a graph. The distance before and after improvement are 56 

and 41 units respectively.  

 
Fig. 3. An example of the OPT method 

 

3.2.6 Internal nearest neighbour search (INN) 

The INN is designed for optimising service path inside each 

route only. The INN is carried out by separating a chromosome 

into routes. In each route, the greedy search is used to re-arrange 

the route tasks. A greedy search firstly starts to find the nearest 

task from the homecare office and update the service sequences 

inside the route until all tasks are re-arranged. Fig. 4 illustrates 

an original service sequence of route-2 containing six service 

activities of cares: T14, T12, T1, T8, T5, and T3 with an original 

cost of 140 distance-units and the improvement of service 

sequence starting at T1, T8, T3, T5, T14, and T12 with 100 

distance-units.  

Route2

| T14  T12  T1  T8  T5  T3 | with 140 

New Route2

| T1  T8   T3   T5   T14  T12| with 100

Greedy search

Before improvement

After improvement

T1

T8

T3

T5

T14T12

T1

T8

T3

T5

T14T12

Homecare

Office

Homecare

Office

Fig. 4. INN enhances the sequence of solution 

3.2.7 External k-nearest neighbour swapping (EKN) 

The EKN is introduced to swap between k-task locations in 

different routes. Before the algorithm, we define two 

parameters: the rate k and the desired task location. The process 

begins by creating a set of k-pairs Popcand to store k-swapped 

solutions of care task locations between Ttarget of a route Ra and 

k-nearest locations outside Ra. The fitness of Popcand is 

recalculated and arranged in ascending order according to the 

objective function evaluation. The best fitness value is selected 

as an improved solution. Fig. 5 presents an example of EKN for 

swapping between T15 in route3 and T2 in route1.  
 

T11

T10

T4

T9

T13 T6

T7

Route3

Route1

T15

T2

T15

T2

SWAPPING

Route3

Route1

Homecare

Office

 
Fig. 5. KNN Swapping 

Note that the aim of the proposed local searches contrasts from 

the mutation operator. The local searches aim to produce an 

enhancement to overcome the trapped area issue. The local 

searches are executed many times on the best solution of each 

generation until the improvement is found. If the enhancement 

is not met, the original solution is returned to the GA. In 

contrast, the mutation operator focuses on making the 

population diversified. This operator is run just once in each 

iteration and the reproduction of the mutation cannot turn back 

to the original.  
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4 EXPERIMENTAL RESULTS 

4.1 Design of experiment 

The proposed algorithms for solving HSSP was developed 

with R language on laptop Intel i5 systems with 8 GB of RAM, 

running at 1.7-2.5 GHz on Windows 10 64-bits OS. 

We developed the hybrid GA based on the components 

provided in previous sections and then implemented the GA for 

the different combination of local searches to explore the 

results. Algorithms 2 presents the general structure of the 

proposed hybrid GA. With the pseudo code, the GA is initially 

executed and then OPT, EKN, and INN are sequentially applied 

to improve the solution based on the designed structures varying 

the sequences of local searches from S1 to S16 before repeating 

the loop of GA. The designed structures are shown in Table 3. 

 

4.2 Instances and parameters setting 

 The scheduling environment instances considered in this 

computational study is extracted from different sources: an 

adapted operational environment in a hospital, simulated 

instances and a modified instance from the public instance. The 

patient’s location Setp is provided in x and y-coordinates. The 

following list describes further details of all instances. 

 Instance1 (In1) is simulated instances of 45 task-locations 

with 8 service routes (n = 45, r = 8) 

 Instance2 (In2) is simulated instances of 65 task-locations 

with 12 service routes (n = 65, r = 12) 

 Instance3 (In3) is an adapt instance of 104 task-locations with 

20 service routes (n = 104, r = 20). This instance is adapted 

from xqf131-public instance[19] illustrating 131 points on 

the map. We programmed a random function to pick up 104 

points from whole points to create the instance.  

 Instance4 (In4) is modified data of a case study of 44 task-

locations with 8 service routes (n = 44, r = 8). Patient’s 

information such as name, address and types of disorders was 

anonymised before use in the experiment.  

Table 1 shows the parameter values for all experiments 

performed in this paper. These parameters conduce to 576 

experimental runs for each benchmark problem. The terminated 

criterion is the number of generations at 300. All caregivers start 

and end their service tours at the homecare office. Each 

structure is run with seeding for the benchmark problems.  

TABLE 1. PARAMETER SETTING 

Parameters Level of parameters 

Crossover rate (Pc) 0.5-  0.7 

Mutation rate (Pm) 0.001 – 0.1 

POPT 0 – 0.1 

PEKN K=0-5 

INN Y:Enabled N:Disabled 

Maximum iteration 300 

4.3 Experimental results 

According to (1), given any𝑐𝑖𝑗 = 1 . Performance of the 

proposed methods for solving the HSSP can be measured by 

using the best value and means of the total of distance travelled 

by caregivers visiting all n patients’ locations for the daily 

service. Note that one caregiver performs each patient as well 

as one caregiver can do each service route. Based on the novel 

local searches mentioned in the previous sections, the 

experiments were conducted for 16 different combinations 

between the GA and the local searches as shown in Table3. 

Table 2 shows experimental results obtained for four HSSP 

instances run with different compositions.  

For In1 of 45 task-locations, with the goal of minimising 

total distance, the S11 structure of the hybrid GA shows the best 

solution at around 111 km with the size of population = 60, Pc 

= 0.7, Pm = 0.1, P2OPT = 0.1, PEKN = 5 as well as INN enabled 

distance-units for In1 of 45 task-locations.  

For the higher scale of In2 with 65 locations, the S13 reveals 

superior solutions to its rival structures. The best solution gives 

181.5 distance-units of the fitness value when the size of 

population = 40, Pc = 0.5, Pm = 0.1, POPT = 0.1, PEKN = 5 with 

and INN enabled.  

The best output of In3 of 104 task locations is 326.9 km with 

the size of population = 60, Pc = 0.7, Pm = 0.1, POPT = 0.1, PEKN 

= 5 and INN enabled based on the S11.  

For a case study, the structure of S11 gives the best solution 

quality (minimum travelling distance) for In4 of the real case 

study tested when the size of population = 20, Pc = 0.7, Pm = 

0.1, POPT = 0.1 PEKN = 5 with INN enabled. 

Table 3 provides experimental results regarding the average 

of the total of distances (mean) and the standard deviation (SD). 

The results of each structure (a group of samples) on each 

instance obtained from 36 independent runs in varying 

parameter adjusting. As seen from Table 3, S11: 

GA+OPT+EKN+INN with all location searches are 

implemented into the GA gives the lowest mean of the fitness 

value at 117.5, 345.3, and 504.2 for In1, In3, and In4 

respectively. Besides, S13: GA +EKN+OPT+INN shows the 

best means at 203.62 km. for In2.  
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TABLE 2. BEST RESULTS OF INSTANCES 
 

Instance Structure Size of population Pc Pm POPT PEKN INN Distance 

In1 S11 60 0.7 0.1 0.1 5 Y 111 

In2 S13 40 0.5 0.1 0.1 5 Y 181.5 

In3 S11 60 0.7 0.1 0.1 5 Y 326.9 

In4 S11 20 0.7 0.1 0.1 5 Y 454.5 

TABLE 3. RESULTS OF THE STRUCRUES OF THE HYBRID GA FOR HSSP 

Designed structures of 

hybrid GA 

In1 In2 In3 In4 
%Improvement 

(A) 
Mean SD. Mean SD. Mean SD. Mean. SD. 

Distance   Distance   Distance   Distance   

S1:   GA 133.5 2.14 241.1 4.75 400.5 5.15 647.7 27.91   

S2:   GA +OPT 121.3 4.41 205.2 9.34 358.6 6.15 508.8 30.25 14 

S3:   GA +EKN 131.3 1.54 237.6 4.54 396.6 5.62 656.4 21.01 0.7 
S4:   GA +INN 119.9 5.1 211.9 4 347.7 10.31 655.6 18.09 8.6 

S5:   GA +OPT+EKN 121.5 4.8 203.8 7.91 357.4 11.58 506.8 28.78 14.2 

S6:   GA +OPT +INN 119.7 4.42 205.9 8.14 356.5 17.73 508.8 33.12 14.3 
S7:   GA +EKN +INN 120 4.55 210.3 2.89 358.5 11.89 660 14.14 7.9 

S8:   GA +EKN +OPT 121.31 5.63 204.55 7.26 346.2 14.11 528.37 40.27 14.1 

S9:   GA +INN+EKN 120.12 4.82 209.65 2.78 350.45 9.13 590.06 14.58 11.1 
S10: GA +INN +OPT 120.81 6.42 203.74 6.92 350.62 9.59 514.07 34.27 14.5 

S11: GA +OPT+EKN+INN  *117.5 2.56 204 8.33 *345.3 6.07 *504.2 36.07 15.8 

S12: GA +OPT+INN +EKN 118.64 6.13 204.68 7.21 346.5 12.99 539.31 33.87 14.1 
S13: GA +EKN+OPT+INN  120.21 6.07 *203.62 7.84 346.43 15.99 529.53 49.19 14.3 

S14: GA +EKN+INN+OPT 121.02 6.11 204.77 7.63 347.43 15.42 531.9 42.23 13.9 

S15: GA+INN+OPT+EKN  120.28 5.45 205.62 7.09 347.59 15.58 539.42 38.59 13.6 
S16: GA+INN+EKN+OPT 121.9 5.45 207.24 6.25 359.12 11.75 517.79 33.84 13.3 

TABLE 4. RESULTS OF THE CPU TIME FOR ALL INSTANCES 

Designed structures of hybrid GA 

  

The means of CPU time 

%
 I

n
c
r
e
a

si
n

g
 (

B
) 

In1 In2 In3 In4 

S1:   GA 45.7 79.3 195 44.1   
S2:   GA +OPT 56.8 102 244 51.4 23.6 

S3:   GA +EKN 47.2 89.5 233 49.9 12.3 

S4:   GA +INN 69.3 128 319 51.1 48.2 

S5:   GA +OPT+EKN 65.1 108 240 54.6 31.5 

S6:   GA +OPT +INN 72.7 129 322 53.9 52.3 

S7:   GA +EKN +INN 74.6 144 362 54 63.5 

S8:   GA +EKN +OPT 73.5 145 326 56.5 59.7 

S9:   GA +INN+EKN 74.6 148 335 57.4 63 

S10: GA +INN +OPT 69.1 139 308 52.9 51.1 

S11: GA +OPT+EKN+INN  78.2 145 361 58.6 68.1 

S12: GA +OPT+INN +EKN 78.4 147 371 57.3 69.5 

S13: GA +EKN+OPT+INN  78 146 363 57.2 67.7 

S14: GA +EKN+INN+OPT 78.4 147 367 56.8 68.6 

S15: GA +INN+OPT+EKN 78.2 146 367 56.8 68.2 

S16: GA +INN+EKN+OPT 74 139 346 52.9 58.7 

 

Even though HSSP is not a real-time problem required 

solving immediately, computational time is limited. The HHC 

providers want the planned schedule as soon as possible.  As 

mentioned before the CPU time is also extremely important for 

solving the HSSP. Table 4 illustrates experimental results 

concerning the means of the CPU time for all instances. 

The trade-off ratio between the percentage of improvement 

(A) in Table 3 and the percentage of the additional CPU time 

for execution in Table 4 (B) is summarised and shown on the 

boxplot in fig. 6 from S2 to S16. The ratio on the graph ranges 

between [0,1]. The difficulty for analysing the trade-off is the 

fact that when all local searches are employed, the hybrid GA 

can produce superior improvement, however they consume a 

considerable number of the additional CPU time for execution.  

 
Fig. 6. The trade-off ratio between %improvement (A) and %increasing of 

CPU time (B) compared to S1 (Higher is better) 

Concerning the ratio, the best structure is S2: GA+OPT, 

which provides the highest ratio approximately at 0.59 obtained 

from all instances. This structure is recommended to apply in 

more complicated issues for HHC service such as dynamic 

scheduling requiring the speed for execution. 

Table 5.1 – 5.4 show the optimal results of route scheduling 

with S2 structure of the hybrid GA for all instances where H is 

the homecare office location and unsch-tasks is jobs that cannot 

be included daily due to the time-slot constraint and the 

minimum cost.  The algebraic relationship for solving each 

instance is shown in fig. 7. 
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TABLE 5.1 THE OPTIMAL RESULTS OF ROUTE SCHEDULING 

WITH S2 STRUCTURE FOR INSTANCE 1 

In1 

Minimum cost 115.74 

CPUtime 6.39 s. 

Route 1 H >> T14 >> T35 >>T13 >> T34 >> T11 >>H 
Route 2 H >>T43 >> T25 >> T37 >> T19 >> T12 >>H 

Route 3 H >>T24 >> T39 >> T7 >> T6 >> T8 >>H 

Route 4 H >>T1 >> T22 >> T20 >> T38 >> T21>>H 
Route 5 H >>T28 >> T27 >> T42 >> T4 >> T3>>H 

Route 6 H >>T18 >> T17 >> T16 >> T15 >> T36>>H 

Route 7 H>>T23>>T30>>T9>>T29>>T10>>T33>>H 
Route 8 H >>T40 >> T31 >> T2 >> T32>>H 

Unsch-tasks H >>T5 >> T41 >> T26 >> T45 >> T44>>H 

 

 

TABLE 5.2 THE OPTIMAL RESULTS OF ROUTE SCHEDULING 

WITH S2 STRUCTURE FOR INSTANCE 2 

In2 

Minimum cost 208.39 

CPUtime 10.46 s. 
Route 1 H >>T53 >> T60 >> T26 >> T25 >> T43>>H 

Route 2 H >>T56 >> T28 >> T6 >> T39 >> T24>>H 

Route 3 H >>T10 >> T47 >> T27 >> T9 >> T23>>H 
Route 4 H >>T30 >> T64 >> T15 >> T20 >> T21>>H 

Route 5 H >>T37 >> T44 >> T38 >> T16 >> T36>>H 

Route 6 H >>T4 >> T5 >> T52 >> T7 >> T8 >>H 
Route 7 H >>T3 >> T45 >> T51 >> T40 >> T32>>H 

Route 8 H >>T34 >> T35 >> T14 >> T11 >> T13>>H 

Route 9 H >>T17 >> T18 >> T12 >> T63 >> T22>>H 
Route 10 H >>T50 >> T48 >> T29 >> T49 >> T33>>H 

Route 11 H >>T59 >> T46 >> T55 >> T19 >> T62>>H 

Route 12 H >>T1 >> T61 >> T31 >> T65 >> T2 >>H 
Unsch-tasks H >>T54 >> T57 >> T41 >> T42 >> T58>>H 

 

TABLE 5.3 THE OPTIMAL RESULTS OF ROUTE SCHEDULING 
WITH S2 STRUCTURE FOR INSTANCE 3 

In3 

Minimum cost 350.42 

CPUtime 23.11 
Route 1 H >>T97 >> T22 >> T1 >> T50 >> T24 >>H 

Route 2 H >>T14 >> T34 >> T79 >> T35 >> T87 >>H 

Route 3 H >>T23 >> T64 >> T41 >> T51 >> T56 >>H 
Route 4 H >>T7 >> T6 >> T8 >> T74 >>H 

Route 5 H>>T33>>T100>>T57>>T102>>T75>>T92>>H 

Route 6 H >>T61 >> T13 >> T71 >> T95 >> T11 >>H 
Route 7 H >>T62 >> T90 >> T66 >> T80 >> T2 >>H 

Route 8 H >>T89  >> T59  >> T55 >> T54 >> T70 >>H 

Route 9 H >>T94 >> T43 >> T44 >> T46 >> T82 >>H 
Route 10 H >>T49 >> T72 >> T36 >> T15 >> T63 >>H 

Route 11 H >>T20 >> T78 >> T86 >> T38 >> T21 >>H 

Route 12 H >>T77 >> T32 >> T40 >> T69 >> T103 >>H 
Route 13 H >>T83 >> T12 >> T19 >> T26 >> T25 >>H 

Route 14 H >>T67 >> T16 >> T17 >> T58 >> T88 >>H 

Route 15 H >>T10 >> T81 >> T9 >> T68 >> T30 >>H 
Route 16 H >>T37 >> T85 >> T99 >> T65 >> T84 >>H 

Route 17 H >>T3 >> T45 >> T31 >> T76 >> T73 >>H 
Route 18 H >>T27 >> T42 >> T5 >> T52 >> T96 >>H 

Route 19 H >>T98 >> T4 >> T93 >> T91 >> T53 >>H 

Route 20 H >>T39 >> T48 >> T28 >> T47 >> T29 >>H 
Unsch-tasks H >>T101 >> T60 >> T18 >> T104 >>H 

 

 

 

TABLE 5.3 THE OPTIMAL RESULTS OF ROUTE SCHEDULING 

WITH S2 STRUCTURE FOR INSTANCE 4 

In4 

Minimum cost 497.63 km. 

CPUtime 6.44 s. 

Route 1 H >>T35 >> T20 >> T42 >> T39 >> T18>>H 
Route 2 H >>T17 >> T4 >> T24 >> T37 >> T41>>H 

Route 3 H >>T22 >> T8 >> T16 >> T38 >> T29>>H 

Route 4 H >>T12 >> T13 >> T3 >> T21 >> T19>>H 
Route 5 H >>T5 >> T2 >> T30 >> T32 >> T36>>H 

Route 6 H >>T7 >> T15 >> T1 >> T9 >> T14>>H 

Route 7 H >>T10 >> T23 >> T11 >> T6 >> T34>>H 
Route 8 H >>T28 >> T33 >> T27 >> T31 >> T25>>H 

Unsch-tasks H >>T26 >> T40>>H 

 

 

Fig. 7. Average and best fitness vs generation of S2 over 4 datasets  
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5 CONCLUSION 

In this paper, a modified two-part chromosome 

representation is applied for encryption of the possible solutions 

involving s caregivers to offer homecare service for n patients. 

We also introduce a hybrid GA with three local searches 

including OPT, EKN and INN with the proper combination of 

strategy to enhance the performance of the original GA. Four 

instances consisting of two simulated cases; the adapted 

instance and the modified data of the case study were used to 

measure the performance of the proposed methods.  

Our empirical study reveals that the S11 gives the shortest 

service path with the total distance travelled by caregivers, 

compared to the original GA for three-four instances. 

Concerning the trade-off ratio between the percentage of 

improvement and the percentage of increased CPU time usage 

reveals that S2 employed OPT only is the most suitable 

structure of the hybrid GA due to the greatest ratio. 

This paper provides a potential basis for future research. On 

the one hand, we can continue to consider other details for HHC 

service such as dynamic scheduling and the requirement of 

multiple caregivers. This brings the model closer to the HHC 

practical activities. On the other hand, we may also try to design 

different algorithms such as clustering algorithms and parallel 

computing to obtain the optimal solution. 
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