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12 ABSTRACT  
  

13 Fuel cell performances varies with different structural configurations and materials. However, the  
  

14 two main areas that determine this performance metric are the membrane electrode assembly  
  

15 (MEA) and the bipolar plates. The MEA provides the platform for the electrochemical reaction to  
  

16 occur and the bipolar plate serves as a medium between the reactants (hydrogen and air) and the  
  

17 catalyst layer. The bipolar plate is the first point of contact for the reactants inside the fuel cell, so  
  

18 a badly designed item with a high pressure drop will have a negative impact on fuel cell  
  

19 performance. Numerical modelling and simulation tools like ANSYS have a huge impact on  
  

20 engineering industry as they help designs to be validated and analysed before any physical  
  

21 construction.  
  

22 This investigation considers five suitable flow plate designs for PEM fuel cell, each completely  
  

23 different from the readily available, traditional serpentine designs on the market. The work  
  

24 explored the possibility of replacing these flow channels with an aluminium cellular foam with  
  

25 different inlet and outlet orientations. The designs were further optimised and modelled in ANSYS.  
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26 The results obtained were compared with other designs in the literature. Compared to the 
 

27 serpentine flow design, the open pore cellular foam material showed a very small pressure drop in 
 

28 the range of 30-40 Pa. This indicates a possibility of replacing the traditional flow plate designs 
 

29 with the proposed ones. 
 

30 Key words: Computational Fluid Dynamics (CFD), Optimization, Fuel cell, Serpentine, Design 
 

31 of Experiment (DOE) 
 

32 INTRODUCTION 
 

33 Fuel cells are electrochemical devices that transform the chemical energy of reactants into 
 

34 electrical energy with a very high efficiency. Fuel cells produce waste heat and generate water as 
 

35 a reaction product. The fuel (hydrogen) is supplied to the negative electrode (anode) while the 
 

36 oxygen from air being the oxidant is supplied to the positive electrode (cathode) as seen in Proton 
 

37 Exchange Membrane fuel cells, among others. The chemical reaction at the anode produces 
 

38 electrons for an electric current. All fuel cells have very high efficiencies which are often 
 

39 independent on the size of the system. Their design is also scalable and they produce zero or 
 

40 almost zero greenhouse gas emissions. As they have no moving parts, their operation is highly 
 

41 reliable as a result of their being vibration-free and less susceptible to wear and tear [1]. Fig. 1 
 

42 shows a 3D view of a five stack fuel cell. 
 

43 Though the advantages of fuel cells are enormous, their disadvantages cannot be overlooked. Cost 
 

44 remains a major challenge to the fuel cell industry, which has impaired their commercial success 
 

45 for general use. Storage of pure hydrogen is also a major issue. In situations where fuel that is not 
 

46 pure is used, additional fuel reformation technology has to be taken into account. Fuel cell 
 

47 performance also decreases when impure hydrogen gas is used. Traditional power generation 
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48 largely depends on fossil fuels which are now being discouraged around the world because of their 
 

49 high impact on the environment. Fuel cells are used for a number of portable applications, in the 
 

50 transportation sector and even the stationary sector. Most scientists believe that portable devices 
 

51 like mobile telephones and laptop computers will soon demand high power to keep them running 
 

52 for longer. As fuel cells are scalable with very simple recharging capabilities compared to batteries, 
 

53 they are a suitable option for portable devices in the near future. The limitations of fossil fuels and 
 

54 the  high  demand  for  them  by the transport industry contribute to fluctuations in prices, 
 

55 necessitating an alternative energy source. In its defence, the transport industry has undergone 
 

56 significant recent improvement as there is a growing number of hydrogen fuel cell cars on today’s 
 

57 roads, with researchers still conducting investigations to improve the current automobile 
 

58 technology to develop a product that is cheaper and more reliable. The unreliability of the power 
 

59 supply in some parts of the world affects most companies negatively [2]; an improvement in 
 

60 current fuel cell technology will do much to alleviate this. In order to generate more electricity and 
 

61 heat for living space, the stationary fuel cell is usually preferred. There are currently eight types of 
 

62 fuel cells available: Alkaline Fuel cells (AFCs), Phosphorous Acid Fuel cell (PAFCs), Solid Oxide 
 

63 Fuel Cells (SOFCs), Molten Carbonate Fuel cells (MCFCs), Zinc-air fuel cells (ZAFCs), Protonic 
 

64 Ceramic Fuel cells (PCFCs), Biological fuel cells (BFCs) and Proton Exchange Membrane fuel 
 

65 cell (PEMFCs)[2,3]. The PEMFC, also called the polymer electrolyte cell, generates a high power 
 

66 density at low weight, cost, and volume. PEMFCs are normally made up of an anode, cathode and 
 

67 an electrolyte membrane as shown in Fig. 2. 
 

68 Oxidation of hydrogen occurs at the anode while reduction of oxygen occurs at the cathode. The 
 

69 electrons are transported from one to the other through an electric circuit, hence the fuel cell is 
 

70 used as a DC source. The fuel cell has a carbon paper, mainly for covering the electrolyte on both 
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71 anode and cathode sides of the fuel cell. The porosity of this backing layer is normally in the range 
 

72 0.3 to 0.8. It plays a vital role in the transfer of the reactants as well as the reaction product to the 
 

73 flow plate of the reactive sites [3]. While the electrons produced at the anode are drawn away into 
 

74 the electric circuit, the ions that also result from the electrochemical reaction travel through the 
 

75 electrolyte to cathode. At the cathode, an electrochemical reduction occurs due to the electrons 
 

76 returning from the external load. One actively used electrolyte material, Fluorinated Teflon by 
 

77 Dupont, is mostly used in PEM fuel cells and referred to as a “Nafion membrane”, as shown in 
 

78 Fig. 3. 
 

79 Nafion membranes provide a high chemical reaction and thermal stability. The electrodes are thin 
 

80 films that are well attached to the membrane. Electrodes with a low platinum loading perform well 
 

81 compared to those with a  high platinum loading. Adding the polymer in a soluble state into the 
 

82 pores of the support structure (carbon) is one of the approaches taken to improve the usage of the 
 

83 platinum. The interface between the electrocatalyst and solid polymer electrolyte is increased by 
 

84 adapting this approach. Water management in the fuel cell is very crucial, as less or more water 
 

85 could damage the fuel cell. Therefore fuel cell design must carefully consider flooding and its 
 

86 prevention. The electrochemical reaction produces water which is expected to leave the cell after 
 

87 the electrochemical process but poor cell design means it is produced faster than its rate of escape.. 
 

88 This flooding prevents the MEA from functioning at its full potential hence nearly one-third of the 
 

89 MEA surface is utilised. [4-6]. The bipolar plates and the membrane electrode assembly are the 
 

90 two most important parts of the fuel cell. The transport of the reactants to the reactive site occurs 
 

91 through the bipolar plate. The membrane electrode assembly, having the platinum catalyst layer 
 

92 on its surface, functions as the platform where the electrochemical reaction occurs. Supplying 
 

93 reactant at high concentrations to the catalyst layer with less obstruction will therefore significantly 
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94 improve fuel cell performance. The design of the bipolar plate is also important as it determines 
 

95 the water management through the cell and creates a platform where the generated current can be 
 

96 collected [7]. The membrane electrode assembly is often located between two flow plates. It is 
 

97 composed of a proton exchange membrane and a gas diffusion layer which is porous in nature but 
 

98 conductive electrically. Bipolar plates in the fuel cell are normally made of graphite with a metallic 
 

99 housing but this design is gradually falling out of practice. Most newly developed PEM fuel cells 
 

100 are made of a polymer called acetyl to reduce the weight of the fuel cell, which in effect reduces 
 

101 its overall cost [8-10]. Fig. 4 shows some new types of fuel cell on the market that use acetyl. 
 

102 Though graphite has some good electrical properties, it has some major setbacks that have 
 

103 prompted the paradigm shift by researchers around the world from relying on it as the sole material 
 

104 for the bipolar plate. The tensile strength of graphite is very low and it is also very brittle. It is also 
 

105 very expensive to machine. With the bipolar plate accounting for almost 70% of the weight of the 
 

106 entire cell according to Lawlor et 2009, Dong et al., 2007 [11, 12], it is recommended that the 
 

107 material for the bipolar plate be made lighter as nearly 40% of the cost of a fuel cell depends on 
 

108 the bipolar plate. 
 

109 Metals have recently become more popular as the material of choice for bipolar plates as their 
 

110 advantages  include  low  cost,  ease  of  processing,  high  mechanical  strength,  high  electrical 
 

111 conductivity and high thermal conductivity. The normal practice is for the flow channels to be 
 

112 machined on the bipolar plate. This is done to achieve uniform distribution of the reactants and 
 

113 thus helps make better use of the MEA. The flow channel can be straight, parallel and even 
 

114 serpentine [11 – 15]. Other investigations concluded that the performance of any fuel cell is highly 
 

115 dependent on the bipolar design [13 – 20]. This is simply because a poorly designed bipolar plate, 
 

116 as mentioned earlier, often leads to problems with water removal and obstructs reactant transport. 
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117 Another researcher undertook a detailed study of the various types of flow plates in a fuel cell and 
 

118 also recommended that, for effective fuel distribution, the bipolar plate must be carefully designed 
 

119 [21]. It therefore confirms that an improperly designed bipolar plate will lead to uneven 
 

120 distribution of the electrochemical reactant in the fuel cell, which reduces the utilisation of the 
 

121 catalyst layer [22]. Open pore cellular foam (OPCF) material has recently been used by a number 
 

122 of researchers around the world as an alternative to the traditional flow field design. This is simply 
 

123 because  the  gas  distribution  through  the  OPCF  material  is  fairly even,  overcoming the poor 
 

124 distribution in other set-ups. Again, the pressure drop between the inlet and outlet through the open 
 

125 pore cellular foam material (OPCFM) is subject to the size of the pores of the foam [23 – 25]. Fig. 
 

126 5 shows an OPCFM with a porosity of 90% obtained from Goodfellow, UK. 
 

127 Carbon foam has been utilised as the gas flow field was first proposed by Marice et al. [26]. Other 
 

128 researchers, like Tsai et al/ [27], also confirmed that flow plate material made of metal foam 
 

129 contributed significantly to the efficiency of the fuel cell. They critically explored the effect that 
 

130 flow plate design had on the efficiency of PEM fuel cells. Their investigation brought to light that 
 

131 flow plate designs play an active role when building a fuel cell using foam material or even the 
 

132 traditional fuel cell designs. Kumar and Reddy [28, 29] used foam material in place of channels of 
 

133 conventional flow plates. This modification is not considered appropriate as the full benefit of the 
 

134 OPCFM was not explored. With all these advantages of using the OPCF, researchers are still facing 
 

135 challenges in relation to the housing unit where the foam will be placed. The present work is an 
 

136 extension to earlier work [2] where in this investigation a newer approach to the designs have been 
 

137 carried to optimise the use of Open Pore cellular foam materials. This paper seeks to investigate a 
 

138 new housing unit for the OPCF material, where the results are analysed on the pressure, flow 
 

139 regimes and velocity profiles. 
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140 There has been a big increase in the precision of engineering designs as scientists are better able 
 

141 to predict the success or failure of their designs by simulation, thus saving time and money 
 

142 Computational fluid dynamics (CFD) simulation software is one such example, as it can predict 
 

143 and analyse the various flow regimes in a fuel cell design and, in some cases, compute the stresses 
 

144 as well. Research into the development and optimisation of flow plates has been studied using 
 

145 CFD simulations [30-37]. Apart from many uses, CFD is also capable of providing information 
 

146 about the distribution of pressure through the flow channel, the pattern of the pressure and the drop 
 

147 in pressure. The velocity at which material enters and leaves the PEM fuel cell can all be predicted 
 

148 using the CFD tool. With this information obtained from the CFD simulation, designers can easily 
 

149 create or modify their designs without wasting energy in the workshop on ideas that are not feasible 
 

150 or practical. One of the important factors considered in a fuel cell is the even distribution of the 
 

151 oxidant (air/oxygen) and fuel (hydrogen) on the Gas diffusion layer. The pressure of these reactants 
 

152 must be distributed evenly over the Gas Diffusion Layer. This is very important as it determines 
 

153 the amount of catalyst being utilised during the electrochemical process. These are the parameters 
 

154 that define fuel cell performance. The flow channels on the bipolar plates serve as the medium to 
 

155 supply and uniformly distribute the oxidant and fuel to the catalyst layer. CFD analysis to help 
 

156 predict the flow distribution across the channels and check the pressure and velocity through the 
 

157 bipolar plate channels was performed by Kumar and Reddy, 2003, [33], Lozano et al., 2008 [36] 
 

158 and Barreras et al. 2011 [37]. This research work intends to explore other suitable flow plate 
 

159 designs using OPCF material. The designs were optimised and varied across selected velocities in 
 

160 literature (1, 3, 6, 9, 12 m/s). Different types of manifold designs were considered and their flow 
 

161 regimes were checked through CFD simulation analysis. 
 

162 NUMERICAL MODELLING, OPTIMISATION AND SIMULATION 
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163 As explained earlier, pressure distribution on the gas diffusion layer and the membrane electrode 
 

164 assembly are important parameters when designing a fuel cell. Other factors, like temperature 
 

165 distribution and even the speed at which the reactive gases travel to the reactive site are all very 
 

166 important as they influence the output or efficiency of the cell. The outcome of the simulation can 
 

167 also clearly show areas in the design where there could be the possibility of dead zones. Dead 
 

168 zones are areas around the fluid domain where the gas is static. It could also be described as the 
 

169 area around the fluid domain that may not be in contact with the reactive gas. This leads to 
 

170 accumulation and retention of water in the cell. A vital function of the gas is to be able to carry 
 

171 any water along the channels as it flows towards the outlet of the channel. Accumulation of water 
 

172 prevents some areas on the MEA from being utilised, hence reduces fuel cell performance. 
 

173 Excessive water in the fuel cell could cause flooding of the cell which will also create serious 
 

174 problems in the functionality of the PEM fuel cell. This clearly stipulates that the design of bipolar 
 

175 plate even affect the water management in the cell. 
 

176 FUEL CELL DESIGN 
 

177 ANSYS software was used to determine the flow regimes for the bipolar plate of a fuel cell with 
 

178 an active reaction area of 25 cm2. A number of designs were suggested for the bipolar plate to aid 
 

179 in the channelling of hydrogen to the reactive sites of the MEA. Manifolds were created in order 
 

180 to channel the hydrogen towards the foam material. CFX in ANSYS was used as the CFD 
 

181 technique to analyse housing designs for both the anode and cathode regions of the fuel cell. The 
 

182 electrochemical reaction in a PEM Fuel cell operates under moderate conditions when compared 
 

183 to the other types of fuel cell. The rate at which the various reactive gases travel through the bipolar 
 

184 flow plate design may be low but the fuel cell will still produce some current. Theoretically, it is 
 

185 possible to calculate the pressure drop in the fluid domain but the type of flow must first be 
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186 determined. The flow could be laminar or turbulent. This is determined through the calculation of 
 

187 the Reynolds number. For the purpose of this investigation, the flow was considered laminar since 
 

188 it has been well established that the reactants inside the fuel cell are in laminar flow, with a 
 

189 Reynolds number Re < 2300. The flow was also kept as a single phase. The laminar flow design 
 

190 was also utilized by Ramos – Alvarado et al. [38]. Various designs were then simulated with 
 

191 specific boundary conditions clearly depicted in Table 1. The final model contained 290,000 – 
 

192 316,853 elements. Fig. 6 shows the anode housing designs with their respective CFD mesh using 
 

193 ANSYS CFX. 
 

194 Table 1: Boundary conditions used in running the simulations. 
 
 
 

Parameter Response 
 
 

Design Modeller CFX 

Mesh Mixed Tet and Quad 

Sizing Proximity and Curvature 

Smoothing Fine 

Transition Fast 

Elements 316,853 

Solver CFX 

Model flow Laminar 

Fluid Hydrogen 

Solid walls Aluminum 

Porosity 0.93 
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195 1
9
5 

 

196 1
9
6 

 

197 1
9
7 

 

198 1
9
8 

Inlet Velocity 

Temperature 

Monitors 

Interfacial area density 

Heat transfer coefficient 

iteration 

Solver type 

199 From Table 1, the meshing was kept as Mixed Tet and Quad and a fine mesh was generated. The 
 

200 number of elements was also 316,853. The fluid domain for the gas was kept as being porous and 
 

201 the porosity of the aluminium foam used was 0.93. The speed of the gas entering the fuel cell was 
 

202 also maintained at 1 m/s and the flow kept as laminar. The number of iterations was also kept at 
 

203 100 for convergence to occur during the simulation. The sizing of the mesh was also maintained 
 

204 at proximity and curvature but during the simulation for design 5, which is the serpentine flow 
 

205 channel, the fluid domain was maintained in settings since the channel was not porous. 
 

206 NUMERICAL MODEL 
 

207 Extensive research in the design of metal foams have been undertaken, where key characteristics 
 

208 that determine the performance of the foam has been established both experimentally and 
 

209 theoretically [38-45]. One of the performances measured is the pressure drop in the foam material 
 

210 and different mathematical models have been developed. Flow in a porous media can be 
 

211 determined by the well known Darcy’s Law [45]: 
 

212 212 
 

∆𝑃𝑃 𝑣𝑣 

1m/s 

320 

Mass flow Continuity 

0.50 

0.01 
 
100 

 
Pressure based – Double precision 
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213 213 = (  ) 𝑉𝑉 (1) 
𝐿𝐿 𝛾𝛾 
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214 214 
 

215 Where, ∆𝑃𝑃 is the pressure drop over length L (m), 𝑣𝑣 is the fluid viscosity (m2/s), 𝑉𝑉 is the fluid 
 

216 velocity (m/s) and 𝛾𝛾 (m2) describes the permeability of a porous media. However, Darcy's law can 
 

217 be used only for low Reynolds numbers (Re < 0.1). In instances where there are high flow 
 

218 velocities (>0.1 m/s), the drag induced by the ligaments of the foam material becomes important. 
 

219 There is also a major influence of both turbulence and inertia and the pressure drop therefore 
 

220 displays a parabolic trend with the increasing velocity [46]. Therefore to consider this, a modified 
 

221 form of D’Arcy model, that describes the pressure drop in the porous medium at these velocities 
 

222 also known as the Hazen Dupuit-Darcy model is used, 
 

223 223 
 

∆𝑃𝑃 𝑣𝑣 
224 = 𝑉𝑉 + 𝜌𝜌𝜌𝜌𝑉𝑉2 (2) 

𝐿𝐿 𝛾𝛾 
 

225 
 

226 Where, 𝜌𝜌 is the density of the gas in the medium (kg/m3), and, 𝜌𝜌 = 𝑓𝑓/√𝛾𝛾 is the coefficient related 

227 to the structure of the permeable medium, with 𝑓𝑓 being the coefficient of inertia. The permeability 
 

228 γ (m2) of porous media is related to the porosity and the mean pore radius, is given by [38], 
 

229 229 
 
 

230 230 
 

231 231 

 

𝜁𝜁3 
2

 
 

 𝛾𝛾 = 
180(1 − 𝜁𝜁)2 𝑑𝑑𝑝𝑝 

 
 
 

(3) 

 
232 Where, 𝜁𝜁 is the porosity of the foam material and 𝑑𝑑𝑝𝑝 is the pore diameter. For the traditional hollow 

 

233 (serpentine) channels, since the flow is laminar in a functional PEMFC, one can define 
 

234 permeability, 𝛾𝛾 for the channel through the well-known Hagen–Poiseuille equation [38], 
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235 235 

 
𝛾𝛾 = 𝐻𝐻 

𝑑𝑑ℎ
2 

 

32 
 

(4) 

 
236 Where, 𝐻𝐻 = 2.59 (m) is the shape factor which is typical for laminar flows [38], 𝑑𝑑ℎ is the hydraulic 

 
237 diameter of the channel (m). 

 
238 Another mathematical model, by Ergun et al. determines the pressure drop in the foam material 

 
239 with spherical particles of diameter 𝑑𝑑𝑝𝑝. The Ergun equation is commonly utilized where the flow 

 

240 is through a dense bed, however, to draw a comparison between different mathematical models, 
 

241 241 
 

242 242 
 

243 243 

 
244 244 

this equation was also used. 
 
 

∆  
= 𝐴𝐴𝑉𝑉 + 𝐵𝐵𝜌𝜌𝑉𝑉2 (5) 

𝐿𝐿 

 

245 Where, 
 

150(1 − 𝜁𝜁) 
246 246 𝐴𝐴 = 

𝜁𝜁3𝑑𝑑𝑝𝑝 2 (6) 

 
 

247 247 
 

𝐵𝐵 = 
1.75(1 − 𝜁𝜁) 

 
 

𝜁𝜁3𝑑𝑑𝑝𝑝 

 
(7) 

 

248 Research in the design and fabrication of metal foams with different manufacturing techniques has 
 

249 also been undertaken [47], where Ashby et al. mathematically define the pressure drop in the metal 
 

250 foams as, 
 
 

251 251 ∆𝑃𝑃 
 

 

1 = 𝜀𝜀 ( ) [ 𝑣𝑣𝑚𝑚𝜌𝜌 
] 𝑉𝑉2−𝑚𝑚𝑑𝑑𝐿𝐿

 
 
−𝑚𝑚 

 
(8) 

𝐿𝐿 𝑑𝑑𝑝𝑝 (1 − 𝛼𝛼)2−𝑚𝑚 
 



14 
 

252 252 
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𝑝𝑝 

253 Where, 𝛼𝛼 is the absorption coefficient, 𝑑𝑑𝐿𝐿 is the foam ligament diameter, 𝜀𝜀 and 𝑚𝑚 are determined 
 

254 experimentally [47]. This equation is in the context of drop the in pressure with respect to transfer 
 

255 of heat, but for the purposes of correlating models, this equation was also used. The effect of the 
 

256 drag and friction due to flow in the foam material was explicitly described by Fourie and Du Plessis 
 

257 [48], where they make use of the tortuosity of the ligament structure, and thus determining the 
 

258 pressure drop as, 
 

259 259  
 

∆𝑃𝑃 

 
 

𝜌𝜌𝜌𝜌2𝑉𝑉2 

 
 

3𝜌𝜌𝑑𝑑𝑣𝑣 

 
 

𝜌𝜌𝑑𝑑𝑓𝑓 

260 260 
𝐿𝐿 = (3 − 𝜌𝜌)(𝜌𝜌 − 1) ( 𝜁𝜁3𝑑𝑑 ) ( + ) 𝜁𝜁 (9) 

2 4 
 

261 Where, 
 
 

262 262 
24𝑣𝑣𝜁𝜁 

𝜌𝜌𝑑𝑑𝑣𝑣 = 
𝜌𝜌(3 − 𝜌𝜌)𝑑𝑑 

 
(10) 

𝑉𝑉 

 

𝜌𝜌𝑉𝑉2𝑑𝑑𝑝𝑝 (𝜌𝜌 − 1) −0.667 

263 263 𝜌𝜌𝑑𝑑𝑓𝑓 = 1 + 10 ( ) 
2𝑣𝑣𝜁𝜁 

(11) 

 
264 264 

 
265 Where, 𝜌𝜌 is the tortuosity, 𝜌𝜌𝑑𝑑𝑣𝑣 and 𝜌𝜌𝑑𝑑𝑓𝑓 are drag and frictional coefficient. 

 

266 Since the pressure drop in the channel is directly related to the pressure gradient and the channel 
 

267 permeability, the pumping power consumption can be approximated by the product of the pressure 
 

268 drop along the channel and channel flow rate [38]. Wang, 2005 establishes a pumping power 
 

269 parameter as a ratio of the pumping power for the cathode flow (the major part) of the electric 
 

270 power produced by a fuel cell. Unlike an equation that describes the fuel cell polarisation curve, a 
 

271 linear approximation is assumed to be a very good fit for practical operating conditions [38]. Here 
 

272 a modified form of the equation has been established to define a linearisation of a polarisation 

𝑝𝑝 
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273 curve, 
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2 

274 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐  = 𝑉𝑉𝑜𝑜  − 𝑉𝑉𝑛𝑛 (12) 
 

275 Where, 𝑉𝑉𝑜𝑜 is the intercept of the polarisation curve, as the actual open circuit voltage is always 
 

276 higher, in the analysis, it has been maintained at 0.9 V. 𝑉𝑉𝑛𝑛 is defined as the linear voltage drop as 
 

277 in equation (13). 
 
 
 

278 278 
 

𝑉𝑉 = 𝐴𝐴𝑚𝑚 𝑣𝑣𝜌𝜌𝐿𝐿𝑣𝑣 𝜉𝜉𝑐𝑐 1 ( ) 
  

 (13) 

𝑛𝑛  16𝛽𝛽𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝐴𝐴𝑐𝑐 𝐹𝐹𝜌𝜌𝑂𝑂2 𝛾𝛾 

 
279 Where, 𝐴𝐴𝑚𝑚 and 𝐴𝐴𝑐𝑐 is the area of membrane and cathode respectively (m2), 𝑣𝑣 is the kinematic 

280 viscosity (m3/s), 𝜌𝜌 is the density (kg/m3), 𝐿𝐿 is the length (m), 𝑣𝑣 is the current density (A/m2), 𝜉𝜉𝑐𝑐 is 

281 the stoichiometric flow ratio, 𝐹𝐹 is the Faraday constant (A/mol), 𝜌𝜌𝑂𝑂2 is the concentration of oxygen 

282 (mol/m3), 𝛽𝛽𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 is the pumping power ratio [38]. 
 

283 RESULTS AND DISCUSSION 
 

284 One of the simplest means of analysing and optimising flow field configuration is through 
 

285 observation of the distribution of pressure and velocity in the fluid domain. As stated earlier, the 
 

286 selected design must be able to uniformly distribute pressure over the gas diffusion layer at a 
 

287 constant rate. The drop in pressure between the inlet and outlet of the flow channel must be less as 
 

288 well in order for the gas to reach the reactive site early for electrochemical reaction to occur. 
 

289 DESIGN 1 OF FLOW CHANNEL (D1) 
 

290 The first observation is the collision of the fluid with the foam as it flows from the inlet. This 
 

291 causes the speed at which the gas is travelling to increase but the obstruction causes a change in 
 

292 direction around the manifold. Convective flow is created along the porous domain. The D1 profile 
 

293 for the distribution of pressure and velocity is shown in Fig. 7. The purpose of this design was to 
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294 uniformly distribute the reactant gases over the open pore cellular foam material (OPCFM). The 
 

295 inlet of the design was created to have an obstruction that was oval in shape. This was done so that 
 

296 the gas builds up momentum as it flows around the oval impediment. The downstream part of the 
 

297 flow plate had same features as the upstream. Convective flows are observed as the gas leaves the 
 

298 impediment into the porous fluid domain. From the pressure profile in Fig. 7(a), the pressure of 
 

299 the gas entering the fluid domain is at 3.2 Pa. It reduces as the gas exit the fluid domain at 1.0 Pa, 
 

300 indicating an overall pressure drop of 2.1 Pa. The mass transport which is linked to the efficiency 
 

301 of the fuel cell will also be seriously affected. A uniform pressure and velocity distribution are 
 

302 observed, as shown in Fig. 7(a) and 7(b). The greater portion of the gas will flow through the foam, 
 

303 meaning that the GDL, which will be in contact to the MEA, will have most of its surface in contact 
 

304 with the gas. Hence the release of electrons through the electrochemical reaction will be very high 
 

305 thereby increasing the amount of energy produced. Water found in the pores or channels will be 
 

306 carried to the outlet easily since large areas of the design will have gas flowing through them. This 
 

307 design will, therefore, be suitable for water management in the fuel cell and also the fewer dead 
 

308 zones show the lesser possibility of water accumulation which affects the fuel cell negatively [40]. 

 
309 309 

 
310 DESIGN 2 OF FLOW CHANNEL (D2) 

 
311 The D2 design can be seen in Fig. 8. It consists of an obstruction which is perpendicular to the 

 

312 main inlet but the dimensions for each of the five(5) rectangular impediments are irregular. The 
 

313 design is similar to D1, with the downstream section of the fluid domain same as the upstream. 
 

314 The orientation of the inlet and outlet are diagonal to each other. The pressure distribution 
 

315 according to the pressure profile in Fig. 8(a) shows that D2 has the pressure of the fluid being high 
 

316 at the inlet but reduced at the outlet where the gas exits the fuel cell. From the profile, the mid 
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317 region of the design will have the pressure uniformly distributed. In comparison with D1, the inlet 
 

318 pressure for the D2 is lower. There is, therefore, the pressure drop between the inlet region and the 
 

319 outlet of the cell. The efficiency of the fuel cell will be greatly affected due to the effect on  mass 
 

320 transport. Greater portions of the MEA will be utilised as the gas will travel through larger portions 
 

321 of D2 compared to that of D1. The outlet velocity for D2 shown in Fig. 8(b) is higher than that of 
 

322 D1, hence any water in the fluid domain or channel will leave the D2 faster than it will D1. There 
 

323 are some regions in the fluid domain of D2 that are low, which , creates dead zones and hence 
 

324 more water accumulated in the fuel cell. It remains one of the major setbacks for this design. The 
 

325 inlet and outlet orientation are also diagonal to each other. 
 

326 DESIGN 3 OF FLOW CHANNEL (D3) 
 

327 The D3 design, as shown in Fig. 9, has the orientation of the inlet and outlet being diagonal. The 
 

328 design comes with impediments at the inlet and outlet region of the cell. These obstructions are 
 

329 designed to be both diagonal and perpendicular to the inlet and outlet. It allows the gas to flow to 
 

330 the other parts of the fluid domain but from the pressure profile shown in Fig. 9(a), there is pressure 
 

331 drop from the inlet to the outlet. This drop in pressure is fairly low when compared to those of D1 
 

332 and D2. From Fig. 9(b), a uniform velocity distribution is observed through the bipolar plate. The 
 

333 general design of D3 will have a negative impact on the efficiency of the PEM fuel cell. This 
 

334 occurs because of the orientation of the inlet and outlet of the fuel cell. The impediment for this 
 

335 design does not allow the fluid to flow through the entire surface of the fluid domain hence not all 
 

336 the surface of the MEA will be utilised. Dead zones will however be created since the gas is unable 
 

337 to flow through every portion of the fluid domain. It indicates that only one-third of the MEA 
 

338 surface may be utilised hence fuel cell performance will be low. 
 

339 DESIGN 4 OF FLOW CHANNEL (D4) 
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340 The D4 design as shown in Fig.10, has the inlet and outlet of the design being symmetrically 
 

341 aligned to the mid portion of the design. From the design shown in Fig. 10(a), the gas travels 
 

342 through each symmetrical section of the fluid domain due to the double impediment at the inlet 
 

343 region on both the left and right side of the design. The obstruction is actually found at the edges 
 

344 of the fluid domain. The gas travels freely from the inlet to the outlet with no impediment at the 
 

345 middle section of the fluid domain. The pressure drop from the inlet region to the outlet region of 
 

346 D4 is low, hence it will have a positive effect on the mass transport of the fluid flowing through 
 

347 the domain. The efficiency will therefore be fairly better compared to the designs discussed earlier. 
 

348 From the velocity profile in Fig. 10(b), there is a lower velocity at the inlet when compared with 
 

349 other designs. There is also less or minimal restriction as the gas flow directly from the inlet to the 
 

350 outlet. This is noticed around the mid-section of the fluid domain. It is also observed that the entire 
 

351 MEA surface would not be utilised. The blue regions in the D4 are also high hence there would be 
 

352 more water accumulation of water which will affect the fuel cell performance. 
 

353 DESIGN 5 OF FLOW CHANNEL (D5) (SERPENTINE FLOW PLATE) 
 

354 The D5 design, as shown in Fig. 11, allows gas to travel through a greater portion of the MEA 
 

355 hence it is the popularly preferred flow plate design for most PEM fuel cells. The results from the 
 

356 simulation performed as shown in Fig. 11 exhibited high pressure at the inlet for the first bipolar 
 

357 plate flow channel. As the gas flows through the rest of the channels, it drops gradually in terms 
 

358 of pressure, which means that there would be high-pressure drop on the MEA. The implication is 
 

359 that the mass transport will be affected and effectively lead to a reduction in fuel cell performance. 
 

360 The velocity profile is shown in Fig. 11(b). It clearly shows that the velocity at which the gas 
 

361 travels will be distributed evenly across the whole flow plate design. Due to the nature of the 
 

362 serpentine design, it is able to carry all water in the channel to the outlet hence very effective in 
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363 mitigating issues relating to flooding . The velocities of some of the layers at the boundaries are 
 

364 observed to be low particularly around the edges. Annular flows are therefore created as the water 
 

365 is moved to the channel walls. The area marked blue shows the part of the fluid domain where 
 

366 there dead zones could accumulate. Dead zones as defined earlier are sections on the fluid domain 
 

367 where the gas may not travel through due to the design of the flow plate. 
 

368 VALIDATION OF RESULTS 
 

369 Some specific velocities used in literature (1, 3, 6, 9, 12 m/s) [9] were integrated into ANSYS. The 
 

370 simulation was carried out to give a detailed idea of various situations that may occur in the fluid 
 

371 domain as the gas moved from the inlet to the outlet. It therefore showed the drop in pressure for 
 

372 each design as the gas travelled through the fluid domain at different velocities. It was noticed that 
 

373 the drop in pressure for the D5 (Serpentine design) was high compared to the other design that was 
 

374 aimed at using OPCF material. Fig. 12 shows the effect on pressure drop as the specific fluid inlet 
 

375 velocities is varied in the range 1 m/s – 12 m/s for designs D1 – D5. It can be observed in Fig. 12, 
 

376 that D4 shows a very low-pressure drop, with a maximum of 20 Pa at a flow velocity of 12 m/s. 
 

377 The inset in Fig. 12 shows the pressure drop for a serpentine flow channel at a range of flow 
 

378 velocity 1 – 12 m/s, where the pressure drop is very high even at low flow velocities. In contrast 
 

379 to the traditional flow channels, the use of OPCF material shows better performance 
 

380 characteristics. Table 2 shows the boundary conditions that were used to run the optimisation of 
 

381 the flow plate. 

 
382 382 

 

383 383 
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384 Table 2 – Boundary conditions used in the simulation of the flow plates using Velocity 
 

Meshing Properties Boundary Conditions Solution Parameters 

Mesher ANSYS 
 
meshing 

Model OPCF Solver CFX 

Mesh Proximity 

and 

Curvature 

Viscous 

model 

Laminar Solver type Pressure based 

Relevance 

Size 

function 

Smoothing 

Fine Fluid Hydrogen Scheme Simple 

Fixed Solid Aluminium Gradient Least Square 
 
Cells 

Fine Temperature 288 K Discretisation 
 
pressure 

Standard 

Transition Slow Velocities 1, 3, 6, 9, 12 
 
ms-1 

Momentum Second order 

Elements 250000 
 
310000 

- Pressure 
 
Outlet 

0 Porosity 0.90 

385 385 
 

386 To obtain a comparison on the pressure drop in porous media, and to draw a contrast to the 
 

387 simulation results obtained by ANSYS, the proposed mathematical models were analysed using 
 

388 the values as shown in Table 3. Fig. 13 shows the pressure drop related to the different 
 

389 mathematical models and the simulation result for design D4 from ANSYS. It is found that for the 
 

390 same porosity 𝜁𝜁 = 0.936 and pore diameter, 𝑑𝑑𝑝𝑝 = 3.068mm, the Darcy model, has the lowest 
 

391 pressure drop which follows a similar trend to that of the pressure drop for design D4. 
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392 392 
 

393 Table 3: Parameter values used in the mathematical models 
 

Parameters Values Reference 

𝜁𝜁 0.936 [49] 

𝑣𝑣 1.838 × 10-5 (kg/s m) [49] 

𝜀𝜀 4 [48] 

𝑑𝑑𝑝𝑝 3.068 (mm) [7] 

𝜌𝜌 1.308 [49] 

𝜌𝜌 1.184 (kg/m3) [49] 

𝑑𝑑𝐿𝐿 0.35 (mm) [48] 

𝛼𝛼 0.4 [48] 

𝐿𝐿 5 (mm) - 

394 394 
 

395 Using the established result, that the Darcy model fits well with the ANSYS model simulation for 
 

396 design D4, further analysis on the mathematical model is therefore performed. The Darcy model 
 

397 in equation (2) relates to the pressure drop as a function of the permeability and the fluid velocity. 
 

398 The permeability as described in equation (3) relates to the pore diameter and the porosity. 
 

399 Fig. 14 shows the effect of increasing pore diameter for a constant porosity, 𝜁𝜁 = 0.93. It is 
 

400 observed that the permeability of the material exponentially increases while the C factor reduces 
 

401 and approaches a constant value for higher pore diameter [39]. This suggests that the pressure drop 
 

402 for high pore diameter would have a linear response with increasing flow velocity. This can be 
 

403 observed in Fig. 15, where the effect of increasing pore diameter is shown with respect to the 
 

404 increasing velocity and the pressure drop. Further analysis on the effect of increasing porosity 
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405 suggest that for higher porosity, the pressure drop is lower. This effect can be observed in Fig. 15 
 

406 (b) for a pore diameter of 100 µm. 
 

407 407 
 

408 Further utilisation of the Darcy model is carried out by analysing the overall effect on pressure 
 

409 drop in a 3D surface plot where the effect of varying pore diameter, porosity, and the flow velocity 
 

410 is considered. This can be observed in Fig. 16 (a), where a higher pore diameter and higher porosity 
 

411 shows a low-pressure drop. There is, however, a trade-off with a low-pressure drop at higher pore 
 

412 412 
 

413 413 

 
414 414 

 
415 415 

diameter, which is the flow regime of the operating fuel cell. For a fully functional PEMFC, it has 

been  established that  the  flow through the channel  is laminar. The Reynolds Number (𝑅𝑅𝑐𝑐 = 
 

  𝜌𝜌√𝛾𝛾𝑉𝑉) is a good measure of determining the flow in a channel, where, Re <2300 indicates a laminar 
𝑣𝑣 

 
flow and turbulent otherwise [59-60]. It is dependent on the flow velocity and the permeability 

 

416 (pore diameter and porosity) of the channel, assuming a constant viscosity and density. This key 
 

417 measure is analysed for varying porosity, pore diameter and flow velocity in Fig. 16 (b). It is 
 

418 observed that for a flow velocity above 6 m/s and pore diameter of greater than 2 mm, the flow in 
 

419 the channel would therefore be turbulent. This result indicate that in the design of OPCF channel 
 

420 for consideration in PEM fuel cells, with higher pore diameter to achieve a low-pressure drop, the 
 

421 flow velocity should be less than 6 m/s. 
 

422 One clear way of analysing fuel cell performance is through the polarisation curve. It is expected 
 

423 that, due to a low-pressure drop, fuel cell performance to be better. Mathematical models that 
 

424 describe the polarisation curve has been extensively studied in the literature [38], however, the 
 

425 performance can also be measured using a linear approximation of the polarisation curve, as this 
 

426 works well for most fuel cells acting within their practical operating range [38]. In analysing such 
 

427 performance, the permeability of the flow channel is a key parameter, which depends on the pore 
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428 diameter and the porosity for porous media. A linear approximation of the polarisation curve is 
 

429 therefore developed which is dependent on the permeability of the channel as defined earlier in 
 

430 equations (12) and (13). Fig. 17 shows a linear approximation of the polarisation curve for both 
 

431 the porous medium and hollow (serpentine) channel. All of the terms in equation (13) are kept 
 

432 constant for both types of channels except the permeability, which changes with the type of 
 

433 channel, as defined in equations (3) and (4). Fig. 17 shows the effect of using porous channel on 
 

434 the current density and cell potential. The result for the porous channel was evaluated for a pore 
 

435 diameter of 𝑑𝑑𝑝𝑝 = 0.25mm and porosity, 𝜁𝜁 = 0.90, whereas for the hollow serpentine channel, the 
 

436 hydraulic diameter (calculated) 𝑑𝑑ℎ = 0.5 mm was taken. The calculated permeability of the 

437 hollow channel was 2.02 × 10-8 m2 and for the porous channel was 2.53 × 10-8 m2. It is observed 
 

438 in Fig. 17 that, due to a low-pressure drop because of the use of OPCF flow channel, the 
 

439 performance of the PEM fuel cell is greatly increased. Based on the analysis carried out it can be 
 

440 concluded that for a good performance of the PEM fuel cell using OPCF material, the permeability 
 

441 should be greater than the traditional flow channel. 
 

442 442 
 

443 TESTING OF FUEL CELL 
 

444 444 
 

445 The fuel cell was also experimentally validated by testing the performance of the serpentine flow 
 

446 plate design with that of an open pore cellular foam material used in the new design. Fig. 18 shows 
 

447 the assembly process used in building the fuel cell with the open pore cellular foam material. The 
 

448 grooves were cut using a CNC machine to create the position where the aluminium open pore 
 

449 cellular foam will be placed. After the OPCFM is put in position, the membrane electrode assembly 
 

450 obtained from fuel cell store was also carefully placed on the foam. The cathode housing was also 
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451 designed to have the foam as its flow channel. The fuel cell was carefully tightened and checked 
 

452 for leaks, as any loss of hydrogen gas will compromise the economic efficiency of the new PEMFC 
 

453 design. Once checks showed the fuel cell was well sealed, it was then placed in  the experimental 
 

454 set up as shown in Fig 19 and Fig. 
 

455 The results obtained after using the open pore cellular foam material shown in Fig. 21 indicated 
 

456 that the fuel cell performance improved appreciably compared to the serpentine design and this 
 

457 also validated the results obtained computationally in ANSYS. It must be noted that the hydrogen 
 

458 was passed through a humidification chamber to keep the membrane moist to aid in good electro 
 

459 osmotic drag and back diffusion for both experiments. All other parameters, like cell operating 
 

460 temperature and pressure, were kept constant for both experiments. When the pressure drop 
 

461 through the bipolar plate between the inlet and outlet is high, more pumping power will be needed 
 

462 to overcome this, hence reducing the net performance of the fuel cell. The more gas is introduced 
 

463 to the catalyst layer, the more electrons are released hence the reason for the high performance of 
 

464 the fuel cell when the open pore cellular foam was used. 
 

465 CONCLUSION 
 

466 The general performance of a fuel cell depends highly on the pressure drop as well as the velocity 
 

467 of the gas as it flows through the fluid domain. High drop in pressure indicates that the flow of gas 
 

468 to the reactive site would be low. Therefore, the rate at which electrons will be released due to the 
 

469 electrochemical reaction will be lower, leading to a lower current produced. The work also 
 

470 identified that the design of the flow plate affects the water management of the fuel cell. Having a 
 

471 design where there are dead zones implies that not all portions (surface) of the MEA will be utilised 
 

472 during the electrochemical reaction. The orientations of the inlet and outlet also played a key role 
 

473 in determining the efficiency of the fuel cell. The drop in pressure of the foam was only subject to 
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474 the pores of the foam while that of the serpentine design experienced pressure drop in each arm of 
 

475 the flow channel. It explains the high-pressure drop for the serpentine flow plate design. The work 
 

476 finally concluded that, in comparison to the serpentine flow design, the open pore cellular foam 
 

477 material was a suitable option for a fuel cell with a minimum pressure drop of 22.5 Pa as compared 
 

478 to 10,000 Pa with the serpentine design at a velocity of 12 m/s. 
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Fig. 1: Fuel cell with five (5) Stacks 
 

Fig. 2: Exploded view of a Proton Exchange Membrane fuel cell. 
 

 
Fig. 3: Nafion Membrane Electrode assembly 
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Fig. 4: PEM fuel cell with acetyl housing unit from obtained from fuel cell store. 
 

 
Fig. 5: OPCF material and the PEM Fuel cell schematic 

 

 
Fig. 6: The CFD model mesh using CFX. 
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(a) (b) 
 

Fig. 7: Fluid domain for flow channel D1: (a) - pressure profile (Pa), (b) - velocity 

profile(m/s) 
 

 

(a) (b) 
 

Fig. 8: Fluid domain for flow channel D2: (a) - pressure profile (Pa), (b) - velocity 

profile(m/s) 



 

  
 

 

(a) (b) 
 

Fig. 9: Fluid domain for flow channel D3: (a) - pressure profile (Pa), (b) - velocity 

profile(m/s) 
 

 

(a) (b) 
 

Fig. 10: Fluid domain for flow channel D4: (a) - pressure profile (Pa), (b) - velocity 

profile(m/s) 



 

 
 

 

(a) (b) 
 

Fig. 11: Fluid domain for flow channel D5: (a) - pressure profile (Pa), (b) - velocity 

profile(m/s) 
 
 

Fig. 12: Graph of velocity against pressure drop for flow channel designs D1 to D5. 



 

 

 
Fig. 13: Comparison of pressure drop using the different mathematical models and ANSYS 

simulation result for design D4. 
 

 

Fig. 14: Effect of increasing pore diameter on the permeability and factor C. 



 

 

  
 

(a) (b) 
 

Fig. 15: Effect of increasing velocity on pressure drop for (a) different pore diameter (b) 

different material porosity. 

  
 

(a) (b) 
 

Fig. 16: Surface plot at varying pore diameter, porosity and flow velocity for (a) Pressure 

drop (b) Reynolds Number 



 

 

 
 

Fig. 17: Current density vs cell potential for the porous and hollow channel. 
 

 

 

Fig. 18 Building of Open pore cellular foam material PEMFC. 



 

  

a) b) 

Fig. 19: Experimental set up a) Open pore cellular foam material b) Serpentine flow field 
design 

 

Fig 20: Experimental set up for the texting of the fuel cell 



 

 

 

 
 

 

Fig. 21: Polarisation curve for the serpentine flow field and the open pore cellular foam 

material 
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