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Flow dynamics of the resonances of a 2D circular quantum well
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Bound states and resonances are physically important solutions of the time-independent
Schrodinger equation for a given quantum mechanical potential. One can find these states us-
ing numerical analysis techniques by searching for poles in the scattering amplitude, or equivalently
by locating the zeros of particular transcendental, complex-valued functions. We show that the
evolution of these solutions displays much deeper behavior than one may assume when parameters
of the potential are varied, giving insight into the relationship between different types of solution.

PACS numbers: 03.65.w, 42.25.p, 02.30.Gp, 05.45.Mt

I. INTRODUCTION

The complex wavenumber plane is a rich mathemat-
ical structure, and a rather elegant way to represent
the various types of solutions of the time independent
Schrodinger equation for quantum mechanical potentials.
This is because it allows the bound states and resonances
of such potentials to be displayed together in a natu-
ral way, and shows the interplay between them. The
level dynamics of bound states and resonances for one-
dimensional (1D) potentials are studied in Refs. [1–4].
In particular, using the square well potential as an ex-
ample, it was calculated how these states move around
in the complex wavenumber plane as the potential depth
is increased. The trajectories traced out as the states
move around the complex plane are known as flows.

Resonances are ubiquitous throughout all of physics,
arising in mechanical, optical, quantum mechanical and
gravitating systems. Moreover, the importance of the
phenomenon of resonance in modern technology is hard
to overstate. This is, in particular, due to significant
progress in the field of semiconductor nanostructures,
microcavity lasers, and biosensing. For theoretical pur-
poses, it is especially useful to know the complete set of
all possible resonances for a particular quantum mechan-
ical system for every combination of the potential pa-
rameters, as this facilitates the use of techniques such as
the resonant state expansion method, see Ref. [5]. More
broadly, owing to the global importance of resonance ef-
fects, the ability to fully elucidate the evolution of reso-
nances for any physical system in response to variation
of that system’s parameters will be of great utility.

In this work, we study the level dynamics of the bound
states and resonances of two-dimensional (2D) potentials,
using a circular finite well as an example. Bound states
have real energy eigenvalues and lie mostly inside the
well, while resonances have complex energy eigenvalues
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and lie mostly outside the well. Possible states of a circu-
lar infinite well were investigated in Refs. [6, 7]. Here, we
calculate the flows of a circular finite well as a function
of its depth. We found that the mechanism by which
bound states are created beginning with a potential of
effectively zero depth has an interesting interpretation
in terms of the resonance-antiresonance pairs - that the
bound states can in some sense be considered as a result
of the convergence of the corresponding flows to the pos-
itive imaginary axis. We also observe resonances which
never become bound states. In this regard we classify
resonances into two sets: those which lead to the gen-
eration of new bound states, and those which converge
asymptotically to a complex limit. Following the com-
mon terminology, see Refs. [8, 9], we will call the first
set “internal” resonances and the second set “external”
(“shape”) resonances. In the context of 2D optical mi-
crodisks, the behavior of internal and external resonances
were studied in detail in Refs. [10–12], see also Ref. [13]
for a general review. This paper, to the best of our knowl-
edge, is the first complete treatment of the behavior of
complex eigenvalues, including the internal and external
resonances as well as the bound states, of the 2D Hamil-
tonian corresponding to a circular finite well.

II. PROPERTIES OF RESONANT STATES

The coordinate parts ψn(r) of the resonant state wave
functions Ψn(r, t) are the eigensolutions of the time-
independent Schrodinger equation

[

−∇2 + V (r)
]

ψn(r) = k2nψn(r), (1)

subject to the outgoing wave boundary condition. For
brevity of notation we used the units ~ = 1 and µ = 1/2,
where µ is the particle mass, and for further convenience
we introduced the wavenumber kn of the resonant state,
which we simply call the resonance, related to the eigen-
value of the resonant state as

En = k2n. (2)



2

For 2D problems the outgoing wave boundary condition
takes the form

ψn(r) →
exp(iknr)√

r
, r → ∞, (3)

where r = |r|.
Solving Eqs. (1-2) with the boundary conditions given

by Eq. (3), one arrives at the fact that the eigenvalues En
are in general complex-valued numbers, often called the
complex-valued energies, with real and imaginary parts
being the resonance energy En and the resonance width
Γn respectively, i.e.

En = En − 1

2
iΓn, Γn > 0. (4)

The (time-dependent) resonant state wave functions,
Ψn(r, t), are then

Ψn(r, t) = ψn(r) exp(−iEnt) exp(−Γn/2 t). (5)

In terms of the corresponding wavenumbers kn, the
complex-valued energies are expressed as

En = [Re(kn) + i Im(kn)]
2. (6)

The bound states are then the states with Re(kn) = 0 and
Im(kn) > 0. Their energies are real negative and their
wave functions ψn vanish far from the potential. For
antibound states, if they exist, see Ref. [14], Re(kn) =
0 and Im(kn) < 0, the wave functions ψn are purely
growing waves outside of the potential, even though their
energies are still real and negative. All resonant states
with Re(kn) 6= 0 have Im(kn) < 0. Their energies are
complex-valued numbers and their wave functions ψn(r)
oscillate and grow exponentially outside the potential.
Time reversal invariance requires that if Ψn(r, t) with

the complex-valued energy En is a solution of the time-
dependent Schrodinger equation, then Ψ∗

n(r,−t) with the
complex-valued energy E∗

n should also be a solution of
the same equation. In terms of the coordinate parts of
the resonant wave functions ψn(r) and the corresponding
resonant wavenumbers kn, this means that if ψn(r) with
kn = Re(kn) + i Im(kn) satisfies Eqs. (1-3), then ψ∗

n(r)

with k̃n = −Re(kn) + i Im(kn) should also satisfy the
same equations. These states with negative real part are
henceforth referred to as antiresonances.

III. RESONANCE CONDITION

The finite circular potential well is described by

V (r) =

{

−V0, r < R,

0, r > R,
(7)

where V0 is the depth of the well (positive number), and
R is the radius of the well. The natural geometry of the

problem suggests the use of polar coordinates (r, ϕ). The
time-independent Schrodinger equation (1) reduces to

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂ϕ2
+ κ2ψ(r, ϕ) = 0, r < R,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂ϕ2
+ k2ψ(r, ϕ) = 0, r > R,

(8)

where

κ =
√

k2 + V0. (9)

At the boundary of the well, r = R, the wave function
ψ and its derivative have to be continuous. Moreover,
for physical reasons the value of the wave function at the
well center must be finite. These boundary conditions
together with the outgoing condition given by Eq. (3)
define the resonant wave functions in the form of the
‘whispering gallery’ (WG) modes, given as

ψm =



















NmJm (κr)

(

cosmϕ
sinmϕ

)

, r < R,

Hm (kr)

(

cosmϕ
sinmϕ

)

, r > R,

(10)

where the complex-valued wavenumbers kn (resonances)
of the resonant states satisfy the system of transcendental
equations

{

NmJm(κR)−Hm(kR) = 0,

κNmJ
′

m(κR)− kH
′

m(kR) = 0.
(11)

Here Jm and Hm are Bessel and Hankel functions of the
first kind respectively and m = 0, 1, 2, ... is the angular
quantum number. The constants Nm are given by

Nm = Hm(kR)/Jm(κR). (12)

The angular quantum number m = 0, 1, 2, . . . character-
izes the resonant wave function variation along the az-
imuthal direction, with the number of intensity hotspots
being equal to 2m. The resonances, kn, are twofold
degenerate for m > 0, and nondegenerate for m = 0.
For each m > 0 there are infinitely many internal reso-
nances and a finite number of external/shape resonances,
see Refs. [10, 15]. Then, the radial quantum numbers
qi = 1, 2, . . . and qe = 1, 2, . . . , Q, where Q is a finite
positive integer, will be used to label different internal
and external resonances within the group of resonances
with the same angular quantum numberm, in accordance
with increasing real parts of the wavenumbers. Thus, the
above overall quantum number n includes for the problem
at hand two physical quantum numbers: either m and qi,
or m and qe. For the internal resonances which are rela-
tively close to the real axis of the complex wavenumber
plane the radial quantum number qi gives in general the
number of intensity spots in the radial direction.
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Further, it follows immediately from Eqs. (11) that the
resonances kn are solutions of the transcendental equa-
tion

k Jm(κR)H
′

m(kR)− κJ
′

m(κR)Hm(kR) = 0. (13)

The Hankel functionHm(z) is a multiple-valued function,
which can be represented, see Refs. [16, 17], as

Hm(z) = Jm(z) + i Sm(z) + i
2

π
Jm(z) ln

(z

2

)

. (14)

Here Jm(z) is a Bessel (single-valued) function, Sm(z) is
a single-valued polynomial given by

Sm(z) = − 1

π

m−1
∑

j=0

(m− j − 1)!

j!

(z

2

)2j−m

− 1

π

∞
∑

j=0

(−1)j
1

j!(j +m)!

(z

2

)m+2j

× [̥(j + 1) +̥(j +m+ 1)] ,

(15)

where ̥(x) is the digamma function defined as the loga-
rithmic derivative of the gamma function Γ(x) in accor-
dance with

̥(x) =
d ln Γ(x)

dx
, (16)

while the function ln(z) is a multiple-valued function de-
fined on an infinite number of Riemann sheets. However,
only one of those sheets provides the asymptotics for the
Hankel function Hm(z) given by Eq. (3). This physical
sheet has a cut going from the branch point at z = 0 to
infinity, and the standard approach is to place the cut on
the negative real axis, i.e. define a single-valued function
ln(z) with the modulus r and the argument φ as

ln(z) = ln(r) + iφ, −π < φ ≤ π. (17)

But such a choice destroys the time-reversal symmetry
of resonances across the negative imaginary axis, see the
last paragraph of the previous section. In order to keep
that symmetry, the cut needs to be moved to the negative
imaginary axis as discussed in Ref. [18]. This can be
done by redefining the argument of the function ln(z) in
Eq. (17) in accordance with

φ→φ, −π/2 < φ ≤ π,

φ→φ+ 2π, −π < φ ≤ −π/2 . (18)

As a result, the modified (branch cut placed on the neg-
ative imaginary axis) Hankel function will have different
values from the original (branch cut placed on the nega-
tive real axis) function in the third quadrant, preserving
the required symmetry, i.e. fulfilling the condition

[Hm(−z∗)]∗ = Hm(z). (19)

FIG. 1: The locations of complex zeros hm,qe of the Hankel
functions Hm(kR) with the (original) branch cut on the neg-
ative real axis [upper panel] and with the (modified) branch
cut on the negative imaginary axis [lower panel].

Now, using the standard identities for the derivatives
of Bessel and Hankel functions, see Refs. [16, 17], we can
rewrite Eq. (13) as

k Jm(κR)H
(1)
m+1(kR)− κJm+1(κR)H

(1)
m (kR) = 0. (20)

This equation with the modified (branch cut placed on
the negative imaginary axis) Hankel functions fulfilling
the required symmetry given by Eq. (19) is the resonance
condition we analyze. For particular potential depths,
V0, and potential radii, R, it can be solved numerically
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to obtain the resonances and bound states of a circular
finite well.
If the asymptotics of Eq. (20) are studied for V0 →

∞, it becomes apparent that the limiting behavior of
the external resonances, for which qe ≤ Q, is controlled
by the zeros of the Hankel functions of order m. The
limiting behavior of the internal resonances is influenced
by the locations of the zeros of Bessel functions, which are
real numbers. When the potential depth exceeds some
critical value, these real zeros eventually result in purely
imaginary values for kR, which are bound states.
The distribution of complex zeros hm,qe , which has no

symmetry for the Hankel functions with the original cut,
see Refs. [19, 20], becomes symmetric with respect to the
negative imaginary axis for the Hankel functions with
the modified branch cut, see Fig. 1. It is known, see
Ref. [21], that there is only a finite number of such zeros
for a givenm, which correspond to the number of external
resonances, Q, for that m. In the fourth quadrant of the
complex kR plane, the Hankel functions with the original
cut, or in both the third and fourth quadrants, the Hankel
functions with the modified cut, the number of external
resonances for a given m is Q = 0 if m = 0, 1, Q = m/2
if m is even, and, finally, Q = (m− 1)/2 if m is odd.

IV. RESONANCE FLOWS

In this work, a method originally due to Wagon, see
Ref. [22], was adapted such that the complex equation
f(z) = 0 is viewed from the vantage of the real system,
i.e. given that f(z) = u(x, y) + iv(x, y), one must solve
the system

{

u(x, y) = 0,

v(x, y) = 0.
(21)

The zero level curves of one of these functions are then
plotted, and for every point along these curves, the sign of
the other function is tested. Where there is a sign change,
this corresponds to an approximate position where both
u(x, y) = 0 and v(x, y) = 0, and is thus a crude approx-
imation to a complex root. These initial “seeds” can be
fed into a root-finding algorithm such as the Newton-
Raphson method, and should converge rapidly to the ac-
tual root, since the initial approximation will be reason-
ably close to the true root. An example output of this
method is shown in Fig. 2.
It should be noted that the method illustrated in

Fig. 2 appears to show extra crossings of the zero lev-
els which we have not included as physical states. The
rationale for this is that although these points are so-
lutions of the transcendental resonance condition given
by Eqs. (19, 20), they are not solutions of the orig-
inal system of transcendental equations, see Eq. (11),
which arises from boundary conditions. They are ac-
quired when recasting the original system as a single tran-
scendental equation. These extraneous solutions occur on

FIG. 2: Wagon’s method applied to the case m = 4 for a
circular well of V0 = 10. The grey (black) lines indicate where
the imaginary (real) part of the resonance condition Eq. (15)
vanishes. Their intersection represents a complex root of the
resonance condition, and is indicated by a black point. Note
the removal of the extraneous solutions at kR = ±i

√
10.

the imaginary axis at kR = ±i
√
V0, and are filtered out

in the numerical procedure.

It can be fruitful to see how these resonances vary as
a function of the potential depth. The trajectory traced
out by incrementally varying the potential depth and fol-
lowing one resonance is known as the flow of that reso-
nance. What results is some truly surprising dynamical
richness, complete with attractors and cycles, as well as
a clear picture of the interplay and conversion between
resonances and bound states.

When analyzing the data, three cases emerge. The
special case m = 0, and the cases where m > 0 is even
or odd. Two types of flows also become apparent. The
external, or “shape” type flows result in spirals which
asymptotically approach zeros of Hankel functions, and
internal type flows which are responsible for the genera-
tion of new bound states from resonances in the contin-
uum.

The number and location of zeros of Hankel functions
seem to be the key features that determine the flow be-
havior. In all cases, these zeros play the role of attractors
in the parlance of dynamical systems theory. The reason
for the aforementioned three cases stems from the fact
that the relevant Hankel functions have different distri-
butions of zeros for each case. Each zero, or attractor,
appears to be “used up” after influencing a flow, in that
each zero only alters the trajectory of a single flow.
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FIG. 3: Flows of the resonances and antiresonances, shown
in grey, of a 2D circular well of radius R and potential V0 in
the complex kR plane, as V0 is deepened beginning from effec-
tively zero depth, for values ofm = 2 [upper panel] andm = 4
[lower panel]. The labels qi (qe) denote internal (external)
flows respectively. Each pair of doubly degenerate internal
resonance-antiresonance flows produces a doubly degenerate
bound state flow and two symmetrical non-degenerate quasi
antibound state flows.

A. Even m > 0

The full flow portrait is symmetric across the imag-
inary axis, indicating that time-reversal symmetry now
appears naturally. For these resonances, only the prin-
cipal branch of the modified resonance condition, see
Eqs. (19, 20), is needed as the number of states is con-

FIG. 4: Flows of the resonances and antiresonances, shown
in grey, of a 2D circular well of radius R and potential V0

in the complex kR plane, as V0 is deepened beginning from
effectively zero depth, for values of m = 1 [upper panel] and
m = 3 [lower panel]. The labels qi (qe) denote internal (ex-
ternal) flows respectively. Each pair of the doubly degener-
ate internal resonance-antiresonance flows produces a doubly
degenerate bound state flow and a doubly degenerate quasi
antibound state flow (black) from the adjacent branch.

served, provided that degeneracies are taken into ac-
count, i.e. that all state flows in Fig. 3, with the excep-
tion of split antibound state flows, see below, are doubly
degenerate. The interesting and unusual feature of these
flows is in their splitting when a new bound state is gen-
erated. To ensure the number of states is conserved, it is
supposed that every time a new doubly degenerate bound
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state is created in coincidence with the generation of a
resonance-antiresonance pair very close to the negative
imaginary axis, these “quasi antibound” states (states
which resemble antibound states, but have small, non-
zero real part) are pulled away from one another by the
attractor character of Hankel function zeros. The quasi
antibound states then appear to recombine asymptoti-
cally as their flows move away from the Hankel zeros.
Note that those quasi antibound state flows in Fig. 3 are
actually two flows close together, with one correspond-
ing to each created bound state: one from the pair of
resonance-antiresonance flows with qi = 1 and one from
the pair of resonance-antiresonance flows with qi = 2.
The symmetry in this case accords with the symmet-
ric distribution of zeros of the modified Hankel function
about the imaginary axis, as shown in Fig. 1b.

FIG. 5: Same as Fig. 4 but for m = 5.

B. Odd m > 0

In this case there is an additional complication. While
it is apparent that the internal flows are time-reversal
symmetric, their coalescence into a new bound state
poses a problem. The number of states is no longer con-
served if we consider only the principal branch of the
modified resonance condition, see again Eqs. (19, 20).
Each flow is doubly degenerate and produces a doubly
degenerate bound state, which means there are always
two states missing as required by state conservation when
a new bound state is manifest. This problem can be re-
solved by augmenting the set of solutions of the resonance
condition with additional antiresonance (quasi antibound
state) flows which are located in the adjacent branch and
appear upon creation of new bound states, as shown in

Figs. 4, 5 as a black flow. Note that these figures actu-
ally show two such flows which almost coincide: one upon
creation of the bound state from the pair of resonance-
antiresonance flows with qi = 1 and one upon creation of
the bound state from the pair of resonance-antiresonance
flows with qi = 2. We suppose that these supplementary
flows must be doubly degenerate to address the problem
of non-conservation. The addition of such flows is also
motivated by the presence of the analogous flows in the
even case. The difference here is that while these flows
occur as non-degenerate pairs in the even case, as shown
in Fig. 3, the lack of symmetric partner flows dictates
that they must now be doubly degenerate in this case.
This is consistent with the asymmetric distribution of
attracting zeros of the original Hankel function, shown
in Fig. 1a. This hypothesis can be tested by perturb-
ing the symmetry of the potential with point scatterers,
breaking the degeneracy. If the multiplicities assigned to
these states are correct, the number of flows arising from
the unperturbed cases should be predictable.

C. Special case m = 0

FIG. 6: Flows of the resonances and antiresonances, shown
in grey, of a 2D circular well of radius R and potential V0

in the complex kR plane, as V0 is deepened beginning from
effectively zero depth, for m = 0. Note the absence of any
split flows or spirals which agrees with the non-existence of
the modified Hankel function H0(z) zeros.

This case, see Fig. 6, immediately distinguishes itself
as unique. The mechanism for creating bound states is
different, in that there is no splitting of the flows into
two parts. Instead, the bound state is created from the
origin when resonance-antiresonance flow pairs approach
one another within some tolerance. The time-reversal
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FIG. 7: The probability density |ψn(r)|2 for the first external
resonance with m = 3 and qe = 1, see Fig. 4b, flow qe = 1:
V0 = 10 [left panel] and V0 = 80 [right panel]. High (low)
density shown as dark (light). Black dotted ring at r = 1 is
well boundary.

FIG. 8: The probability density |ψn(r)|2 for m = 3 and V0 =
10, for the first qi = 1 [left panel] and second qi = 2 [right
panel] internal resonances, see Fig. 4b, flows qi = 1, 2. High
(low) density shown as dark (light). Black dotted ring at
r = 1 is well boundary.

symmetry is present in this case, however more work is
needed to explain how this is consistent with state con-
servation. The anomalous behavior here is a reflection of
the absence of modified Hankel function zeros for m = 0.
With reference to the somewhat similar optical prob-

lem discussed in Ref. [10], the flows of internal resonances
in that work go to zeros of Bessel functions on the real
axis in the small opening limit n→ ∞, where n is the re-
fractive index of a 2D microdisk, and no bound states are
produced. Moreover, there are no spirals for the external
resonances.
When polar density maps of the eigensolutions are

plotted, the characteristic field pattern of whispering
gallery modes (WGMs) becomes apparent. For partic-
ular values of m, there are 2m “hot spots” in the az-
imuthal direction, as expected for such modes. For fixed
m, there are increasing numbers of hot spots in the ra-
dial direction as the radial modal index qi is increased.
The case m = 3 was chosen as a representative example
for which to show wavefunctions, since it encapsulates
all features observed for other values of m. The resulting
plots are shown in Figs. 7 - 10. The bound states have
the expected density characteristics - the wave function

FIG. 9: The probability density |ψn(r)|2 for the ground [left
panel] and first excited [right panel] bound states with m = 3
and V0 = 80, see positive imaginary axis of Fig. 4b. High
(low) density shown as dark (light). Black dotted ring at
r = 1 is well boundary.

FIG. 10: The probability density |ψn(r)|2 for the first [left
panel] and second [right panel] quasi antibound states with
m = 3 and V0 = 80, see black colored flows in Fig. 4b. High
(low) density shown as dark (light). Black dotted ring at
r = 1 is well boundary.

exists almost entirely inside the potential. Quasi anti-
bound states resemble bound states inside the potential,
but diverge outside the well. The field plots of the res-
onances are the most interesting. The plots are highly
sensitive to both potential depth and the magnitude of
the imaginary part of the wavenumber.

V. CONCLUSIONS

The numerical solution of the time independent
Schrodinger equation for various simple potentials is now
a common and vastly simplified endeavor given the power
of modern computers, and the availability of mathemat-
ical software. It is surprising that such rich dynamics
emerges for what is, after all, a simple two dimensional
symmetric potential. We expect that a similar, and per-
haps even more profound response might be observed for
other relatively simple potentials, and this will be in-
vestigated in due course. The remaining question here,
however, relates to degeneracy and the issue of state con-
servation. This will be addressed in future work by de-
stroying the symmetry of the potential by placing point-
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like defects inside the well, and also by distorting the
geometry of the potential itself. These methods will lift

the degeneracy of the states, and will likely precipitate
even more intriguing flow dynamics.
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