
 

UWS Academic Portal

Composition of languages embedded in Scala

Haeri, Hossein; Keir, Paul

Published in:
Proceedings of the 2019 Federated Conference on Computer Science and Information Systems

Accepted/In press: 26/06/2019

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Haeri, H., & Keir, P. (Accepted/In press). Composition of languages embedded in Scala. In Proceedings of the
2019 Federated Conference on Computer Science and Information Systems IEEE.

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/227579761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://uws.pure.elsevier.com/en/publications/de37ed69-be80-433d-8305-0c379a461981


© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work 
in other works.



Composition of Languages Embedded in Scala
Seyed H. HAERI (Hossein)

Université catholique de Louvain, Belgium
hossein.haeri@ucl.ac.be

Paul Keir
University of the West of Scotland, UK

paul.keir@uws.ac.uk

Abstract—Composition is amongst the major challenges faced
in language engineering. Erdweg et al. offered a taxonomy
for language composition. Mernik catalogued the use of the
Language Definitional Framework LISA for composition sorts
in that taxonomy. We produce a similar catalogue for embedded
language engineering in Scala.

We begin with techniques that are not specific to Scala. They
are applicable in any host language with a module system and
support for higher order functions. We, then, present two more
techniques to examine Scala-specific language engineering. Inter-
estingly enough, even though dealing with embedded languages,
in terms of lines of code, our material is of comparable length
to its LISA counterpart. Our work lends insight into Scala’s
serviceability for composition, as a host for embedded language
engineering.

I. INTRODUCTION

a) Language composition is a piece of reality!: Every-
day, there are new programming languages that are born by
combining ideas from older languages. Inspiration aside, that
is an act of composition in many cases. For example, roughly
put, Scala adds functional programming and ML modules with
mixin composition to Java; which, in return, is C++ without
pointers; which, in return, is C with OOP.

The taxonomy of Erdweg et al. [8] suggests a terminology
and a formalism for describing such compositions. According
to them, one can formalise our Scala description as:

Scala u C C C++ B Java C (MLModule ]Mixin) (1)

b) Observations from Chemistry: Consider the reaction:

H2SO3 + 2×NaOH −→ 2×H2O +Na2SO3 (2)

In Chemistry, two key ingredients for success in the study of
such equations are: (CI1) the availability of substances as the
subjects of study, and, (CI2) knowledge about how to perform
a desirable composition. In reaction (2), for instance, both
substances H2SO3 and NaOH need to be available. One also
needs to know how to double NaOH for the equation balance
to be right. Also, how to add NaOH to H2SO3 (like the rate
of addition, proper temperature, etc.) needs to be known.

c) Programmatic Availability & Composition: The study
of formulae like equation (1) determines the precise relative
position of languages. Using the outcome, one would be able
to add, for example, what is missing in equation (1) so that
the “u” can be replaced by an “=”. One would also gather
that the left-out “FP]” is necessary right before MLModule
for the balance to be right. Such manipulations are similar

to adjusting coefficients in reaction (2) to obtain a balance.
Similar to Chemistry, two key ingredients become noticeable
here: (PLI1) programmatic availability of programming lan-
guages themselves and their belongings as the subjects of
study, and, (PLI2) knowledge about how to programmatically
obtain desirable language compositions.

By the time of this writing, (mainstream) languages are
next to inaccessible as programmatic entities. The study of
programmatic language composition, nonetheless, can be con-
ducted independently using, say, contrived languages. That is
how this paper tries to gain (PLI2).

d) Contributions: We demonstrate three techniques for
composing languages embedded in Scala. The first (Section II)
is applicable in any host language with a module system and
support for higher order functions. The second (Section III)
is based on Lightweight Modular Staging (LMS) [32]. And,
the third – which is also a new solution to the Expression
Problem (EP) [5], [30], [39] – employs (possibly restricted)
abstract types. The trick in our third technique is promoting the
cases of Algebraic Data Types (ADTs) into their own ADT-
parameterised standalone components. We showcase each
technique using the example compositions of Mernik [19].
We, then, compare the three techniques for their success in
addressing the EP concerns (Section V). A discussion about
the related work also comes at Section VI.

e) Coding Conventions: This paper assumes familiarity
with Scala. For each showcase, the syntax and semantics
come in separate packings called syntax and semantics,
respectively. Due to space restrictions, in our code, the name
of the showcase is only appended as a comment to the end
of the first line of the respective syntax or semantics.
For the same reason, our code is also otherwise unusually
compressed. Whilst the showcases are referred to in the prose
in CamlCase, their respective Scala package (containing the
showcase’s syntax and semantics) is named like_this

or abbreviated as lt.

II. SCALA-UNSPECIFIC

Erdweg et al. catalogue five different ways languages can be
composed: language extension, language restriction, language
unification, self-extension, and extension composition. Mernik
offers simple DSLs to showcase those ways in LISA. In
this section, we employ Mernik’s simple DSLs for the same
purpose, albeit in Scala.

mailto:hossein.haeri@ucl.ac.be
mailto:paul.keir@uws.ac.uk


A. Language Extension
A base language B is said to be extended to a language

E when the description of B is amended with a description
fragment to get E. Erdweg et al. denote that by B C E.
Consider the language Robot below (packaged under the name
robot in Scala) for a robot arm that takes commands for
moving one unit to either of the four 2D directions. The
semantics of Robot involves updating the arm’s position

(recorded in terms of the x and y coordinates) based on the
commands (lines 11 to 16).

1 object syntax {//robot
2 class Command
3 case object Left extends Command
4 case object Right extends Command
5 case object Up extends Command
6 case object Down extends Command
7 case class Commands(s: Seq[Command])}
8 object semantics {import syntax._//robot
9 class Position(var x: Int, var y: Int)

10 object position extends Position(0, 0)
11 def locate: Command => Unit = {
12 case Left => position.x -= 1
13 case Right => position.x += 1
14 case Up => position.y += 1
15 case Down => position.y -= 1}
16 def locate(cs: Commands) = cs.s.foreach(locate) }

Robot is extended to RobotTime (the robot_time package)
by adding to the semantics, i.e., Robot C RobotTime:

1 package robot_time
2 import robot._; import syntax._
3 def time(cs: Commands): Int = cs.s.length

Assuming that executing each command takes one time unit,
the total time required for a set of commands is the size of
the set. The method time in line 3 above adds that piece of
semantics to Robot to get RobotTime. whereas Commands(

Right, Down, Down) in Robot has only got the semantics
x = 1, y = −2, it also has the semantics t = 3 in RobotTime.
(The coordinates are obtained by locate in line 16 of robot
and the timing by line 3 of robot_time.)

Here is a difference between our implementation of Robot-
Time and that of Mernik: The latter is done in LISA: a Lan-
guage Definitional Framework (LDF) that combines OOP with
Attribute Grammars [17], [28]. As such, LISA’s counterpart
for time has to visit all the grammatical rules in Robot to
attribute the new piece of semantics to them. On the contrary,
Scala gave us the joy of simply equating time by the number
of the commands, regardless of the grammatical rules involved.

B. Language Restriction
A base language B is said to be restricted to a language

R when certain parts of the B’s features are removed upon
transition to R. This is denoted by B B R. A typical usage
of that is when a language is narrowed to a core of it. That is,
certain parts of the base syntax are cancelled into combinations
of other base syntactic parts that are deemed to be equivalent.
For example, both GPH [37] and Utrecht HASKELL [7] are
developed like that.

The language RobotPositive below (packaged under
robot_positive) restricts Robot to only Up and Right

commands. (Technically, the object syntax below is not
required. Yet, we retain it for completeness.)

1 object syntax {//robot_positive
2 import robot.syntax.{Right, Up, Commands}}
3 object semantics {//robot_positive
4 import robot.syntax.{Right, Up, Commands}
5 import robot.semantics.position
6 def locate(cs: Commands) {for(c <- cs.s) c match {
7 case Right => position.x += 1
8 case Up => position.y += 1 } } }

Any attempt to use the expression in the previous section
under RobotPositive will fail to compile for the availability
of Down in it, which is absent in RobotPositive. On the other
hand, Commands(Right, Up, Up) has the semantics x =
1, y = 2 under RobotPositive.

C. Language Unification

Erdweg et al. say two languages L1 and L2 are unified
to L when both L1 and L2 make sense independently from
one another and from L (as the composition’s outcome).
Furthermore, in L, neither L1 nor L2 should be dominated
by the other so that a concept of equity prevails in the
composition. The notation is L = L1 ]g L2, where g is the
so-called glue code required for the composition.

Having seen the language Robot, we now consider the
language ExprAdd (packaged under expr_add): a simple
ADT with two cases for natural numbers and addition.

1 object syntax {//expr_add
2 class Expr {//Expr ::= Expr + Term | ...
3 def + (t: Term): Expr = Add(this, t) }
4 class Term extends Expr//Expr ::= ... | Term
5 case class Num(n: Int) extends Term//Term ::= n
6 case class Add(left: Expr, right: Term) extends Expr}
7 object semantics {import syntax._//expr_add
8 def value: Expr => Int = {
9 case Num(n) => n

10 case Add(e, t) => value(e) + value(t)} }

Using value in line 8 above, one obtains the semantics 5,
12, and 6 for the expressions Num(5), Num(10)+ Num(2),
and Num(1)+ Num(2)+ Num(3), respectively.

The language RobotUniExprAdd below (packaged under
robot_uni_expr_add) unifies Robot and ExprAdd by
allowing the robot arm to take commands for moving
as many units to either of the four directions as the
corresponding ExprAdd argument evaluates to. As such,
Commands(Right(Num(5)), Up(Num(2)+ Num(10)),

Up(Num(2)+ Num(2)+ Num(2)), Down(Num(4))) has
the semantics x = 5, y = 14. Check locate in line 11 below.

1 object syntax {//robot_uni_expr_add
2 import robot.syntax.Command; import expr_add.syntax._
3 case class Left(e: Expr) extends Command
4 case class Right(e: Expr) extends Command
5 case class Up(e: Expr) extends Command
6 case class Down(e: Expr) extends Command}
7 object semantics {//robot_uni_expr_add
8 import robot.{syntax.Commands, semantics.position}
9 import robot_uni_expr_add.syntax._

10 import expr_add.semantics._
11 def locate(cs: Commands) {for(c <- cs.s) c match {
12 case Left(e) => position.x -= value(e)
13 case Right(e) => position.x += value(e)
14 case Up(e) => position.y += value(e)
15 case Down(e) => position.y -= value(e)} } }



D. Self Extension

This is the situation when the description of a language L
itself is used for extending it. Typically, embedded DSLs self-
extend their host language. For example, all the languages we
present in this paper self-extend Scala.

Like Mernik, we believe that demonstrating self extension
takes much more than the volume of a single research paper.
This is because bootstrapping a language L to the level where
it can handle self extension is already more involved than that
volume. Hence, we too drop demonstration of self extension.

E. Extension Composition

Extension composition is when (both or at least one of) the
language descriptions that are to be composed are themselves
compositions of other language descriptions. As such, exten-
sion composition can be regarded as higher order composition.
Six combinations of extension and unification are possible
(three distinguished by Mernik):

1) Double-Unification (]]): L1 ]g (L2 ]h L3).
2) Double-Extension (CC): B C E1 C E2.
3) Extension by a Unification (C (])): B C (L1 ] L2).
4) Extension of a Unification ((]) C): (L1 ] L2) C E.
5) Unification with an Extension ({], (C)}): L] (B C E)

or (B C E) ] L. Note the symmetry.
We now consider each combination.

1) Double-Unification (]]): To that end, we begin by
presenting Mernik’s language Dec (packaged under dec) in
Scala. Dec enables the programmer to bind a set of variables
to integer constants.

1 object syntax {//dec
2 case class ConstDefList(ds: Map[String, Int]) }

Unsurprisingly, the (Scala-automatic) semantics of ConstD-
efList("a" -> 5, "b" -> 10) is then {a 7→ 5, b 7→ 10}.

With that, we illustrate the first class of Mernik’s exten-
sion compositions using RobotUniExprAddUniDec (packaged
under rueaud). As suggested by its name, this language is
(Robot]ExprAdd)]Dec. The Robot]ExprAdd portion is al-
ready presented. See robot_uni_expr_add in Section II-C.
We now show how to obtain the remaining unification.

1 import expr_add.syntax.{Expr, Term}
2 object syntax {//rueaud
3 import robot.syntax.Commands; import dec.syntax._
4 implicit class CDLInCs(val cdl:ConstDefList) {
5 def in (s: Commands) = {
6 consts = cdl.ds; new EnvComm(cdl.ds, s) } }
7 class EnvComm(val ds: Map[String, Int],
8 val cs: Commands)
9 var consts: Map[String, Int] = Map()

10 case class Var(n: String) extends Term}
11 object semantics {//rueaud
12 import syntax._; import robot_uni_expr_add.syntax._
13 import robot.semantics._
14 def value_ext: (Expr, Expr => Int) => Int = {
15 case (Var(n), c) => consts(n)
16 case (e, c) =>
17 expr_add.ext_semantics.value_ext(e, c)}
18 def value(e: Expr): Int = value_ext(e, value)
19 def locate(r: EnvComm) {r.cs.s.foreach {
20 case Left(e) => position.x -= value(e)
21 case Right(e) => position.x += value(e)
22 case Up(e) => position.y += value(e)
23 case Down(e) => position.y -= value(e)} }

rueaud.syntax aims at reusing the former language
descriptions as they are. To that end, it takes a pimp my
library approach [22] on trying to implicitly (lines 4 to
8 above) give instances of dec.ConstDefList the extra
feature of being followed by commands possibly referring to
the declarations. Such declarations followed by expressions
are then instances of EnvComm. The variable consts (line 9)
is where the processed declarations are stored. The new ADT
case Var (line 10) is for looking up the value a name is bound
to. rueaud legitimises commands for moving the robot arm
as many units as a pertaining expression evaluates to (lines 20
to 23). Note that, because of Var, those expressions can refer
to declarations as well. All that together gives ConstDefList
("a" -> 5, "b" -> 10)in Commands(Right(Var("

a")), Up(Num(2)+ Var("b")), Down(Num(4))) the
semantics x = 5, y = 8 in RobotUniExprAddUniDec.

Instead of reusing expr_add.semantics.value, the
rueaud.semantics.value method uses the method
expr_add.ext_semantics.value_ext, which will be
explained shortly. This is because the former is closed on
the set of ADT cases it can handle. Hence, we resort to the
following extensible semantics of ExprAdd:

1 object ext_semantics {import syntax._
2 def value_ext: (Expr, Expr => Int) => Int = {
3 case (Num(n), c) => n
4 case (Add(e, t), c) => c(e) + c(t)}
5 def value(e: Expr): Int = value_ext(e, value)}

In the fashion of γΦC0 [13], value_ext above takes a
continuation argument c (line 2), which caters postponing
the closing time until the appropriately complete shape [16]
of the ADT is known (line 5 above for expr_add and
line 18 for rueaud). As such, extending RobotUniExprAdd
to RobotUniExprAddUniDec here involves manipulating the
former. See Section V for more.

2) Double-Extension (CC): The idea in RobotTimeSpeed
below (packaged under robot_time_speed) is to enable
the user to instruct the robot arm with the speed for its
subsequent moves, until further notice. It adds a pertaining
command to RobotTime to obtain Robot C RobotTime C
RobotTimeSpeed.

1 object syntax {//robot_time_speed
2 import robot.syntax.Command
3 case class Speed(i: Int) extends Command}
4 object semantics {//robot_time_speed
5 import syntax._; import robot.syntax.{Command, Commands}
6 import robot.semantics.position
7 def locate: Command => Unit = {
8 case Speed(_) => {}
9 case c => robot.semantics.locate(c)}

10 def locate(cs: Commands) = cs.s.foreach(locate)
11 var speed: Double = 1.0
12 def time(cs: Commands): Double = {
13 var sum: Double = 0.0; for(c <- cs.s) c match {
14 case Speed(i) => speed = i
15 case _ => sum += (1.0 / speed)}
16 sum} }

The new command for altering speed is Speed in line 3
above. This new command has no impact on the arm’s
position, as manifested in line 8. It is in the time calculation
where, once used, the related variable (i.e., speed in line 11)
is updated accordingly (line 14) and taken into consideration



for subsequent commands (line 15). Commands(Up, Speed

(2), Right, Left) has the semantics x = 1, y = 0, t = 2
in RobotTimeSpeed.

3) Extension by a Unification (C (])): We now demon-
strate RobotExtExprAddUniDec = Robot C (ExprAdd]Dec).
We begin by ExprAddUniDec (packaged under eaud):

1 import expr_add.syntax._
2 object syntax {import dec.syntax._//eaud
3 class EnvExpr(val ds: Map[String, Int], val e: Expr)
4 implicit class CDL2CDLInE(val cdl: ConstDefList) {
5 def in (e: Expr) = {
6 consts = cdl.ds; new EnvExpr(cdl.ds, e)} }
7 var consts: Map[String, Int] = Map()
8 case class Var(n: String) extends Term}
9 object semantics {//eaud

10 import syntax._; import dec.syntax._
11 def value_ext: (Expr, Expr => Int) => Int = {
12 case (Var(n), c) => consts(n)
13 case (e, c) => expr_add.ext_semantics.value_ext(e, c)}
14 def value(e: Expr): Int = value_ext(e, value)
15 def value(ee: EnvExpr): Int = value(ee.e)}

eaud is similar to rueaud in Section II-E1 and we drop fur-
ther explanation. RobotExtExprAddUniDec below (packaged
under reeaud) tries to make use of eaud.

1 object syntax {//reeaud
2 import dec.syntax._; import robot.syntax.Commands
3 class EnvComm(val ds: Map[String, Int],
4 val cs: Commands)
5 implicit class CDL2CDLInC(val cdl: ConstDefList) {
6 def in (s: Commands) = {
7 consts = cdl.ds; new EnvComm(cdl.ds, s)} }
8 var consts = eaud.syntax.consts}
9 object semantics {import robot.semantics.position//reeaud

10 import robot_uni_expr_add.syntax._
11 import eaud.semantics.value; import syntax._
12 def locate(r: EnvComm) { r.cs.s.foreach {
13 case Left(e) => position.x -= value(e)
14 case Right(e) => position.x += value(e)
15 case Up(e) => position.y += value(e)
16 case Down(e) => position.y -= value(e)} } }

Here are the few idiosyncrasies of reeaud: Firstly, reeaud
fails to reuse most of the syntactic facilities of eaud.

This is because the former employs declarations followed
by commands, whereas the latter employs declarations fol-
lowed by expressions. In line 8, nevertheless, consts is
reused. Secondly, even though RobotExtExprAddUniDec =
Robot C . . . , in reeaud.semantics, we do not reuse
robot.syntax. On the contrary, in line 10, it reuses the
syntax of robot_uni_expr_add (for RobotUniExprAdd).
This is because, in Robot, it is only possible to move the
arm one unit to either direction. The Scala syntax for those
two pieces of (embedded) syntax cannot coexist side by side.
See Section III-A2 for more.
reeaud.semantics.locate is similar to rueaud

.semantics.locate. In RobotExtExprAddUniDec,
ConstDefList("a" -> 5, "b" -> 10)in Commands(

Right(Var("a")), Up(Num(2)+ Var("b")), Down(

Num(4))) has semantics x = 5, y = 8.
As pointed out by Mernik, so long as functional-

ity is the only concern, RobotUniExprAddUniDec ≡
RobotExtExprAddUniDec. The difference, both in LISA and
Scala, is in the language descriptions, and the combinations by
which they are obtained. Unlike its LISA counterpart, nonethe-
less, obtaining RobotExtExprAddUniDec in Scala involves
intermediate material that is not reused in the final product.

4) Extension of a Unification ((]) C): RobotUniExprAd-
dExtRobotTime below (packaged under rueaert) extends
RobotUniExprAdd (Section II) by a timing facility. The time
required for carrying out a command of moving in one direc-
tion equals what the pertaining expression evaluates to (lines 7
to 10). The method time below is a simple fold operation on
the given sequence of commands, based on that explanation.
RobotUniExprAddExtRobotTime = (Robot ] ExprAdd) C
RobotTime.

1 object syntax {//rueaert
2 import robot_uni_expr_add.syntax._ }
3 object semantics {import expr_add.semantics._//rueaert
4 import robot.syntax.Commands
5 import robot_uni_expr_add.syntax._
6 def time(cs: Commands): Int = (0 /: cs.s){
7 case (s, Left(e)) => s + value(e)
8 case (s, Right(e)) => s + value(e)
9 case (s, Up(e)) => s + value(e)

10 case (s, Down(e)) => s + value(e)} }

Commands(Right(Num(5)), Up(Num(2)+ Num(10)),

Up(Num(2)+ Num(2)+ Num(2)), Down(Num(4))) has
the semantics x = 5, y = 14, t = 27 in rueaert.

5) Unification with an Extension ({], (C)}):
Take RobotUniExprMul = Robot ] ExprMul, where
ExprAdd C ExprMul. The language ExprMul extends
ExprAdd by a new ADT case for multiplication (Mul).
What is unique about ExprMul amongst the visited extension
combinations is that, upon extension, it changes the syntactic
categories of the ADT cases it borrows from ExprAdd.
(And, in fact, it also provides a new syntactic category, i.e.,
Factor.) As presented in Section III-B, this can impose
a great deal of complexity when language extension is
implemented using inheritance. Here is ExprMul (packaged
under expr_mul).

1 import expr_add.syntax.{Expr, Term, Add}
2 object syntax {//expr_mul
3 class Factor extends Term//Term ::= Factor | ...
4 implicit class TermTimesFactor(val t: Term) {
5 def * (f: Factor): Term = Mul(t, f)
6 }//Term ::= ... | Term * Factor
7 case class Num(n: Int) extends Factor//Factor ::= n
8 case class Mul(left: Term, right: Factor) extends Term }
9 object semantics {import syntax._//expr_mul

10 import expr_add.ext_semantics.{value_ext => add_value}
11 def value_ext: (Expr, Expr => Int) => Int = {
12 case (Num(n), c) => n
13 case (Add(e, t), c) => add_value(Add(e, t), c)
14 case (Mul(t, f), c) => c(t) * c(f)}
15 def value(e: Expr): Int = value_ext(e, value)}

In line 1, ExprMul imports the syntactic entities it borrows
from ExprAdd: the ADT case Add and the syntactic categories
Expr and Term. It then introduces its new syntactic category
Factor in line 3. Next, in lines 4 to 6, it provides the syntactic
sugar for multiplication. Note how it, afterwards, declares
numbers to now be of the category Factor – as opposed to
Term in expr_add.syntax. The rest of expr_mul should be
straightforward except for the Scala syntax of line 10. Those
lines abbreviate expr_add.ext_semantics.value_ext to
add_value in expr_mul.semantics. In line 13, expr_mul
reuses add_value for the solo ADT case that it borrows from
expr_add, i.e., Add.

1 object syntax{import expr_mul.syntax._//robot_uni_expr_mul



2 import robot.syntax.Command; import expr_add.syntax.Expr
3 case class Left (e: Expr) extends Command
4 case class Right(e: Expr) extends Command
5 case class Up (e: Expr) extends Command
6 case class Down (e: Expr) extends Command}
7 object semantics {import syntax._//robot_uni_expr_mul
8 import robot.{syntax.Commands, semantics.position}
9 import expr_mul.semantics._

10 def locate(cs: Commands) = cs.s.foreach {
11 case Left(e) => position.x -= value(e)
12 case Right(e) => position.x += value(e)
13 case Up(e) => position.y += value(e)
14 case Down(e) => position.y -= value(e)} }

The above implementation of RobotUniExprMul (packaged
under robot_uni_expr_mul) takes tightly after RobotUni-
ExprAdd (in Section II-C). We, therefore, do not provide
a dedicated walk-through. Commands(Right(Num(5)* Num

(2)), Down(Num(4)+ Num(2)* Num(3))) has the seman-
tics x = 10, y = −10 in robot_uni_expr_mul.

F. Language Specific?
To investigate the extent to which Scala-specific language

features impact upon our design, we intend also to com-
pare against realisations in other languages. To this end, we
have prepared a C++ implementation which adopts the Scala
approach outlined so far. Respecting the dynamic polymor-
phism of the Scala original, the C++ implementation utilises
shared_ptr smart pointer to manage the memory allocation
and runtime typing of expressions; allowing the vector

container member object of the Commands class to store
different expression types. User-defined integral and string
literals also allow a notably concise syntax for the Num and Var
instantiations; e.g., Commands{Right{"a"_s}, Up{2_n +

"b"_s}, Down{4_n}}. Future work will explore this further.

III. LMS-BASED

LMS is the technique Scala puts forward for solving EP.
The essence of LMS is the use of Scala traits for extensibility
and super calls for reuse. With their mixin nature, Scala traits
can extend one another, enjoying the benefits of inheritance.
In particular, an ADT can be inherited upon trait extension.
But, the heir trait can also add its own new ADT cases. On
top of that, super calls enable reusing methods on the cases
of the original ADT. Whereas the new cases can be handled
by the same method, albeit overridden by the heir trait.

In the package eaud below (for ExprAddUniDec), for
implementing both the syntax and semantics, traits are used
– as opposed to objects in Section II. Instead of importing
members from other languages, it now extends those other
languages to acquire the same members via inheritance. In
Scala terms, eaud.syntax is, for instance, said to be mixing
in expr_add.syntax and dec.syntax, in line 1 below.

In line 4, then, eaud.semantics overrides value. In
line 5, it handles the new ADT case eaud.syntax introduces.
All those other ADT cases that eaud inherits are, in line 6,
relayed to the upper levels of inheritance.

1 trait syntax extends expr_add.syntax with dec.syntax {
2 ... /* like eaud.syntax in Section II-E3 */ ...}
3 trait semantics extends syntax with expr_add.semantics {
4 override def value: Expr => Int = {
5 case Var(n) => consts(n)
6 case e => super.value(e)} ...}

This is how LMS facilitates both simplicity and extensibility.
(Note that we needed not to resort to value_ext.)

LMS has been successfully employed for languages in a
multitude of applications. For the benefits of LMS, the reader
is invited to consult those works. Given that we did not come
to observe new benefits, we will not get into that here. We
rather dedicate this section to the difficulties we faced over
employing LMS for embedded language composition.

A. Minor Difficulties
The two categories of minor difficulties we faced relate

to language restriction (Section III-A1) and clashes occurred
between names upon composition (Section III-A2).

1) Language Restriction: Upon extension, the programmer
is usually provided with no means for acting selectively on the
members to be inherited. When mixing traits too, all the (pub-
lic or protected) members get inherited automatically. Hence,
with inheritance being the means for language composition,
language restriction is not possible. That enforces import as
the fallback. With the use of traits, the mechanics is, however,
more involved than Section II. Because traits are abstract, one
needs to materialise them first (line 2 below), and only then,
they can be imported from (line 2).

1 trait syntax/* robot_positive */{val robosyn = new robot.
2 syntax {};import robosyn.{Right, Up, Command, Commands}}

Even though LISA also employs inheritance for language
composition, this difficulty does not arise there. The reason
is as follows: Being also an Attribute Grammars system,
(subject) language semantics is specified in LISA by travers-
ing the concrete syntax. On the other hand, leveraging its
OOP, LISA allows the heir language to override the parent
language’s concrete syntax. As a result, language restriction
is also possible in LISA via inheritance.

One final related comment: In our experience, enforced
imports like those required for language restriction were not
exclusive to that way of language composition. In fact, in
a good number of other occasions, the languages do make
selective use of one another. That, on its own, was not a knotty
problem. It, however, requires increasingly more care when
it comes to interplay with hierarchies of languages and the
relevant Scala mixins.

Note that imported names (like those in line 2 above)
do not get inherited but the respective materialised traits
(like robosyn in line 2 above) do. Such imports can be
required on several occasions down the hierarchy. In the case
of unification, however, where the multiple inheritance nature
of mixins is employed, an extra override might also be
enforced to disambiguate duplicated names across the meeting
two hierarchies. See Section III-B for more.

2) Name Clash: Recall from Section II-E3 that
RobotExtExprAddUniDec = Robot C (ExprAdd ] Dec). In
an LMS-based implementation of RobotExtExprAddUniDec,
therefore, one would naturally want to implement rueaud.
semantics as follows:

1 trait semantics extends rueaud.syntax with
2 robot.semantics with eaud.semantics {//rueaud
3 ... /* locate like Section II-E1 */ ...}



That is, however, not possible. The error message is: “object
Left is not a case class, nor does it have an unapply

/unapplySeq member.” The problem is that, even though
Left is inherited from robot, in locate, Scala would not be
able to match it using the syntax Left(e). The available con-
structor and extractor of Left take no arguments. Moreover,
overloading that syntax is not possible. This is because Scala
desugars both case classes and case objects to objects with
unapply (or unapplySeq) methods. Objects, on the other
hand, are final, banning any later manipulation. To proceed,
one needs to use robot_uni_expr_add.semantics in re-
turn of robot.semantics.

The problem is harder to diagnose for RobotUni-
ExprAddExtRobotTime. Recall from Section II-E4 that
RobotUniExprAddExtRobotTime = (Robot ] ExprAdd) C
RobotTime. For the attempt

1 trait semantics extends rueaert.syntax with
2 robot_uni_expr_add.semantics with
3 robot_time.semantics {... /* rueaert */ ...}

even when one employs robot_uni_expr_add.semantics
instead of robot.semantics, one gets an error – this time,
regarding the composition itself: “overriding object Left in
trait syntax; object Left in trait syntax cannot override final
member.” The problem here is with robot_time being an
extension to robot, bringing the case object Left into the mix
with that of robot_uni_expr_add that takes an argument.

B. Major Difficulties

The difficulties we spoke about in the previous subsection
were not particularly acute in that not many circumvention
attempts would fail for them. In this section, we will report
a multi-staged combat with an acute difficulty we faced. In
short, the combat was against the combination of Scala’s path-
dependant typing and intervention of concrete syntax.

The contents of this section might look too specific to Scala.
They are not. Scala’s path-dependant typing is just one way
to foster family polymorphism [9] (as opposed to lightweight
family polymorphism [33]). The familiar reader will figure
out that the same problem is likely to emerge in every host
language that embraces family polymorphism.

Given that ExprMul is a direct extension to ExprAdd, one’s
first guess would be:

1 trait expr_mul.syntax extends expr_add.syntax {...}

That is, however, not possible because, then, Num cannot be
overridden. Recall from Section II-E5 that ExprMul changes
the syntactic category of Num. But, even an attempt like those
in Section III-A1 for the syntax

1 trait syntax {val easyn = new expr_add.syntax {}//expr_mul
2 import easyn.{Expr, Term, Add} /* Num, Factor, etc. */}

would still cause failure for the semantics.
1 trait expr_mul.semantics extends syntax with
2 expr_add.semantics {...}

Here is the error message: “overriding object Num in
trait syntax; object Num in trait syntax cannot override final
member.” This is because of the clash between the Num of

such a expr_mul.syntax and expr_add.semantics. See
Section III-A2 for an explanation on similar error messages.

Now, let us suppose for the sake of argument that the
semantics too selectively imports the ADT cases:

1 trait semantics {//expr_mul
2 val emsyn = new expr_mul.syntax {}
3 import emsyn.{Num, Mul, Factor}
4 val easyn = new expr_add.syntax {}
5 import easyn.{Expr, Add, Term}
6 ... /* value or value_ext here */ ...}

Recall that ExprMul adds the ADT case Mul to ExprAdd.
To reuse – à la LMS – the ExprAdd semantics whilst also
handling the new ADT case, one may (mistakenly) try:

1 override def value: Expr => Int = {
2 case Mul(t, f) => value(t) * value(f) ...}

But, that will not type-check because of path-dependant
typing interference: Expr in value’s signature is different
from Expr that Mul inherits from. Here is the error mes-
sage for line 2 above: “constructor cannot be instantiated
to expected type; found: semantics.this.emsyn.Mul re-
quired: semantics.this.Expr.” Even worse: An attempt for
reusing the semantics of the only ADT case that remains intact
over the move from ExprAdd to ExprMul using value_ext

1 trait semantics {...//expr_mul
2 import easem.{value_ext => add_value}
3 def value_ext: (Expr, Expr => Int) => Int = {
4 case (Num(n), c) => n
5 case (Add(e, t), c) => add_value(Add(e, t), c)
6 case (Mul(t, f), c) => c(t) * c(f)} }

will again fail due to path-dependant typing. The error message
for line 5 above is: “type mismatch; found: semantics.this
.easyn.Add required: semantics.this.easem.Expr.”

Given that expr_mul.semantics is to reuse pattern
matching of expr_add.semantics, the former is also bound
to the types – here , ADT cases – of the latter. In order to
prevent the path-dependant clashes, thus, the only way forward
seems to be for both expr_mul.syntax and expr_mul.

semantics to import types of expr_add.semantics. This
is, of course, very unnatural for the former.

1 trait syntax {//expr_mul
2 val easem = new expr_add.semantics {}
3 import easem.{Expr, Term, Add}; ...}
4 trait semantics extends syntax {//expr_mul
5 import easem.{Expr, Add, value_ext => add_value};...
6 def value_ext: (Expr, Expr => Int) => Int = {
7 case (Num(n), c) => n
8 case (a: Add, c) => add_value(a, c);...} ...}

Still, if not done craftily enough, path-dependant typing can
be an impediment. Replacing the line 8 above with
case (a @ Add(_, _), c)=> add_value(a, c)

will fail to type-check because a is considered to be of type
this.Add; whereas, add_value accepts an easem.Expr.
The unsightly circumvention would be:
case (a @ Add(_, _), c)=> add_value(a.

asInstanceOf[easem.Expr], c.asInstanceOf[easem

.Expr => Int]).
We would like to remind that all the difficulties illus-

trated in this section were only experienced in the presence
of manipulation in the syntactic categories upon extension.



value: Expr => Int
expr_add{Num, Add}, eaud{Num, Add, Var},

expr_mul{Num, Add, Mul}
locate: Command => Unit (without e)
robot{Right, Left, Up, Down},

robot_positive{Right, Up}
locate (with (e))
in reeaud: EnvComm => Unit
in robot_uni_expr_add: Commands => Unit
in rueaud: EnvComm => Unit
in robot_uni_expr_mul: Commands => Unit
EnvComm
reeaud, rueaud

Fig. 1: Repeated Entities in Sections II and III

Syntactic categories are often used for dealing with concrete
syntax. Semantics, on the other hand, inputs abstract syntax.
The following section presents a solution that disassociates
concrete syntax from abstract syntax. It applies the LMS at
the abstract syntax level, and, hence, independently of the
concrete syntax that varies across languages. That design sets
the different languages free on engineering their syntactic
categorisation whilst enjoying the benefits of LMS.

IV. REFACTORING

The previous two sections were developed as if the guest
language implementer was not aware in advance of the next
guest languages and the upcoming combinations. We also
maintained a backward compatibility policy in that we did
not touch the older languages as we proceeded. Refactoring,
however, is common in everyday software development.

Refactoring can have a variety of meanings, depending on
the target and the methods used. In this paper, we do not plan
extensive refactoring. We only focus on avoiding repetition.
Fig. 1 lists a number of repetitions in the previous sections.

We notice that the method value is repeated in expr_add

, eaud, and expr_mul. More precisely, the ADT cases Num

and Add – which are, basically, inherited from expr_add –
are handled thrice in the codebase. As will be shown in this
section, we gave value its own abstraction.

We also notice that the method locate is present in two
sets of language descriptions: in (i) robot and robot_posit

-ive (when the four direction commands do not take
arguments); and, in (ii) reeaud, robot_uni_expr_add,
rueaud, and robot_uni_expr_mul (when the four direction
commands do take arguments). Each of those sets constitutes
a candidate for refactoring. Finally, EnvComm is common
between reeaud and rueaert – constituting yet another
refactoring candidate. Although we have indeed refactored the
candidates of this paragraph as well, we will not include their
demonstration in this paper. The interested reader can look
them up in our online codebase.

Let us now focus on refactoring the first row of Fig. 1.
(Refactoring the other rows of Fig. 1 is done similarly.) Here
is a succinct summary of actions to be taken: The idea is
a combination of LMS and Component-Based Mechanisation
[12], [11], [13]. We parameterise the ADT cases Num, Add,
Var, and Mul by the language description and perform their

semantics evaluation independently of the language descrip-
tion. We pack the two former cases – namely, Num and Add

that are common between all the items in the first row of
Fig. 1 – together in a trait. Then, we extend that trait for
Var and later for Mul, both à la LMS. Finally, the concrete
language descriptions only get to mix the respective abstract
descriptions. The elaboration follows.

1 trait na_syntax {//E for Expr, N for Num, A for Add
2 type E; type N <: E; type A <: E
3 def n_extr(n: N): Option[Int]
4 def a_extr(a: A): Option[(E, E)]
5 object N {def unapply(n: N) = n_extr(n)}
6 object A {def unapply(a: A) = a_extr(a)} }
7 trait na_semantics extends na_syntax {
8 def value: E => Int = {
9 case N(n) => n

10 case A(e1, e2) => value(e1) + value(e2)} }

In na_syntax above, the abstract type E (in line 2) is a
language-independent representation for the expression type
of a guest language. Such a guest language can be an item in
row 1 of Fig. 1 or any similar language with integer arithmetics
that at least contains integral literals and addition. Given that
ADTs are implemented in Scala using plain inheritance, two
more language-independent abstract types have been employed
that are announced to be extending E. Those are N for Num and
A for Add, in line 2.

Because N and A are supposed to later be instantiated to
the respective cases of an ADT, they are expected to come
with the Scala matching syntax, like those in lines 9 and
10. The Scala machinery for enforcing availability of the
desirable matching syntax requires a discipline in coding that
is slightly tricky. The discipline involves, for each ADT case
abstract type, inclusion of a same-named (singleton) object –
called companion object – that ships, then, with an extractor,
i.e., an unapply method of the right type signature. The
actual duty of the extractor is relayed to an abstract method,
to be enforced to every guest language that implements
na_syntax. For N, for instance, that duty is on n_extr

in line 3. The Scala signature of n_extr means that, if
matching N succeeds, it would be initialising an argument of
type Int. All that wiring enables the method na_semantics

.value to handle the semantics of Num and Add.
1 trait nam_syntax extends na_syntax {type M <: E
2 def m_extr(m: M): Option[(E, E)]
3 object M {def unapply(m: M) = m_extr(m)}}
4 trait nam_semantics extends nam_syntax with na_semantics {
5 override def value: E => Int = {
6 case M(e1, e2) => value(e1) * value(e2)
7 case e => super.value(e)} }

The trait nam_syntax adds the abstract type M (in line 1
above), which corresponds to Mul. It also provides the Scala
matching syntax in lines 2 and 3. The trait nam_semantics

reuses (à la LMS) what is already implemented by
na_semantics by performing a super call on the relevant
ADT cases (line 7).

1 trait expr_add.syntax extends na_syntax {...
2 //like lines 2 to 6 of expr_add.syntax in Section II...
3 //Fix the ADT type, the Num case, and the Add case.
4 type E = Expr; type N = Num; type A = Add
5 //And, fix the extractors.
6 def n_extr(n: Num) = Num.unapply(n)



7 def a_extr(a: Add) = Add.unapply(a)}
8 trait expr_add.semantics extends
9 expr_add.syntax with na_semantics

In addition to working out the Section II concrete syntax,
the trait expr_add.syntax above, now is required to provide
evidence on it indeed having ADT cases for integral literals
and addition. That, again involves some slightly tricky dis-
cipline consisting of two steps. First, in line 4, the concrete
counterparts for the abstract (ADT case) types in na_syntax

are fixed. Second, in lines 6 and 7 the extractors promised to
na_syntax are fixed.

Recall from expr_add.syntax of Section II that Num and
Add are both case classes. Scala actually desugars case classes
to normal classes in addition to companion objects with the
right-typed unapply methods. That is why we can use Num.

unapply and Add.unapply off-the-shelf.
Nothing more remains for expr_add.semantics to do

except inheriting its (abstract and concrete) syntax from
expr_add.syntax and its semantics from na_semantics.

1 trait expr_mul.syntax extends nam_syntax {
2 val easyn = new expr_add.syntax {}
3 import easyn.{Expr, Term, Add};...
4 //like lines 3 to 8 of expr_mul.syntax in Section II...
5 type E = Expr; type N = Num; type A = Add; type M = Mul
6 def n_extr(n: Num) = Num.unapply(n)
7 def a_extr(a: Add) = Add.unapply(a)
8 def m_extr(m: Mul) = Mul.unapply(m)}
9 trait expr_mul.semantics extends

10 expr_mul.syntax with nam_semantics

Implementing ExprMul, in this fashion, is similar, as
demonstrated above. It only is that, like in Section III, our
use of traits instead of objects in favour of LMS imposes
instantiation of the trait expr_add.syntax (line 2) before
importing the desirable concrete syntax items (line 3).

Remarks

From a semantician’s point of view, na_semantics packs
the morphisms of the category of all languages with Num

and Int in the syntax. Although not entirely in the fash-
ion of Modular Structural Operational Semantics (MSOS)
[20], this is still very close. γΦC0 [13] describes that as:
“client na semantics<F C Int ⊕ Num>{. . . },” where F is
the family parameter of na semantics. In words, that reads:
A family Φ to be substituted for F needs at least to have
components Int and Num (or their equivalents) in its mix.

From another language theoretical viewpoint, na_syntax
and na_semantics are both type classes [40]. From that
viewpoint, expr_add.syntax is an instance of na_syntax
and expr_add.semantics is an instance of na_semantics.
The evidence for the former is provided in line 4 in expr_add

.syntax. Interestingly, however, our encoding of type classes
in Scala is not the common one [26]. In particular, we do not
prescribe the use of implicits.

As also announced at the last paragraph of Section III,
na_syntax and na_semantics (and also nam_syntax and
nam_semantics) relate to the abstract syntax only. This is
how they leverage LMS and yet do not suffer from the concrete
syntactic anomalies discussed in Section III. Moreover, unlike
Modular Reifiable Matching [27], the technique we presented

in this section is not exclusively targeting two-level types
[34]. The reason is that our technique in this section fully
disassociates concrete syntax from the abstract syntax so there
no longer is an issue of levels in the types. LMS itself comes
with no such separation either – suggesting the name abstract
LMS for our technique.

It is noteworthy that the disassociation of abstract and
concrete syntax with the lack of the LMS anomalies discussed
in Section III needs not specifically be à la LMS. The same
impact can also be achieved using a decentralised pattern
matching that is integrated at the right time [14]. The dif-
ference is that the abstract LMS composes components (that
correspond to ADT cases) additively [35, §17.3], whilst the
latter technique would be composing them sequentially.

The connection between this technique and Component-
Based Software Engineering (CBSE) [35, §17],[29, §10] is
also interesting. From a CBSE standpoint, nam_syntax is
a component in that: Without binding to a particular imple-
mentation, it specifies its so-called ‘requires’ and ‘provides’
interfaces. The nam_syntax ‘requires’ interface is its lines 1
and 2 – imposing the following two requirements, respectively:
The user of nam_syntax needs to provide a type M. And,
there has to be a way to extract two expressions of type E

from an instance of M. In return, the ‘provides’ interface
of M is its line 3, where M’s Scala match syntax (used in
line 6 of nam_semantics) is offered. As such, nam_syntax
is promoting the ADT case Mul to its standalone component.1

This is an important characteristic of the third technique that
relates to the EP. Next section is dedicated to that relationship.

V. EXPRESSION PROBLEM

EP is a recurrent problem in the field of Programming
Languages, for which a wide range of solutions have thus
far been proposed, e.g., [25], [1], [41]. EP is the challenge
of finding an implementation for an ADT – defined by its
cases and the functions on it – that: (E1) both new cases
and functions can be added; (E2) applying a function f on
a statically constructed ADT term t should fail to compile
when f does not cover all the cases in t; (E3) upon extension,
forces no manipulation or duplication to the existing code;
and (E4) compiling the extension imposes no requirement for
repeating compilation or type checking of existing code.

In Sections II–IV, we presented three techniques for embed-
ded language composition in Scala. All the three techniques
satisfy E4. We now reflect on their E1–E3 competence: The
first technique clearly satisfies E1. Section III-A2 outlines a
scenario where LMS fails to satisfy E1. Whether the third
technique satisfies E1 depends on whether it employs trait
mixing for composition or not. Note that it needs not. The three
techniques all relax E2, although they can be circumvented to
work when defaults are available [23]. That is a consequence
of Scala performing pattern matching at runtime. LMS too

1Two reasons for not promoting Num and Add to components: 1) that
would complicate presentation. 2) the current design in which those two
ADT cases are packed together in a single component (i.e., na_syntax)
demonstrates how to address the Common Reuse Principle of Martin [18].



relaxes E2 and that has thus far been considered an acceptable
setting. (For example, MVCs [24] and Torgersen’s second
solution [36] both have the same issue.) The state of affairs
for LMS might change in future though [31].

As witnessed by RobotUniExprAddUniDec in Sect-
ion II-E1, the Scala-unspecific technique fails to satisfy E3
when new cases are to be added. As detailed in Section III-B,
LMS has to fight path-dependant typing to satisfy E3 when
syntactic categories are updated upon composition. Whether
there always is a winning strategy for LMS in such a situation
is not known. The third technique clearly satisfies E3.

We understand that the path-dependant typing difficulties
of the LMS-based technique might indeed be a result of our
peculiar design. In particular, our choice of giving the syntax
and semantics of a language each a trait of their own might
be picked as the root cause. We would like to defend that
choice of ours, specifically, for the likelihood of engineering
(or experimentation with) more than one semantics for the
same syntax [15]. In such cases, separation of the syntax and
semantics is inevitable.

Finally, one may wonder whether the third technique makes
it to a new solution to EP. The answer is indeed yes. At
least for EP in presence of defaults [23]. This is the third
EP solution of its kind: It promotes ADT cases to their own
ADT-parameterised components. See [12], [11] for the first
and [14] for the second EP solution of this kind.

VI. RELATED WORK

a) LISA.: As stated earlier, this paper is highly inspired
by Mernik [19]. We essentially took his examples for showing
how to compose languages embedded in Scala. With LISA
being an LDF, even though Scala is famous for its hospitality
to embedded languages, we were surprised to end up having
less lines-of-code (LoC) in all the three techniques.

Fig. 2 summarises the LoC comparison. In the LoC there,
we have also included some syntactic cosmetics that we did
not display in this paper. In our experience, the occasions
where Scala outperforms LISA by far are those where the
task was a ready cake for GPLs. Examples are RobotTime for
all the techniques and RobotExtExprAddUniDec for the third
technique. For the former, a simple container size query does
the job. For the latter, simple trait mixing does.

The first technique generally performs better (in terms of
LoC) than LISA. The second is even better usually with its
utilisation of trait mixing (dismissing the obvious import
s) and super calls. At last, the third is the best with its a
posteriori refactoring. The two occasions when LISA con-
siderably outperforms Scala are RobotUniExprAdd for the
first technique and RobotUniExprMul for the third. Those
correspond to Sections III-A2 and III-B, respectively.

The factored out code in the third technique is not counted
in Fig. 2. Once that too is added, the total LoC reaches 328
– which is 2 more than first technique’s LoC. We tend to
think the reason is the simplicity in the semantics of Mernik’s
examples. That caused the number of lines the refactoring
saves to be less than the extra overhead the technique requires.

For more realistic case studies, we expect the balance to
be completely different. That would be well in favour of
refactoring due to reasonably more involved semantics.

b) Other Language Composition Catalogues.: Völter
[38] proposes a taxonomy of language composition that he
showcases in JetBrains MPS. Barrett, Bolz, and Tratt [2] cata-
logue composition of six Python and Prolog virtual machines.
Zhang et al. [42] facilitate composition of languages that are
embedded using Object Algebras [10]. Melange [6] is an LDF
that is specially equipped for language composition.

c) Components for Language Implementation.: PLan-
CompS funcons are syntactic constructs that ship with their
own fixed static and dynamic semantics (presented in MSOS).
The PLanCompS specification of a programming language
is developed by merely assembling funcons [21]. Despite
their merit, funcons do not constitute CBSE components. In
particular, funcons do not ship with their ‘requires’ interfaces.

MVCs [24] are components for solving an extension to EP.
Rather than components in their CBSE sense, however, MVCs
are components in a Component-Oriented Programming sense.
MVCs rely on the implementation details of how a component
realises its interfaces. CBSE components, in contrast, are
identified by their ‘requires’ and ‘provides’ interfaces.

Haeri and Schupp [12], [14] take a CBSE approach for
the implementation of embedded languages. Their approach
employs type constraints and multiple inheritance. The third
technique here employs (possibly constrained) abstract types
instead of type parameters. Although essentially the same, the
former can make code terser. In Scala, however, offering the
match syntax is apparently not possible for type parameters.

Finally, Cazzola and Vacchi [4] too have taken a CBSE
approach. Their components correspond to a DSL’s compiler
passes. Accordingly, how their work relates to the common
semantic formalisms is not clear.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present three different techniques for
composing languages embedded in Scala. The first is Scala-
unspecific and works in presence of common module systems
and higher order functions (Section II). The second is LMS-
based and requires mixin composition and super calls (Sec-
tion III). The third works by promoting ADT cases to ADT-
parameterised components (Section IV). We showcase the
three techniques using the example compositions of Mernik,
which, in return, were designed to exhibit LISA’s composition
facilities for Erdweg et al.’s taxonomy of composition. We
manifest the strengths and weaknesses of each technique. We
compare them according to their performance as EP solutions
(Section V) and LoC (Section VI-0a).

Systematic study of embedded language composition is
a young topic. Numerous paths exist for future research.
Examining our third technique against larger testcases is an
immediate future work. Type classes are more widely practised
in HASKELL. It would be interesting to see our third technique
in HASKELL, where mixins and inheritance are absent. Object
Algebras are gaining gravity as a powerful abstraction for

https://www.jetbrains.com/mps/
http://www.plancomps.org/
http://www.plancomps.org/


L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 Sum
LISA 42 23 13 19 19 32 39 41 20 34 23 20 19 344

T1 32 7 16 26 34 11 40 25 31 34 17 22 31 326
T2 30 6 15 20 29 10 34 20 26 28 13 23 33 287
T3 29 5 15 16 16 10 10 20 23 6 13 23 16 202

Columns: L1 = Robot, L2 = RobotTime, L3 = RobotPositive, L4 = ExprAdd, L5 = RobotUniExprAdd, L6 = Dec, L7 = RobotUniExprAddUniDec,
L8 = RobotTimeSpeed, L9 = ExprAddUniDec, L10 = RobotExtExprAddUniDec, L11 = RobotUniExprAddExtRobotTime, L12 = ExprMul, L13 =

RobotUniExprMul Rows: LISA = Mernik’s Implementation, Ti = Technique i, for i ∈ {1, 2, 3}
Fig. 2: Lines-of-Code Comparison between Mernik’s LISA and Our Three Techniques

embedded language development but are heavyweight in both
term creation [3] and algebra composition. It is easy to turn
na_syntax and the like into Object Algebra Interfaces to
lower those two weights. Finally, it is important to also
produce catalogues like this paper in other host languages than
Scala. We are currently working on that.

REFERENCES

[1] P. Bahr and T. Hvitved. Parametric Compositional Data Types. In
J. Chapman and P. B. Levy, editors, 4th MSFP, volume 76 of ENTCS,
pages 3–24, February 2012.

[2] E. Barrett, C. F. Bolz, and L. Tratt. Approaches to Interpreter Compo-
sition. Comp. Lang., Sys. & Struct., 44:199–217, 2015.

[3] A. P. Black. The Expression Problem, Gracefully. In M. Sakkinen,
editor, MASPEGHI@ECOOP 2015, pages 1–7. ACM, July 2015.

[4] W. Cazzola and E. Vacchi. Language Components for Modular DSLs
using Traits. ComLan, 45:16 – 34, 2016.

[5] W. R. Cook. Object-Oriented Programming Versus Abstract Data Types.
In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, FOOL,
volume 489 of LNCS, pages 151–178, Holland, June 1990.

[6] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel.
Melange: A Meta-Language for Modular and Reusable Development of
DSLs. In R. F. Paige, D. Di Ruscio, and M. Völter, editors, 8th SLE,
pages 25–36, October 2015.

[7] A. Dijkstra, J. Fokker, and S. D. Swierstra. The Architecture of the
Utrecht HASKELL Compiler. In S. Weirich, editor, 2nd HASKELL,
pages 93–104, Edinburgh, Scotland, 2009. ACM.

[8] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language Composition
Untangled. In A. Sloane and S. Andova, editors, 12th LDTA, page 7.
ACM, March 2012.

[9] E. Ernst. Family Polymorphism. In J. Lindskov Knudsen, editor, 15th
ECOOP, volume 2072 of LNCS, pages 303–326. Springer, June 2001.

[10] Guttag, J. V. and Horning, J. J. The Algebraic Specification of Abstract
Data Types. Acta Informatica, 10:27–52, 1978.

[11] S. H. Haeri. Component-Based Mechanisation of Programming Lan-
guages in Embedded Settings. PhD thesis, STS, TUHH, Germany,
December 2014.

[12] S. H. Haeri and S. Schupp. Reusable Components for Lightweight
Mechanisation of Programming Languages. In W. Binder, E. Bodden,
and W. Löwe, editors, 12th SC, volume 8088 of LNCS, pages 1–16.
Springer, June 2013.

[13] S. H. Haeri and S. Schupp. Expression Compatibility Problem. In
J. H. Davenport and F. Ghourabi, editors, 7th SCSS, volume 39 of EPiC
Comp., pages 55–67. EasyChair, March 2016.

[14] S. H. Haeri and S. Schupp. Integration of a Decentralised Pattern
Matching: Venue for a New Paradigm Intermarriage. In M. Mosbah
and M. Rusinowitch, editors, 8th SCSS, volume 45 of EPiC Comp.,
pages 16–28. EasyChair, April 2017.

[15] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic
Embedding of DSLs. In Y. Smaragdakis and J. G. Siek, editors, 7th
GPCE, pages 137–148, Nashville, TN, USA, October 2008. ACM.

[16] J. Jeuring, S. Leather, J. P. Magalhães, and A. R. Yakushev. Libraries
for Generic Programming in HASKELL. In P. W. M. Koopman,
R. Plasmeijer, and S. D. Swierstra, editors, Adv. Func. Prog., 6th Int.
School, AFP, volume 5832 of LNCS, pages 165–229. Springer, May
2008.

[17] D. E. Knuth. Semantics of Context-Free Languages. Math. Sys. Theo.,
2(2):127–145, 1968.

[18] R. C. Martin. Design Principles and Design Patterns, 2000. online article
available from the ObjectMentor website.

[19] M. Mernik. An Object-Oriented Approach to Language Compositions
for Software Language Engineering. J. Sys. & Soft., 86(9):2451–2464,
2013.

[20] P. D. Mosses. Modular Structural Operational Semantics. JLAP, 60–
61:195–228, 2004.

[21] P. D. Mosses. Component-Based Description of Programming Lan-
guages. In E. Gelenbe, S. Abramsky, and V. Sassone, editors, BCS
Int. Acad. Conf., pages 275–286. Brit. Comp. Soc., 2008.

[22] M. Odersky. Pimp my Library. Artima Developer Blog, 9, October
2006.

[23] M. Odersky and M. Zenger. Independently Extensible Solutions to the
Expression Problem. In FOOL, January 2005.

[24] B. C. d. S. Oliveira. Modular Visitor Components. In 23rd ECOOP,
volume 5653 of LNCS, pages 269–293. Springer, 2009.

[25] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the Masses –
Practical Extensibility with Object Algebras. In 26th ECOOP, volume
7313 of LNCS, pages 2–27. Springer, 2012.

[26] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type Classes as Objects
and Implicits. In W. R. Cook, S. Clarke, and M. C. Rinard, editors, 25th
OOPSLA, pages 341–360. ACM, October 2010.

[27] B. C. d. S. Oliveira, S.-C. Mu, and S.-H. You. Modular Reifiable Match-
ing: A List-of-Functors Approach to Two-Level Types. In B. Lippmeier,
editor, 8th HASKELL, pages 82–93. ACM, September 2015.

[28] J. Paakki. Attribute Grammar Paradigms - A High-Level Methodology
in Language Implementation. ACM Comp. Surv., 27(2):196–255, 1995.

[29] R. S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 7th edition, 2009.

[30] J. C. Reynolds. User-Defined Types and Procedural Data Structures as
Complementary Approaches to Type Abstraction. In S. A. Schuman,
editor, New Direc. Algo. Lang., pages 157–168. INRIA, 1975.

[31] T. Rompf. Reflections on LMS: Exploring Front-End Alternatives. In
A. Biboudis, M. Jonnalagedda, S. Stucki, and V. Ureche, editors, 7th
SIGPLAN Symp. Scala, pages 41–50. ACM, November 2016.

[32] T. Rompf and M. Odersky. Lightweight Modular Staging: a Pragmatic
Approach to Runtime Code Generation and Compiled DSLs. In 9th

GPCE, pages 127–136, Eindhoven, Holland, 2010. ACM.
[33] C. Saito, A. Igarashi, and M. Viroli. Lightweight Family Polymorphism.

J. Func. Prog., 18(3):285–331, 2008.
[34] T. Sheard and E. Pasalic. Two-Level Types and Parameterized Modules.

JFP, 14(5):547–587, 2004.
[35] I. Sommerville. Software Engineering. Addison-Wesley, 9th edition,

2011.
[36] M. Torgersen. The Expression Problem Revisited. In M. Odersky, editor,

18th ECOOP, volume 3086 of LNCS, pages 123–143, Oslo (Norway),
June 2004.

[37] P.W. Trinder, K. Hammond, H-W. Loidl, and S. Peyton Jones. Algorithm
+ Strategy = Parallelism. JFP, 8(1):23–60, January 1998.

[38] M. Völter. Language and IDE Modularization and Composition with
MPS. GTTSE, 7680:383–430, 2011.

[39] P. Wadler. The Expression Problem. Java Genericity Mailing List,
November 1998.

[40] P. Wadler and S. Blott. How to Make ad-hoc Polymorphism Less ad-hoc.
In 16th POPL, pages 60–76. ACM Press, January 1989.

[41] Y. Wang and B. C. d. S. Oliveira. The Expression Problem, Trivially!
In 15th Modularity, pages 37–41, New York, NY, USA, 2016. ACM.

[42] H. Zhang, Z. Chu, B. C. d. S. Oliveira, and T. van der Storm. Scrap
Your Boilerplate with Object Algebras. In J. Aldrich and P. Eugster,
editors, 29th OOPSLA, pages 127–146, October 2015.

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

	Blank Page



