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Abstract 

Prolonged sedentary behavior (SB) is associated with increased risk for chronic conditions, and 

due to technological advances, the working population is in office settings with high 

occupational exposure to SB. There is a new focus in assessing, understanding and reducing 

SB in the work setting. So, measuring accurately SB at work is a new goal. There are many 

subjective (questionnaires) and objective methods (monitoring with wearable devices) on the 

place. Therefore, we aimed to provide a global understanding on methods currently available 

for SB assessment at work. Available questionnaires are the most accessible method for a large 

population with a limited budget. SB at work (time sitting) is accessible from some specific 

items and it is also possible to deduct SB in measuring PA at work that is easier measurable. 

For a restrictive group, SB at work can be objectively measure with wearable devices 

(accelerometers, heart-rate monitors, pressure meters, goniometers, electromyography meters, 

gas-meters) and can be associate with a subjective measure (questionnaire).  Number of devices 

wears increase the accuracy but make the analysis complex and time consuming.   

 

Keywords: Occupational Health, Sedentary lifestyle, Workplace, Sedentary behaviour 

measurement, Work, Questionnaires, Wearable devices, Recommendations 

  



Introduction 

Sedentary behaviour (SB), defined as sitting or lying with low energy expenditure ≤1.5 METs 

[1] is an independent risk factor for a number of adverse health outcomes. People in modern 

industrialized societies spend more and more time engaged in SB during the main domains of 

living, like working (e.g. using computers), travelling (e.g. driving a car) and during leisure 

(e.g. watching television) [2; 3]. Further, a greater proportion of the workforce is now employed 

in low activity occupations such as office work. Office workers were found to be sedentary for 

76% of their working day [4]. Prospective studies have demonstrated a positive association 

between self-reported times spent sitting and chronic disease and all-cause mortality [5; 6; 7; 8; 

9; 10; 11; 12; 13]. There is a dose response relationship between self-reported daily total sitting 

and all-cause mortality, with a 2% increase in all-cause mortality per hour spent sitting per day 

[14] even after adjusting for the extent of moderate or vigorous physical activity [15; 16]. This 

indicates that much time spent seated infers a risk for health impairments irrespective of the 

level of physical activity. SB can be measured by declarative methods (auto-administrate 

questionnaires) and objective methods (observation, video or technical instruments). 

Descriptive parameters of physical activity and sedentary activity most used are duration, 

frequency, intensity, domain or context (leisure, work, domestic, transport) and the type of 

activity. Indicators combining these parameters can be calculated globally or for each one of 

the domains. The most common are the volume (time x frequency) and the energy expenditure 

(duration x frequency x intensity), the latter being rather calculated to account for overall 

physical activity. Time spent in front of a screen (television, video, video games, computer ...) 

is currently the most used sedentary indicator and in the majority studies, it is the time spent 

watching television that is measured by survey.  Considering the public health impact of SB at 

work, there is now a growing research burden around sedentariness at work. However, SB is 



measured through a wide range of methods, but no scientific articles provide a global overview 

on all methods to measure sedentariness.  

 

Objective 

The aim of this synthesis was to provide a global understanding on methods currently available 

for SB assessment at work. 

 

Characteristics of sedentary behaviour  

Daily duration of SB is the metric normally used for considering health effects of SB. The time 

patterns of SB can also be important for evaluating its health consequences. For example, time 

spent in continuous prolonged bouts of SB may be more detrimental to health than the same 

duration spent in shorter bouts [17; 18]. Investigations of SB at work should not only address 

duration of SB, but even the durations of SB periods, as well as the periods of non-SB. The 

context of SB is also important (what, where, why, when and with whom).  

 

Methods of measuring sedentary behaviour 

 

Declarative methods - Self-reported questionnaires  

These questionnaires are the most common method SB and rely on participants’ recall 

ability[19]. The commonly used self-report questionnaires for SB at work assessment are: 

Global Physical Activity Questionnaire (GPAQ), International Physical Activity Questionnaire 

(IPAQ)[20; 21], Workfoce Sitting Questionnaire (WSQ, Adapted from Marshall 

Questionnaire), Occupational Sitting and Physical Activity Questionnaire (OSPAQ)[22] and 

European Physical activity Questionnaire (EPAQ) [23]. Questionnaires vary by what they 



measure (e.g., mode, duration, or frequency of PA and SB), how data are reported (e.g., activity 

scores, time, calories), by the time of recall (e.g., last week or over the 12 last months), quality 

of the data (e.g., measures of intensity, differentiating between habitual and merely recent 

activities, inclusion of leisure and non-leisure activity), and how data are obtained (e.g., paper 

and pencil assessment, computerized questionnaire, interview) [24]. The strength of 

questionnaires is their low cost and low burden of effort, both for the participant and for the 

researcher. Thus, it is feasible to use questionnaires to collect information from large 

populations. However, self-reported sedentary time at work has been shown to be both biased 

and imprecise, less robust in measuring light or moderate activity, assessing energy 

expenditure, and may be limited by the dependency on written language (i.e., questions), and 

external factors (i.e., social desirability, complexity of the questionnaire, age, and seasonal 

variation)  [25; 26; 27; 28], and is therefore generally regarded to have severe limitations when 

used in studies of occupational SB [29]. Characteristics and performances of questionnaires for 

SB assessment at work are presented in Table 1.  

 

Objective methods  

 

Visual observation (direct or videotaped) 

Visual observation, either on-site or videotaped is another method for assessing SB at work. 

Observational methods are still a common approach among researchers and practitioners for 

assessing body postures at work [29]. This method of assessment is often use by ergonomists 

and when activity is restricted to a delineated space (e.g., work space). This flexible method is 

valuable in gathering contextual information (e.g., preferred location, time, and clothing) and 

details of the SB (e.g., type, personalized variations to activities). However, observations are 

generally time consuming and expensive per unit of working time observed [30], and they are 



therefore only feasible with relatively short assessment periods and limited population sizes. 

Observation-based methods are also associated with considerable uncertainty due to observers 

differing in ratings [31]. Visual observations at the workplace can also be challenging due to 

the logistic burden associated with data collection and ethical aspects (e.g. observing work with 

patients). Observations may also modify the behavior of the observed worker (observational 

bias). Videotaped monitoring at work need also the authorization of employers and workers. 

 

Cardiorespiratory assessment 

 

Indirect Calorimetry (IC) 

With IC total energy expenditure (TEE) is calculated from Weir’s equation, taking oxygen 

consumption and carbon dioxide production into account [32]. This method has the potential to 

be used for accurate non-invasive routines but it involves costly medical material, and is not 

feasible in the context of epidemiological studies nor in free-living conditions. Thus this method 

needs to wear a facemask connected to a central unit that analyzed either the O2 or both the O2 

and CO2 concentrations during a scenario of controlled activities. The facemask was linked to 

the central unit worn in a backpack. The central unit analyzed the O2 and CO2 consumption in 

real time necessary for the TEE calculation. Thus by discriminating energy expenditure, SB is 

defined as seated, reclining or lying activities requiring low levels of energy expenditure (i.e., 

≤ 1.5 METs), light-intensity physical activity (LPA) as standing is between 1.6–2.9 METs and  

Moderate- to vigorous-intensity physical activity (MVPA) require energy expenditure ≥ 3.0 

METs). IC can evaluate sedentary time. These analyzers have become portable like the Cosmed 

K5 [33] or Metamax Cortex [34]. Their use over a long period can be difficult to support 

depending on the activity of the worker but feasible. Because of the relatively small absolute 

difference in energy expenditure between sitting and standing posture [35; 36], assessment of 



energy expenditure only does not provide reliable information about the gross body posture. 

Therefore, assessing SB at work also requires measurement of body posture. Conversely, 

wearable devices may be used to assess a multitude of body positions at work, as per their 

anatomical location. 

 

ECG-Holter  

There is a linear relationship between cardiorespiratory stress and energy expenditure, and thus 

with activity intensity [37]. Heart rate (HR) can therefore be used to estimate energy 

expenditure, which complements the data of accelerometers, leading to an increased accuracy 

for assessing physical activity and SB [29; 38]. Different principles are available for assessing 

HR, with electrical (electrocardiography, ECG) and optical (photoplethysmography, PPG; 

blood volume pulse, BVP) sensor technologies being the most commonly used [39]. Electrical 

HR sensors detect the electrical signals which lead to contraction of the heart. The signal allows 

detection of each individual heartbeat, and thus a calculation of the HR. A 12-lead ECG is 

considered the gold-standard for non-invasive electrocardiographic assessment in clinical 

settings, while a portable 3-lead ECG-Holter system can be applied in the field. It allow 

abnormal heart rhythms and cardiac symptoms detection. ECG-Holter is a medical device (3 or 

5 leads) and is for scientific research and medical domains. ECG-Holter commercially available 

consumer wearables are often based on 1-lead or 2-lead ECG setups (no medical device?). 

Although the validity and accuracy of the assessments are high, the technique is susceptible to 

artifacts from physiologic (emotion, stress, body temperature) or non-physiological factors like 

muscle activity, motion or poor contact between electrodes and the skin [40; 41]. Additional 

markers for subject-activated events and time correlates are included to allow greater diagnostic 

accuracy. Data are stored in the device using digital storage media (Sd cards) and analyzed 

using software with technologist and physician editing and reporting. 



 

Heart-Rate Monitors 

There are two different types of technology used by HR monitors: the electrical signal detection 

“ECG-based” (RR interval) and optical sensor. ECG-based sensors work by detecting electrical 

signals sent through the heart each time it contracts. Optical HR sensors use integrated 

photodiodes which shine light onto the skin and captures the amount of reflected light.  The 

amount of reflected light will change over time, following the changes in the volume of the 

blood vessels, and this can be used to assess the HR [42]. These sensors can, in principle, be 

applied anywhere on the skin, allowing for great flexibility, and they are also cheap. Typical 

placements are at the wrist, the ear lobes or the fingertips. The main limitation of this technique 

is its sensitivity to movement artifacts [43] and skin texture. ECG chest straps (heart belt) still 

offer the most reliable, consistent and accurate way to monitor HR thanks to higher sampling 

rates and the position closer to your heart [44]. However, many people prefer the comfort and 

convenience of optical sensors built into watches (Applewatch).  HR monitors capture EE 

during working activities not involving vertical trunk displacement that many accelerometers 

and pedometers miss [45] and are best suited to categorize subjects’ PA levels (i.e., highly 

active, somewhat active, sedentary) as opposed to the exact amount of PA. These devices tend 

to show discrepancies particularly at very high and low intensities [46]. Discrepancies are due 

to HR and energy expenditure not sharing a linear relationship at rest and low-intensity (as the 

PA is confounded by unrelated factors such as caffeine, stress, body position) or high intensity 

PA [46]. Age, body composition, muscle mass, gender, and fitness level also affect this linear 

relationship or reduce its accuracy [47]. 

 



Accelerometers  

Accelerometers are currently used to measure PA intensity category and SB and have become 

the method of choice for measuring SB given their accuracy, ability to capture large amounts 

of data, and ease of administration, particularly in large studies. These devices measure 

acceleration (counts) in real time and detect movement in up to three orthogonal planes 

(anteroposterior, mediolateral, and vertical) [48].  The accelerometers assume that force 

produced by the body (muscles) is proportional to the acceleration detected, and therefore 

related to EE. These devices tend to measure sedentary time in two different ways. Posture 

sensors measure sedentary time either through an accelerometer in conjunction with 

gravitational components and proprietary algorithms or through the alignment of the area of the 

body surrounding the pelvic area (ie, pelvic alignment is different depending on standing, 

sitting, and lying). Some accelerometers are unable to differentiate body position (i.e., sitting, 

lying, standing) or walking intensity [49]. New accelerometers demonstrate better validity, 

compared to DLW, than older models. However accelerometers induce a reactivity bias [50], 

and do not provide any contextual information (i.e., setting and type of activity). Notably, the 

relationship between accelerometer activity counts and energy expenditure depends on the 

count cut-point applied to the data; choosing different cut-points can differentially influence 

measurements of physical activity intensity [51]. Most of the time, the acceleration results to 

characterize sedentary (absence of movement) and active behaviours. The most commonly used 

cut-points for adult populations are < 100 counts/minute for SB, 100–1,951 counts/min for 

light-intensity PA (LPA), and ≥ 1,952 counts/min for moderate- to vigorous-intensity PA 

(MVPA) for the ActiGraph accelerometer [52; 53]. However, these cut-points were developed 

in specific populations and during strict, laboratory-based protocols. Other studies validating 

the ActiGraph have found vastly different cut-points for SB (range 50–250 counts/min) and 

MVPA (191–2,691counts/min) in adults, depending on the population and type of validation 



setting [54; 55]. The cut-point method has several limitations; it cannot differentiate standing 

from sitting/lying, but standing is considered LPA because it elicits different physiologic 

responses and has different long-term health consequences than sitting/lying [56; 57]. Thus, the 

interpretation of what is considered to be active behaviour is consequently different and makes 

the comparison between the studies difficult. Obese people spent more time in sedentary 

behaviours than normal weight individuals [58; 59]. Thus cut-points have to be more accurate 

to show difference among normal-weight and obese populations. An accelerometer worn on the 

right thigh, achieved high accuracy for classification of three distinct PA intensity categories 

(SB, LPA, and MVPA) as well as breaks in SB in a semi-structured setting. An accelerometer 

worn on the left wrist also had high accuracy for assessment of SB but had some 

misclassification of LPA and MVPA, whereas accelerometers worn on the right wrist and hip 

had the lowest accuracy for assessment of all PA intensity categories and for measuring breaks 

in SB. These findings support the use of a thigh-worn accelerometer for assessment of time 

spent in different PA intensity categories. Alternately, for researchers using wrist-worn 

accelerometers to assess PA, wear on the non-dominant wrist is likely to allow for higher 

measurement accuracy than wear on the dominant wrist [60]. Due to limitations of the cut-point 

approach to measuring PA intensity categories, researchers have utilized machine learning 

models to improve accuracy of PA measurement worn on various body locations [61; 62]. An 

accelerometer does not give the position information of the subject. It will be completed by a 

gyroscope (measuring orientation and angular velocity) (Sansung Gear S3) and a magnetometer 

(detecting Erath’s magnetic three perpendicular axes X, Y, Z) (Actigraph GT9X) [63]. A GPS, 

can complete this arsenal of sensors and will give the geographical position and speed but 

outside only. Some devices include a brightness sensor to access sleep quality. These wearable 

lightweight devices are easily forgotten by users.   The researcher should take care to check the 

sampling frequency, resolution and the maximum amplitude of the device. These three 



parameters are generally correlated to the price of the wearable monitor. In order to make long 

observation, it is also necessary to check the device battery and storage space. Recent smart-

phones or smartwatches are equipped with all the mentioned sensors. 

 

Smartwatches and smartphones  

Smartwatches are computerized devices or small computers intended to be worn on the wrist, 

and have expanded functionality that is often related to communication. Most current 

smartwatch models are based on a mobile operating system. Manufacturers continue to develop 

their products and add features, such as waterproof frames, global positioning system (GPS) 

navigation systems, and fitness/health tracking features [16]. With the addition of reliable, 

sensitive inertial sensors on them, smartwatches can now be used to capture and analyze hand 

gestures, such as smoking or other activities [17]. In a recent meta-analysis [64] the most 

popular smartwatches (connected devices) on the market were compared : from Fitbit, Garmin, 

Apple, Misfit, Samsung Gear, TomTom, and Lumo. Overall, wearable devices tend to 

underestimate energy expenditure compared to criterion laboratory measures (Oxycon Mobile, 

CosMed K4b2, or MetaMax 3B). Additionally, while wearable technology devices are better at 

estimating energy expenditure during moderate to vigorous activities, getting better as the 

intensity increases, validity becomes poorer with low intensity and sedentary. All wrist and 

forearm devices had a tendency to underestimate HR, and this error was generally greater at 

higher exercise intensities and those that included greater arm movement. HR measurement 

was also typically better at rest and while exercising on a cycle ergometer compared to exercise 

on a treadmill or elliptical machine. Step count was underestimated at slower walking speeds 

and in free-living conditions, but improved accuracy at faster speeds. Since smartphones are 

basically mobile computers and are widespread among the general population, they offer a 

convenient alternative to smartwatches or other wearable devices. Today, a middle-range 



smartphone assembles a lot of sensors for example an Asus Zenfone 4 

(https://www.asus.com/uk/Phone/ZenFone-4-ZE554KL/Tech-Specs/) have an accelerator, an 

e-compass, a gyroscope, a proximity sensor, an ambient light sensor, GPS (Global Position 

System) or GLONASS (Global Navigation Satellite System)… It is also possible to add an HR 

belt or a watch and now a gas analysers. Smartphones are particularly attractive for context 

awareness and phone-based personal information [65]. Activity recognition rates is phone-

position-dependent. To measure the periodicity of body movement different fixed positions 

have been tested: hand, pants pocket, shirt pocket and handbag [66]. Some fixed smartphone 

positions are a major disadvantage in free-living conditions. The method of calculation used 

would quickly consume not only the battery power but the mobile CPU as well when applied 

for long recording periods (12 h). Long-term smartphone monitoring is wireless and require 

periodic power supply. Another point consist to choose the accurate available application. 

 

Mobile applications 

Smartphone applications have received a considerable amount of attention in medical science. 

In 2016, the Play Store displayed 105,000 and the Apple Store 126,000 mHealth-related apps 

in health and fitness and medical categories (Research2guidance, 2018; [67]). These 

applications propose physical exercises and fitness programs with or without connected objects 

such as wristband, pedometer, scale, HR monitor, smartphone and smartwatch. When the 

mobile applications integrate the use of sensors (accelerometer, HR monitor, GPS), they inform 

the user of steps, distance, energy expenditure, speed and heart frequency. The three most 

popular applications are Fitbit, Noom, and AppleHealth (Table 2). These special features are 

welcomed by the users. Conversely, most of the applications are not scientifically validated.  

Two applications, were recently scientifically validated to assess accurately time spent in SB, 

light-, moderate- and vigorous -intensity and the TEE associated: WellBeNet (eMouve) and 

https://www.asus.com/uk/Phone/ZenFone-4-ZE554KL/Tech-Specs/


IntellilifePro. These two applications were specially developed to discriminate SB from light 

intensity activities such as standing or slow walking. Accelerometry data are collected via 

smartphones (WellBeNet (eMouve)) or via both a smartphone and smartwatch (IntellilifePro). 

 

E-Move 

E-move (Android) application detects leg movements as the smartphone is worn in a front pants 

pocket. Different algorithms were designed for normal and overweight/obese adults. The TEE 

and time spent in the different activity categories given by the E-Mouve algorithms were 

compared with reference method or device: either Armband or indirect calorimetry (FitmatePro, 

Cosmed). Absolute error of the TEE and activity estimates are 5.6% and 5.0%, respectively in 

normal weight volunteers, and 8.6% and 5.0% in overweight/obese participants [68; 69]. 

IntellilifePro  

IntellifePro, using both a smartwatch and a smartphone (Android or Apple) detects both leg 

and wrist movements. A such approach based on the use of two connected objects (smartphone 

and smartwatch) can discriminate passive from active sitting when in a sitting posture, the arm, 

the wrist and/or the hand are engaged in the movement. Absolute error of the TEE and activity 

estimates are 5% in free living conditions and 3.1%, 2.8%, 1.5% and 0.04%, respectively for 

the time spent in SB, light-, moderate- and vigorous -intensity were The absolute mean gap of 

total energy expenditure was lower than 5% in free living conditions. (Duclos et al., 2016). 

 

Pressure sensors 

The other way technologies tend to measure sedentary time is via pressure sensors. These 

pressure sensors are either located in a sock, shoe, or chair. When placed in a sock or shoe, the 

pressure can determine standing when there is pressure on the sensor and when there is less 

pressure the wearer is sitting or lying. Located on a chair, there is a simple binary outcome: 



when the pressure sensor is active the user is sitting and when it is inactive there is no sitting 

behaviour at that site.  

Table 2. Decision support for choosing the best suited wearable for a particular study on SB, 

depending on several factors, including accuracy, duration of measurements, and available 

budgets 

 

Limitations 

Smarts Clothing (shirts, socks, yoga pants, shoes, bow ties with secret cameras, helmets, and 

caps with a wide range of sensors and features), goniometers (measure an angle and angular 

position), electromyography meters (measure the electrical activities of muscles EMG) and 

wearable Camera are voluntary excluded of the presented devices because not reasonably 

applicable at work (for a variety of reasons).  

 

Conclusion 

The wide range of available wearables monitors with different characteristics offers a variety 

of opportunities to assess SB at work. The main factors of work (inside or outside, working 

movements and postures) and study population (i.e., number, age, gender, body weight, co-

morbid conditions) may also impact choosing a kind of device. Four key features of a SB 

measure should be considered when choosing one for a research study: (1) quality of SB 

measured (e.g. time spend or EE), (2) objectivity of the data, subject burden (e.g. time and/or 

effort required to complete), (3) cost/burden to administer, and (4) specific limitations, 

discussed above. Available questionnaires are the most accessible method for a large population 

with a limited budget. SB at work (time sitting) is accessible from some specific items. It is also 

possible to deduct SB in measuring PA at work that is easier measurable. Valid and reliable 

assessments of SB require measurements of both energy expenditure and body posture (dual or 



multiple wearable devices with sensors). Accurate measure of SB at work need a sufficient 

number of subjects affected to the same assigned task and an objective measure coupled to a 

questionnaire (mixed approach method). For a restrictive group, SB at work can be objectively 

measure with wearable devices (accelerometers, heart-rate monitors, pressure meters, 

goniometers, electromyography meters, gas-meters) and can be associate with a subjective 

measure (questionnaire).  Number of devices wears increase the accuracy but make the analysis 

complex and time consuming. 

Furthers studies are necessary to improve strengths and weakness of subjective or objective 

methods to assess SB at work.  
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Table 1.  Characteristics of self-report questionnaires to measure SB at work  

Not finalized  

Measure 
Period(s) 
of 
Interest 

Categories of 
Activity 
Included 

Input Output Special Notes 

GPAQ  Typical 
week 

Activity at work, 
Travel to and 
from places, 
Leisure-time 

MET-min 
per week.   

PA: min/week in MVPA, 
Sitting: hours/week). PA 
at work:  MET-
minutes/week. Total 
physical activity MET-
minutes/week.  

Designed for adults of both sex. 
For face-to-face interviews 
conducted by trained interviewers. 
16 items in three domains. 20 
minutes. Many domains explored. 
Quantifies exposure. Cross 
cultural application.  

WSQ 

 

 

 

 

OSPAQ 

 

 

 

 

EPAQ 

Past week  

 

 

 

 

Past five 
working 
days 

 

 

 

 

Typical 
week 

Total and 
domain-specific 
sitting time 
based on work 
and non-
workdays in 
adults 
 
 
 
Work time spent 
sitting, standing, 
walking, and 
doing heavy 
labour, as well 
as the total 
length of time 
worked in the 
past five 
working days 
 
 
Sitting and 
standing, 
moderate PA 
inleisure and 
working time, 
heavy labor at 
work 
 
 

Duration 
(min per 
week) 
 

 

 

 
Duration 
(min per 
week) 
 
 
 
 
 
 
 
 
 
Duration 
(min per 
week) 

Time spend sitting at work 
and non-workdays 
 

 

 

 
 
Time spend sitting, 
standing and walking, and 
doing heavy labor  and 
total length of working   
 
 
 
 
 
 
 
 
Time spend standing, 
sitting, doing moderate 
PA in leisure and working 
time, heavy labor at work 
 

Acceptable measurement 
properties for measuring sitting 
time at work on a work-day and for 
assessing total sitting time based 
on work and non-workdays. 
 
 
 
 
 
Acceptable reliability and 
validity measurement properties in 
the office workplace 
setting 
 
 
 
 
 
 
 
 
Do not distinguish moderate and 
vigorous PA, but focus on at list 
moderate PA. Assessed walking 
and bicycle separately, Shorter 
than GPAQ  and IPAQ  

 

MET = Metabolic equivalent of task (1 MET represents 3.5 ml/kg/min oxygen consumption) 
Questionnaires: GPAQ Global activity Questionnaire, IPAQ International Activity 
questionnaire, IPAQ-S (Short Version), IPAQ-L (Long Version), WSQ, OSPAQ, EPAQ 



Table 2. Characteristics and physical activity parameters evaluated by the three most 

downloaded mobile applications 

Application Operating 

system 

Wearable monitor Measured 

parameters  

Fitbit Android 

iOS 

Web 

Accelerometer (wristband) 

Manual input 

Number of steps or 

stairs  

Intensity 

Distance 

Calories burnt 

 

Noom Android 

iOS 

Smartphone sensors 

GPS 

HR monitor 

Distance 

Calories burnt 

Speed 

Apple Health iOS RunKeeper (GPS) 

Moves (GPS and smartphone 

sensors) 

Manual input 

Distance 

Calories burnt 

Number of steps 

Duration of activities 

 

 

 

 



Table 3. Instrument, raw unit, cost and environment  

 

 

  

Instrument Measure/raw unit Cost Environment 

Survey questionnaire Response quote 
qualitative 

Depend of the 
support paper, 
smartphone, 
application 
 

Possible at work but 
take time 

Accelerometer g or count (on X,Y,Z axis 
3D, position, direction, 
brightness illuminance lux) 
 

300€/unit Easy to wear even at 
work 

Heart rate monitor, 
ECG-Holter 

RR interval, Beat/minute 
 
 

25€ to 1000€ Easy to wear even at 
work 

Gas analyser O2 CO2 
consumption/production 
(liter, m3…) 
 

25k€ Easy to wear but not for 
a long time especially at 
work 

Video observation Video qualitative 50€ to-- Possible be careful with 
authorization 
 

Smartphone All sensors (XYZ g, m/s, 
position, direction, 
brightness illuminance lux 
…) 

Smartphone 
300€ but 
depends of the 
application 
cost 

Easy to wear 



Figures’ Legend 
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