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Abstract 

This study examined the effects of a specific core exercise program, as a re-warm-

up regime during the half-time period, on inspiratory (IM) and core (CM) muscle 

functions, leg perfusion and team sport-specific sprint performance in the second half of 

a simulated exercise task. Nine team-sports players performed a simulated team-sport 

intermittent exercise protocol (IEP) in two phases, on a non-motorized treadmill, 

interspersed by a 15-min half-time break. During the half-time period subsequent to the 

25-min Phase-1 IEP, the players either rested passively or performed 4-min CM exercise 

concomitant with inspiratory loaded breathing following 11-min passive recovery. The 

changes in IM and CM functions, leg perfusion and repeated-sprint ability mediated by 

the two recovery modes were compared. Following Phase-1 IEP, there was a significant 

decline in IM and CM functions respectively, revealed by the decreases in maximal 

inspiratory pressure (PImax: -8.1%) and performance of a sport-specific endurance plank 

test (SEPT: -29.7%, p<0.05). With the 15-min passive recovery, the decline in IM and 

CM functions were not restored satisfactorily (-6.4%, -19.0%, p<0.05). Moreover, 

repeated-sprint ability during the Phase-2 IEP tended to decrease (peak velocity: -2.3%, 

mean velocity: -2.1%) from the levels recorded in Phase-1. In contrast, following the re-

warm-up exercises during half-time, the restoration of IM and CM function was 

accelerated (PImax: -0.9%, SEPT: -3.3%, p<0.05). This was associated with enhanced 

repeated-sprint ability (peak velocity: +3.0%, mean velocity: +2.0%, p<0.05) in Phase-2 

IEP. Nevertheless, the changes in the anterior thigh muscle perfusion assessed by near-

infrared spectroscopy following the re-warm-up exercises was not different from that of 

passive recovery (p>0.05). The findings suggest that a brief inspiratory-loaded CM 
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exercise regime appears to be an effective re-warm-up strategy that optimizes second-

half repeated-sprint performance and core function of players in team sports.  

Keywords: repeated-sprint ability, high-intensity intermittent exercise, core stability, 

inspiratory muscle, fatigability 

 

Introduction  

Several intermittent-type team sports (e.g. soccer, handball) are played for 

between 60-90 min duration, with a half-time break of 10-20 min at the mid-way point 

(Russell et al., 2015). Half-time strategies for optimizing second-half performances are 

essential as passive recovery has been associated with physiological changes, such as 

decreases in core and muscle temperature, and reduction in blood glucose levels, that may 

impair both the physical and cognitive performance of players (Mohr et al., 2004, Greig 

et al., 2007, Lovell et al., 2013a). In fact, the passive half time interval leads to a 

decrement in the high-intensity running performance and increase in the incidence of 

muscular injury in the initial 5-15 min of the second half of competitive match-play. This 

has been reported frequently in professional soccer players (Lovell et al., 2013b). 

Currently, strategies associated with the maintenance of physical performance employed 

during a 15-min half-time break include injury treatment, hydro-nutritional practices and 

heat maintenance (Russell et al., 2015). For initiating active recovery in working muscles 

and attenuating body temperature loss due to transient drop-off in muscle activity and 

associated blood flow, actively engaging in specific physical activity, termed as “re-

warm-up exercises”, has been suggested (Mohr et al., 2004). In fact, several re-warm-up 

regimes including a moderate-intensity run, whole-body vibration and lower-body 

resistance exercise have been demonstrated effectively to protect against the decrements 



 

4 
 

in functional ability of the lower limbs and subsequent sprint ability observed under 

passive control conditions (Mohr et al., 2004, Lovell et al., 2013b, Zois et al., 2013). 

However, available time and space limit the implementation of such activities in real-

game settings (Towlson et al., 2013). 

In a sporting environment, core muscles (CM) are commonly referred to as all the 

muscles between the knee and sternum with a focus on the abdominal region, low back 

and hip (Fig, 2005). During running exercise when the body is upright, the CM are 

actively involved in providing torso and lumbopelvic stiffness that helps to optimize 

running form and support the kinetic chains of the upper and lower extremities (Kibler et 

al., 2006, Borghuis et al., 2008). Apart from supporting core stability, a substantial portion 

of the CM, located in the torso, are inspiratory muscles (IM) concomitantly responsible 

for the breathing movement of the chest and abdomen in meeting the strenuous ventilatory 

demands (McConnell, 2009). It has been demonstrated that exhaustive high-intensity 

running exercise reduces the IM and CM function with fatigue, impairing exercise 

performance (Tong et al., 2014a, 2016). However, whether the re-warm-ups during the 

half-time break in team sports, observed in a game setting could facilitate the functional 

recovery of the potential fatigued IM and CM and associated maintenance of the second-

half exercise performance have not been investigated.  

Recently, a 6-wk functional IM training period, which was composed of four 

inspiratory-loaded CM exercises, was found to augment the global IM and CM functions 

in endurance runners, and enhance their running performance (Tong et al., 2016). The 

performance of such CM exercises at mild intensity with simultaneous inspiratory load 

was likely to activate the two muscle groups for subsequent exercise readiness (Lin et al. 

2007). Such activities might also facilitate the recovery of exercise-induced IM and CM 
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fatigue due to the previous notion that active recovery performed using the same muscle 

groups which were active during the preceded fatiguing exercise, compared with that 

which remained unaffected by fatigue, was more effective in restoring muscle function 

(Mika et al., 2016). Accordingly, it was reasonable to postulate that a single set of  

inspiratory-loaded CM exercises, which could be accomplished within a few minutes in 

a confined space, could be a potential alternative to current re-warm-up strategies to 

attenuate the possible decrements of IM and CM functions that might occur following the 

first half of intermittent-type team sports. This strategy may also help to improve blood 

perfusion in active muscles including the legs, and promote the sprinting ability of the 

players during the second half (Mohr et al., 2004). The purpose of this study therefore, 

was to investigate the effect of a single set of inspiratory-loaded CM exercises as a 

potential re-warm-up strategy in team sports. 

 

Methods 

Participants 

Nine male college athletes (Table 1), who had received training in different 

intermittent-type team sports (soccer and handball) for 2-3 hrs·day-1, 3-4 days·wk-1, for 

at least two years, volunteered to participate in the study. The sample size was estimated 

based on the assumption that the minimum practical important difference of the repeated-

sprint performance was 1.2 ± 1.1% (Buchheit et al., 2009), and the expected typical error 

(within-subject SD) was 0.8% (Impellizzeri et al., 2008). The use of the acceptable 

precision a priori in sample size estimation was the approach developed for magnitude-

based inferences (Hopkins et al., 2006). A sample size of >7 participants in the present 

study would provide maximal chances of 0.5% and 20% of type I and type II errors, 
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respectively. After being fully informed of the experimental procedures and possible 

discomfort associated with the exercise test, participants gave their written informed 

consent. Ethical approval for this study was obtained from the Committee on the Use of 

Human and Animal Subjects in Teaching and Research of Hong Kong Baptist University. 

The study was conducted in accordance with the Declaration of Helsinki. 

 

Experimental Design 

Participants performed a simulated team-sports intermittent exercise protocol 

(IEP) on a non-motorized treadmill in two phases [phase one (P1), phase two (P2)], 

interspersed by a 15-min half-time break, in separate experimental trials. During the 15-

min half-time break, the participants performed either an entire 15-min passive recovery 

(CON) or 11-min passive recovery plus 4-min specific re-warm-up exercises (RWU). The 

IM and CM functions, leg perfusion and sprint performance at the onset of the P2-IEP 

following the RWU were compared correspondingly to those in the CON trial.  

In the present study, CM function of participants was assessed using a sport-

specific endurance plank test developed previously in our laboratory (Tong et al. 2014b). 

Since the plank test would lead to severe local muscle fatigue in CM that has been shown 

to impair subsequent running performance (Tong et al. 2014a), the assessments of Pre-

P1, Post-P1 and Pre-P2 IM and CM functions in CON and RWU trials were arranged on 

separate days. For monitoring leg perfusion, near-infrared spectroscopy was adopted. 

Since cutaneous reflex vasoconstriction and a resultant fall in skin temperature that could 

potentially occur in the transition from rest to exercise, and might confound the accuracy 

of near-infrared readings on the target muscles (Torii et al., 1992, Buono et al., 2005), 

Insert Table 1 
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skin temperature at selected body sites were measured subsequent to every near-infrared 

measurement for reference purposes.  

Figure 1 shows the timeline of Pre-P1, Post-P1 and Pre-P2 measurements in each 

trial. The order in which the RWU and CON trials were performed was counterbalanced 

and the assignment of participants to testing protocols was done in a random fashion. In 

all trials, standardized whole-body warm-up exercises, which comprised of a 5-min 

motorized-treadmill run, a 10-min period of stretching, and five 6-s non-motorized 

treadmill runs with velocities ranging from moderate to maximum, were performed prior 

to the exercise tests. All trials were completed under controlled laboratory condition. The 

mean air temperature and relative humidity (20.0 ±1.6 °C, 73.5 ±3.1%) in the laboratory 

in the CON trials did not differ from those, respectively, recorded in RWU trials (19.5 

±1.5 °C, 72.8 ±1.6%, p>0.05). Before each trial, the participants refrained from eating for 

at least two hours, and from participation in strenuous physical activity for at least one 

day. All trials were scheduled to occur at the same time of day to control for diurnal 

variation effects and were separated by a minimum of 3 days.  

 

Procedures  

Preliminary tests and familiarization trials  

Prior to the experimental trials, physical characteristics, including lung function 

and aerobic capacity were measured. The details of the measurements of lung function 

and the aerobic capacity tests have been reported previously (Tong et al. 2001). Following 

preliminary testing, participants were familiarized with the measurements of IM and CM 

functions, as well as the sprint test and the IEP. This familiarization period introduced, 

Insert Figure 1 
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the testing equipment and protocols, as well as providing the participants with the 

experience of exercising to the limits of tolerance.  

Intermittent exercise protocol 

The specific IEP performed on a non-motorized treadmill (Force 3, Woodway, 

USA) was modified from a protocol used for prolonged intermittent-type sport simulation 

adopted in previous studies (Sirotic and Coutts, 2008). Briefly, the modified protocol was 

interspersed with six activities including standing still, walking, jogging, running, dashing 

and sprinting on the treadmill with the brake force set at 2 kp. The velocities for each 

activity were 0%, 20%, 35%, 50%, 70% and 100% of individual maximal sprint velocity, 

respectively. The maximal sprint velocity of participants was measured in a preliminary 

testing trial. The participants performed three maximal 4-s sprints on the treadmill, each 

separated by 14 s of passive recovery (Zois et al., 2013). The highest velocity of the 

participants obtained in a single second from the three sprint trials was, on average, 5.37 

±0.33 (range: 4.95-5.83) m·s-1. Figure 2 shows the IEP of a typical participant. The 

duration of P1-IEP was 25.8 min, and included three sets of the repeated-sprint ability 

test. The order of activities and sprint tests in P2-IEP were identical to those of P1-IEP. 

The P2-IEP of 7.5 min was terminated following completion of three sets of the repeated-

sprint ability test. The velocity and work of the treadmill exercises during the IEP were 

recorded at 25 Hz using Force 3.0 software (Woodway, USA). The total work of P1-IEP 

were recorded in each trial for reliability purposes.   

Inspiratory-loaded core muscle re-warm-ups 

During the 15-min passive recovery in the CON trial, participants were asked to 

sit on a bench in a relaxed manner. Water replacement ad libitum was administered 

voluntarily while nutritional supplementation was prohibited. In the RWU trial, the 

Insert Figure 2 
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activities in the first 11 minutes of the 15-min break were identical to those in the CON 

trial. The specific re-warm-up protocol was performed following the 11-min passive 

recovery period. Four inspiratory-loaded CM exercises, which are running-specific, have 

been shown as being effective to exert loading on the two muscle groups (Sander et al., 

2013, Tong et al., 2016): These include, (a) Prone kneeling - With hands on the floor, lift 

the left hand and right knee from a kneeling position and extend the arm and leg until 

both are horizontal, then return; and (b) Forearm bridging - Maintain a plank position, 

with the body in a straight line. Brace the abdominal and hip muscles and raise alternately 

the straightened left and right legs; and (c) Bridge with one leg to lift the pelvis - Lie on 

the floor with knees bent. One foot is placed on the floor while the other is lifted with hip 

flexion. Raise up the hips and form a straight bodyline through the knee, then return; and 

(d) Lateral bridging with alternating leg flexion and extension - Maintain a side-bridge 

position by placing the feet together and balance on one hand. Brace the abdominal and 

hip muscles and perform leg flexion and extension alternatively. The four CM exercises 

outlined were performed for 8 repetitions per side. Related pictures of the exercise have 

been provided previously (Sander et al., 2013). During each CM exercise, inspiratory load 

was imposed simultaneously using a POWERbreathe IM trainer (Classic L3, 

POWERbreathe International, UK) at the mouth. The load on the pressure-threshold 

device was set at 40% of the maximum inspiratory pressure (PImax). Participants inhaled 

forcefully through the device as they initiated the required body actions from the starting 

position, and exhaled slowly when returning to the starting position. 

Repeated-sprint ability test 

Three sets of 3 x 4-s all-out sprints on the same Woodway treadmill (brake force 

= 2 kp), interspersed with 14-s passive recovery, were incorporated at the beginning, and 
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early stages of the IEP for assessing repeated-sprint ability (Figure 2). For the calculation 

of peak and mean velocity of each sprint, the start point was standardized to 1 m·s-1; from 

this point, a 4-s period was calculated. Acceleration was recorded as the rate of change in 

velocity in the 0.5 s immediately after reaching a velocity of 1 m.s-1 (Zois et al., 2013). 

The average performance of the three sets of repeated sprints were used for analysis. In 

addition, the sprint decrement score was used to quantify fatigability during the test 

(Hughes et al., 2006). 

Sprint decrement score = 100 - [sum of mean velocity / (highest mean velocity x  

number of sprints) x 100] 

Inspiratory muscle and core muscle function tests 

Global IM function was measured by performing maximal inspiratory efforts at 

residual volume against a semi-occluded rubber-scuba-type mouthpiece with a 1 mm 

orifice. The maximum inspiratory mouth pressure at quasi-zero flow (PImax in cmH2O) 

provided a surrogate measure of IM strength (Green et al., 2002). The maximal 

inspiratory efforts were repeated at least 5 times until the results were stable (vary by <10% 

in consecutive three maneuvers), and the highest value was recorded for analysis.   

Global CM function was assessed by complying with the protocol of the sport-

specific endurance plank test (SEPT) reported previously (Tong et al., 2014b). This test 

requires participants to maintain the prone bridge in good form throughout the following 

stages with no rest in between: (a) hold the basic plank position for 60 s; (b) lift the right 

arm off the ground and hold for 15 s; (c) return the right arm to the ground and lift the 

left arm for 15 s; (d) return the left arm to the ground and lift the right leg for 15 s; (e) 

return the right leg to the ground and lift the left leg for 15 s; (f) lift both the left leg and 

right arm from the ground and hold for 15 s; (g) return the left leg and right arm to the 
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ground, and lift both the right leg and left arm off the ground for 15 s; (h) return to the 

basic plank position for 30 s; (i) repeat the steps from (a) to (i) until the maintenance of 

the prone bridge failed. 

The conditions of the SEPT were standardized by using identical body posture. 

The distances between the left and right elbows (medial epicondyle), the left and right 

feet (1st metatarsal), and the elbow and feet on the left and right sides of the body were 

measured during the familiarization trial while the participants were comfortably 

performing the prone bridge on a bench. Further, two elastic strings of ~80 cm length 

which were attached horizontally to a pair of vertical scales were placed beside the bench 

during the test. The two strings maintained at a distance of 10 cm and were adjusted up 

and down until a height was reached that was at the same level as the participants’ hip 

(the iliac crest was evenly in between the two strings). This setting acted as a reference 

for the objective monitoring of hip displacement during the test. The measured distances 

between the elbows and feet, as well as the hip height, remained constant in subsequent 

experimental trials. During the assessment, the test an administrator sat one meter away 

from the bench with the seat height adjusted to a level so that the hip displacement of the 

participants could be monitored horizontally. The participants were then asked to 

maintain the prone bridge throughout the test with maximum effort. For each time that 

the hip was beyond either of the reference lines, a verbal warning was given. The test was 

terminated when the hip failed to be maintained at the required level after receiving two 

consecutive warnings. The measured time to the limit of tolerance was used as the index 

of global CM function. 
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Measurements  

Regional oxygen saturation in the leg measured by near-infrared spectroscopy 

(NIRS, NIRO 200, Hamamatsu Photonics K.K., Japan) was used to monitor leg perfusion 

at the time points of Pre-P1, Post-P1, Pre-P2. Details of the measurement have been 

reported previously (Tong et al., 2012). Briefly, the emitting and receiving optodes were 

positioned on the vastus lateralis of the left leg, at the mid-point of the muscle, along the 

vertical axis of the thigh. The interoptode space of 4 cm allows measurement to a depth 

of 2 cm. Skinfold thickness of the participants at the measuring site were 7.7±3.1 mm. 

The absolute changes (∆) in tissue oxygenated (HbO2) and deoxygenated (HHb) 

haemoglobin concentrations were recorded continuously during the intervention, with 

respect to an initial value set equal at zero for every 500 ms. The sum of the ∆HbO2 and 

∆HHb, represents the blood-volume index (tHb), and was expressed as percentage of the 

measured maximum value. 

During the IEP at the time points of Pre-P1, Post-P1 and Pre-P2, blood lactate 

([La]) and whole-body mean skin temperature (Tskin) were measured using YSI 1500 

Sport Analyzer (YSI, OH), and Cole-Parmer Scientific Thermistor Thermometer (IL, 

USA), respectively. The area-weighed Tskin was calculated by assigning the following 

regional percentages: 6% head, 9% upper arm, 6% forearm, 2% finger, 9.5% chest, 9.5% 

abdomen, 9.5% upper back, 9.5% lower back, 10% anterior thigh, 10% posterior thigh, 

9.5% anterior calf, and 9.5% posterior calf (Kenny et al., 2003). Heart rate (HR, Polar HR 

monitor, Finland), ratings of perceived breathlessness (RPB, Borg scale 0-10) and 

exertion (RPE, Borg scale 6-20) were also recorded at the same time points, and 

immediately following each set of repeated-sprint ability tests in each IEP. 
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Statistical analyses 

 Data were analyzed using a one-way repeated-measures ANOVA to examine the 

differences in PImax and SEPT between selected time points of different trials, and two-

way repeated-measures ANOVA to examine the difference in other variables between 

selected time points, and across trials. Post hoc analyses for ANOVA using the Bonferroni 

test for identifying simple main effects were performed when a significant interaction was 

detected. Intraclass reliability coefficient (ICC) was calculated to examine the reliability 

of total work between trials. Relationships between variables were determined using 

Pearson correlation (r) test. All results were expressed as the mean ±SD, and the level of 

statistical significance was set at p≤0.05. In addition to this null hypothesis testing, the 

changes in the variables of IM and CM functions, repeated-sprint ability, blood volume 

index and skin temperature were also assessed for practical significance using the 

approach based on the magnitudes of change - magnitude-based inference (MBI) 

(Hopkins 2009). The probability of the changes being beneficial (better) [i.e. greater than 

the smallest worthwhile change (0.2 of the pooled between-subject SD, based on Cohen’s 

d principle)], trivial (similar) or detrimental (poorer) in variables were calculated. The 

uncertainty of the changes was expressed as 90% confidence limits (CL). Quantitative 

chances (QC) for reaching the beneficial (better) / trivial (similar) / detrimental (poorer) 

effects were assessed qualitatively as follows: <1%, Almost certainly not; 1–5%, Very 

unlikely; 5–25%, Unlikely; 25–75%, Possibly; 75–95%, Likely; 95–99%, Very 

likely; >99%, Almost certainly. Differences were described as substantial if the 

probability of a difference was Likely or higher and non-trivial in size. If the 90% CL of 

a difference spanned the thresholds for the smallest worthwhile beneficial and detrimental 

effects, the outcome was deemed Unclear.  
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Results 

In experimental trials, the total work performed in the P1-IEP were not 

significantly different (CON_2: 243.9 ±27.6 KJ, RWU_1: 256.1 ±31.9 KJ, CON_3: 255.4 

±30.4 KJ, RWU_2: 251.6 ±33.9 KJ, CON_4: 256.0 ±30.0 KJ, p>0.05). The ICC of the 

total work among the five trials was 0.93 (95% confidence interval: 0.83 - 0.98), 

suggesting that the performance of the P1-IEP in different trials were highly repeatable. 

Table 2 shows the changes in PImax and SEPT among Pre-P1, Post-P1, 

CON_Pre-P2, RWU_Pre-P2. The interactions of the PImax (F(3,24) = 9.20, p<0.05) and 

SEPT (F(3,24) = 14.5, p<0.05) among the four time points were significant. Following the 

P1-IEP, both PImax and SEPT decreased significantly from the Pre-P1 level (p<0.05), 

and did not recover well within the 15-min passive recovery in the CON trials (p<0.05). 

However, the decreased Post-P1 PImax and SEPT returned to the Pre-P1 level subsequent 

to the specific re-warm-up exercise in the RWU_1 (p>0.05). Such changes in the PImax 

and SEPT among the different time points were in agreement with the qualitative 

outcomes of MBI (Table 2), suggesting Very likely to Almost certainly true changes. 

Further, the captioned changes in PImax and SEPT at the different time points, expressed 

as a percentage of Pre-P1 value, were positively correlated (r=0.66, p<0.05) in 

participants. 

Table 3 shows the performance of the repeated-sprint variables and the practical 

significance of the changes in the variables between P1-IEP and P2-IEP in the CON_4 

and RWU_2. Significant interactions between the time points and across trials were found 

in peak (F(1,8) = 17.3, p<0.05) and mean (F(1,8) = 13.9, p<0.05) velocity, but not in 

acceleration (F(1,8) = 1.15, p>0.05) and sprint decrement scores (F(1,8) = 0.01, p>0.05). 

Insert Table 2 
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During the P1-IEP, all variables were not significantly different between the CON_4 and 

RWU_2 (p>0.05). During the P2-IEP, the peak and mean velocities in the CON_4 were 

likely to reduce from the corresponding P1-IEP values but did not achieve significance 

(p>0.05). In contrast, the peak and mean velocities in the RWU_2 increased significantly 

from that of P1-IEP (p<0.05) following the re-warm-up exercise. There was no significant 

change in the acceleration and sprint decrement score between the two phases in both the 

CON_4 and RWU_2. Such changes in the repeated-sprint variables were also evident by 

the MBI qualitative outcomes, suggesting Likely to Almost certainly true changes. 

Moreover, when the changes in peak and mean velocities in P2-IEP, were expressed as a 

percentage of the P1-IEP value, the increase in the peak and mean velocities in RWU_2 

were much greater than that in CON_4 (Figure 3). Further, when the relative changes in 

peak and mean velocities in the CON_4 and RWU_2 were plotted against the ∆SEPT 

performance and ∆PImax in Pre-P2 relative to Post-P1 values in the corresponding trials 

(Figure 4), significant inter-individual correlations (r≥0.53, p<0.05) were found.  

The NIRS data shows that the interaction of the changes in tHb was not significant 

among the time points and across trials (F(2,16) = 0.18, p>0.05). The tHb at the measuring 

site of the anterior thigh increased during the P1-IEP (p<0.05) and did not change 

significantly after the 15-min passive recovery in CON_3, as well as after re-warm-up 

exercise in RWU_1 (p>0.05). For the Tskin, there was a significant interaction among the 

time points and across trials (F(2,16) = 18.6, p<0.05). Pre-P1 Tskin decreased significantly 

after P1-IEP in both trials (p<0.05). The decreased Tskin returned to the Pre-P1 level in 

CON_3, but not in RWU_1, after the half-time break. Figure 5 further shows that the skin 

temperature of all the selected measuring sites at Post-P1 in RWU_1 were significantly 

lower than the corresponding CON_3 values (p<0.05). Such changes in the tHb and Tskin 

Insert Table 4 
 
Insert Figure 5 

Insert Table 3 
 
Insert Figure 3 & 4 
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among the different time points were further supported by the qualitative outcomes of 

MBI, suggesting Almost certainly true changes (Table 4).  

For the [La], HR, RPB and RPE, the interactions among the selected time points 

and across trials were not significant (p>0.05). The [La], HR, and the perceptual variables 

increased progressively in the P1-IEP and were restored partially during the 15-min half-

time break with either passive recovery or re-warm-up exercise (Table 5). Nevertheless, 

all the variables at the Pre-P2 in the two trials were a little higher than the corresponding 

values of Pre-P1, and increased progressively during the P2-IEP.  

 

Discussion 

The major findings of this study were that re-warm ups by performing a 4-min 

inspiratory-loaded CM exercise during the half-time break of an IEP could accelerate the 

restoration of the declined global IM and CM functions and enhance subsequent repeated-

sprint ability in team-sport players. A brief discussion follows. 

In the present study, the IEP performed on a non-motorized treadmill complied 

with a previous protocol that was designed to simulate the work demands of team sports 

during participation in field games (Sirotic and Coutts, 2008). The HR of the participants 

recorded at Post-P1 was ~90% of their maximum HR, and the corresponding RPE and 

RPB were recorded as being at a ‘Very hard’ level. Both the physiological and perceptual 

responses revealed that the IEP was intense to the participants, and the associated rigorous 

physical demands were somewhat equivalent to those resulting from the original protocol 

in the previous study (Sirotic and Coutts, 2008), and corresponded to the demands of field 

games in soccer (Edholm et al., 2015). Regarding the consistency of the P1-IEP of the 

RWU and CON trials performed on different days, the work done during the P1-IEP 

Insert Table 5 
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recorded in the separated trials were found to be highly repeatable, suggesting that the six 

non-motorized treadmill activities interspersed in the IEP were performed by strictly 

complying with the corresponding preset speed. Further, the HR, LA, and perceptual 

responses of the participants recorded at Post-P1-IEP were comparable between the RWU 

and CON trials (Table 2). Accordingly, it is reasonable to presume that the alterations in 

the targeted muscle functions and perfusion of the participants, as well as their sprint 

ability, following the P1-IEP were similar across the RWU and CON trials. 

It was noted that the IM and CM functions of the participants following the P1-

IEP declined markedly by fatigue. The decline in muscle function was restored partially 

during the subsequent 15-min break. The alterations of the global IM and CM functions 

were correlated (r2=0.44), and the moderate degree of relationship between the two 

variables are in line with our previous findings in high-intensity running exercise to 

exhaustion (r2=0.45) (Tong et al., 2014a), and in specific IM training (r2=0.44) (Tong et 

al., 2016). Such findings underpin the previous notion of the dual role of the IM in 

breathing and core stabilization in many daily activities, especially those associated with 

sports (McConnell, 2009). The current findings suggest that the two musculatures had 

worked synergistically during the P1-IEP, sharing the intense work load for breathing, 

and for stabilizing the core that presumably helped to optimize exercise economy 

(Borghuis et al., 2008). It has been shown that the IM fatigue-induced metaboreflex and 

resultant mediated sympathetic vasoconstriction in the legs during high-intensity 

intermittent running is associated with impairment of running performance (Tong et al., 

2008, Archiza et al., 2018). In addition, the impaired core function with fatigue during 

running exercise might result in an unstable proximal base that may compromise the 

functional movements and loads of the lower extremity, deteriorating running 
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performance (Tong et al., 2014a). Although the present study did not measure running 

performance during the later stage of P1-IEP, it is reasonable to presume that decrements 

in running ability, especially those running events at high velocity, might have occurred 

in the participants following the P1-IEP. 

  During the half-time phase of the IEP in the CON trial, the 15-min passive 

recovery following the P1-IEP appeared inefficient in restoring the IM and CM functions 

of the participants. Nevertheless, when the participants in the RWU trial performed the 

brief inspiratory-loaded CM exercises following the 11-min passive recovery with 

activities including rehydration that were similar to that of CON, accelerated restoration 

of the IM and CM functions occurred. The accelerated recovery of the fatigued IM and 

CM following the inspiratory-loaded CM exercises are in line with recent findings that 

the post-exercise active recovery of working muscles that were already fatigued by 

preceding exercise, was more effective in fatigue reduction than by working the muscles 

that were not involved (Mika et al., 2016). However, our current data could not clearly 

explain the underlying mechanism for the acceleration of functional recovery in the IM 

and CM. Potentially this endeavor might harness the benefit of a faster clearance of lactate 

accumulated in active muscles (Taoutaou et al., 1996).  

Although the influences of the IM and CM functions on sprint ability have never 

been studied rigorously, we noted that the rate of restoration of the IM and CM functions 

during the 15-min break was positively correlated (r2=0.28-0.53, Figure 4) to the increase 

in sprint ability between the P1-IEP and P2-IEP. It is known that running involves 

continuous alternate unilateral hip flexion and extension that creates corresponding trunk 

rotation in individuals in reaction to their leg movement (Schache  et al., 1999). The work 

of CM during running is to stabilize the trunk by absorption of the disruptive torques, and 
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thus minimizing the diversion of leg force exertion, maintaining a stable and efficient 

running form (Behm et al., 2009). In this study, it is reasonable to postulate that the 

accelerated IM and CM function restoration through the specific re-warm-up protocol 

might have facilitated the creation of a solid base in the lumbopelvic-hip region for 

working in the P2-IEP. This might optimize energy transfer in relation to the kinetic 

chains from torso to extremities for subsequent sprints, and allow the sprints to be 

performed in a more linear manner, improving sprint performance (Kibler et al., 2006, 

Behm et al., 2009). 

Increase in blood flow and associated temperature in leg muscles resulting from 

the re-warm-up protocol have been shown to be a factor contributing to augmented sprint 

ability (Russell et al., 2015). However, the current NIRS data did not reveal significant 

changes in muscle perfusion occurring at the site of measurement of the anterior thigh 

(Table 4) following the inspiratory-loaded CM exercises in RWU trial. Nevertheless, we 

noted that the Tskin following the re-warm-up protocol in the RWU trial was relatively 

lower in comparison to the corresponding CON Tskin (Table 4). Although the re-warm-up 

exercises were core specific, skin temperature was relatively lower at all the measuring 

sites including the core regions and leg muscles (Figure 5). Such response in skin 

temperature of unloaded body parts are in agreement with a previous finding in a 10-min 

cycling warm-up exercise (Fröhlich et al., 2015), and was possibly a result of cutaneous 

reflex vasoconstriction with muscular work (Torii et al., 1992). The resultant 

redistribution of blood flow from skin to underlying active muscles to meet augmented 

metabolic demand is a compensatory vasoregulation that occurs immediately in 

individuals when starting intense dynamic activity (Johnson, 1992). It has been 

demonstrated that the vasoconstrictor response in the skin vasculature per se could lead 
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to underestimation of the NIRS-measured total hemoglobin concentration, and associated 

oxygenation of the underlying muscle (Buono et al., 2005). The likely cutaneous 

vasoconstriction induced by the inspiratory-loaded CM exercises might have confounded 

the interpretation of the NIRS-derived signal in revealing the potential concomitant 

changes in the hemodynamics of the active muscles (Ferrari et al., 2011). Whether the 

specific re-warm-up protocol increases leg muscle blood flow and temperature, which 

may in part explain the improved sprint ability in the P2-IEP by means of associated 

enhancements of neuromuscular transmission and contractile function that are crucial 

during sprint performance (Davies and Young, 1983), awaits further investigation. 

Nevertheless, there were explicit findings that the sprint decrement score in the P2-IEP 

was not changed, revealing that RWU did not improve repeated-sprint performance 

fatigability. The transient RWU effect on sprint performance appeared at the beginning 

of the P2-IEP were not surprising as the single set of inspiratory-loaded core exercise was 

not likely to induce any promotion of oxidative phenotype in skeletal muscles that have 

been identified as crucial adaptive factors for improved repeated-sprint ability (Faiss et 

al., 2013). 

 

Conclusion 

In conclusion, IM and CM functions in team-sport players subsequent to the first 

half of a simulated team-sport IEP were reduced with fatigue. Passive recovery during 

the 15-min half-time break did not restore the declined muscle functions, and this was 

associated with the debilitated sprint performance during the initial stage of second half. 

Nevertheless, when a re-warm-up protocol by completing four running-specific 

inspiratory-loaded CM exercises was implemented in the players after passive recovery 
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for eleven minutes during the half-time break, accelerated restoration of the global IM 

and CM functions, and associated enhancement of sprint ability in the second half were 

observed. However, these changes were not concomitant with alterations of leg perfusion 

revealed by the NIRS-measured tHb. 

The present study supports previous notions that passive recovery during the half-

time break impairs repeated-sprint ability in the initial stage of the second half during 

team-sport competition (Russell et al., 2015). The sub-optimal preparation of players for 

explosive activities in the second half reduce the game tempo that is crucial in 

determining their competitive edge in game situations (Mohr et al., 2005). However, 

performing a brief inspiratory-loaded CM exercise during the last four minutes of the 

half-time break could accelerate the functional recovery and capacity of the global IM 

and CM, and it is associated with the enhancement of repeated-sprint ability in the second 

half of the game. While limited time and space are currently seen as the major barriers 

for the adoption of half-time re-warm-ups as a maintenance strategy of repeated-sprint 

ability in team sports, the brief inspiratory-loaded CM exercise regime, which could be 

accomplished within a few minutes in a small space, is a potential alternative to current 

re-warm-up strategies to optimize the second-half performance in team-sport players.  

 

Key points 

• IM and CM functions of team-sport players were declined after the first half of a 
simulated team-sport IEP. Passive recovery during the subsequent 15-min half-
time break did not restore the declined muscle functions, and this was associated 
with the debilitated sprint performance during the initial stage of second half.  

 

• A re-warm-up protocol composed of four running-specific inspiratory-loaded CM 
exercises carried out in the players after passive recovery for eleven minutes 
during the half-time break could accelerate the restoration of their IM and CM 
functions, and retain their sprint performance in the second half. 
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• The brief inspiratory-loaded CM exercise regime, which could be accomplished 
within a few minutes in a small space, is a potential alternative to current re-warm-
up strategies to optimize second-half performance in team sport.  

 

Acknowledgments 

The authors would like to thank Mr. Han Han for his assistance in data collection, 

and the players and coaches for their participation in this research project.  

 

References 

Archiza, B., Andaku, D.K., Caruso, F.C.R., Bonjorno, J.C. Jr., Oliveira, C.R., Ricci, P.A., 

Amaral, A.C.D., Mattiello, S.M.,, Libardi, C.A., Phillips, S.A., Arena, R. and Borghi-

Silva, A. (2018) Effects of inspiratory muscle training in professional women football 

players: a randomized sham-controlled trial. Journal of Sports Sciences 36, 771-780. 

Bagger, M., Petersen, P.H., and Pedersen, P.K. (2003) Biological variation in variables 

associated with exercise training. International Journal of Sports Medicine 24, 433-440. 

Behm, D.G., Cappa, D., and Power, G.A. (2009) Trunk muscle activation during 

moderate- and high-intensity running. Applied Physiology, Nutrition, and Metabolism 34, 

1008-1016. 

Bogdanis, G.C., Nevill, M.E., Lakomy, H.K., Graham, C.M. and Louis, G. (1996) Effects 

of active recovery on power output during repeated maximal sprint cycling. European 

Journal of Applied Physiology and Occupational Physiology 74, 461-469. 

Borghuis, J., Hof, A.L., and Lemmink, K.A. (2008) The importance of sensory-motor 

control in providing core stability. Sports Medicine 38, 893-916. 

Buchheit, M., Laursen, P.B., Kuhnle, J., Ruch, D., Renaud, C., and Ahmaidi, S. (2009) 

Game-based training in young elite handball players. International Journal of Sports 

Medicine 30, 251-258. 

Buono, M.J., Miller, P.W., Hom, C., Pozos, R.S., and Kolkhorst, F. (2005) Skin blood 

flow affects in vivo near-infrared spectroscopy measurements in human skeletal muscle. 

The Japanese Journal of Physiology 55, 241-244. 



 

23 
 

Davies, C.T., and Young, K. (1983) Effect of temperature on the contractile properties 

and muscle power of triceps surae in humans. Journal of Applied Physiology 55, 191-195. 

Edholm, P., Krustrup, P., and Randers, M.B.  (2015) Half-time re-warm up increases 

performance capacity in male elite soccer players. Scandinavian journal of medicine & 

science in sports 25, e40-e49. 

Faiss, R., Girard, O., and Millet, G.P. (2013) Advancing hypoxic training in team sports: 

from intermittent hypoxic training to repeated sprint training in hypoxia. British Journal 

of Sports Medicine 47(Suppl 1), i45-i50. 

Ferrari, M., Muthalib, M., and Quaresima, V. (2011) The use of near-infrared 

spectroscopy in understanding skeletal muscle physiology: recent developments. 

Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 

369, 4577-4590. 

Fig, G. (2005). Strength Training for Swimmers: Training the Core. Strength and 

Conditioning Journal J. 27, 40-42. 

Fröhlich, M., Ludwig, O., Zeller, P., and Felder, H. (2015) Changes in Skin Surface 

Temperature after a 10-minute Warm-up on a Bike Ergometer. International Journal of 

Kinesiology and Sports Science 3, 13-17. 

Green, M., Road, J., Sieck, G.C., and Similowski, T. (2002) ATS/ERS statement on 

respiratory muscle testing: tests of respiratory muscle strength. American Journal of 

Respiratory and Critical Care Medicine 2166, 518-624. 

Greig, M., Marchant, D., Lovell, R., Clough, P., and McNaughton, L.A. (2007) A 

continuous mental task decreases the physiological response to soccer-specific 

intermittent exercise. British Journal of Sports Medicine 41, 908-913. 

Hopkins, W.G., Marshall, S.W., Batterham, A.M., and Hanin, J. (2009) Progressive 

statistics for studies in sports medicine and exercise science. Medicine and Science in 

Sports and Exercise. 41, 3-13. 

Hopkins, W.G. (2006) Estimating sample size for magnitude-based inferences. 

Sportscience 10, 63-70. 



 

24 
 

Hughes, M.G., Doherty, M., Tongm R.J., Reilly, T., and Cable, N.T. (2006) Reliability 

of repeated sprint exercise in non-motorised treadmill ergometry. International Journal 

of Sports Medicine 27, 900-904. 

Impellizzeri, F.M., Rampinini, E., Castagna, C., Bishop, D., Ferrari Bravo, D., Tibaudi, 

A. and Wisloff, U. (2008) Validity of a repeated-sprint test for football. International 

Journal of Sports Medicine 29, 899-905. 

Johnson, J.M. (1992) Exercise and the cutaneous circulation. Exercise and Sport Sciences 

Reviews 20, 59-97. 

Kenny, G.P., Reardon, F.D., Zaleski, W., Reardon, M.L., Haman, F., and Ducharme, M.B. 

(2003) Muscle temperature transients before during and after exercise measured using an 

intramuscular multisensor probe. Journal of Applied Physiology 94, 2350-2357. 

Kibler, W.B., Press, J., and Sciascia, A. (2006). The role of core stability in athletic 

function. Sports Medicine 36, 189-198. 

Lopez, E., Smoliga, J.M., and Zavorsky, G.S. (2014) The effect of passive versus active 

recovery on power output over six repeated wingate sprints. Research Quarterly for 

Exercise and Sport 85, 519-526. 

Lovell, R., Barrett, S., Portas, M., and Weston, M. (2013a) Re-examination of the post 

half-time reduction in soccer work-rate. Journal of Science and Medicine in Sport 16, 

250-254. 

Lovell, R., Midgley, A., Barrett, S., Carter, D., and Small, K. (2013b) Effects of different 

half-time strategies on second half soccer-specific speed, power and dynamic strength. 

Scandinavian Journal of Medicine & Science in Sports 23, 105-113. 

McConnell, A.K. (2009) Respiratory muscle training as an ergogenic aid. Journal of 

Exercise Science and Fitness 7(2 Suppl), 18-27. 

Mika, A., Oleksy, Ł., Kielnar, R., Wodka-Natkaniec, E., Twardowska, M., Kamiński, K. 

and Małek, Z. (2016) Comparison of two different modes of active recovery on muscles 

performance after fatiguing exercise in mountain canoeist and football players. PLoS One 

11, e0164216.  



 

25 
 

Mohr, M., Krustrup, P., and Bangsbo, J. (2005). Fatigue in soccer: a brief review. Journal 

of Sports Sciences 23, 593-599. 

Mohr, M., Krustrup, P., Nybo, L., Nielsen, J.J., and Bangsbo, J. (2004). Muscle 

temperature and sprint performance during soccer matches: beneficial effect of rewarm-

up at half-time. Scandinavian Journal of Medicine & Science in Sports 14, 156-162. 

Russell, M., West, D.J., Harper, L.D., Cook, C.J., and Kilduff, L.P. (2015). Half-time 

strategies to enhance second-half performance in team-sports players: a review and 

recommendations. Sports Medicine 45, 353-364. 

Sander, A., Keiner, M., Schlumberger, A., Wirth, K., and Schmidtbleicher, D. (2013). 

Effects of functional exercises in the warm-up on sprint performances. Journal of 

Strength and Conditioning Research 27, 995-1001. 

Schache, A.G., Bennell, K.L., Blanch, P.D., and Wrigley, T.V. (1999). The coordinated 

movement of the lumbo-pelvic-hip complex during running: a literature review. Gait 

Posture 10, 30-47. 

Sirotic, A.C., and Coutts, A.J. (2008) The reliability of physiological and performance 

measures during simulated team-sport running on a non-motorised treadmill. Journal of 

Science and Medicine in Sport 11, 500-509. 

Taoutaou, Z., Granier, P., Mercier, B., Mercier, J., Ahmaidi, S., and Prefaut, C. (1996) 

Lactate kinetics during passive and partially active recovery in endurance and sprint 

athletes. European Journal of Applied Physiology and Occupational Physiology 73, 465-

470.  

Tong, T.K., Fu, F.H., Chung, P.K., Eston, R., Lu, K., Quach, B., Nie, J., So, R. (2008) 

The effect of inspiratory muscle training on high-intensity intermittent running 

performance to exhaustion. Applied Physiology, Nutrition, and Metabolism 33, 671-681. 

Tong, T.K., Lin, H., McConnell, A.K., Eston, R., Zheng, J., and Nie, J. (2012). 

Respiratory and locomotor muscle blood-volume and oxygenation kinetics during intense 

intermittent exercise. European Journal of Sport Science 12, 321-330. 

Tong, T.K., McConnell, A.K., Lin, H., Nie, J., Zhang, H., and Wang, J. (2016). 

"Functional" Inspiratory and Core Muscle Training Enhances Running Performance and 

Economy. Journal of Strength and Conditioning Research 30, 2942-2951. 



 

26 
 

Tong, T.K., Wu, S., and Nie, J. (2014b). Sport-specific endurance plank test for 

evaluation of global core muscle function. Physical Therapy in Sport 15, 56-63. 

Tong, T.K., Wu, S., Nie, J., Baker, J.S., and Lin, H. (2014a). The occurrence of core 

muscle fatigue during high-intensity running exercise and its limitation to performance: 

The role of respiratory work. Journal of Sports Science & Medicine 13, 244-251. 

Torii, M., Yamasaki, M., Sasaki, T., and Nakayama, H. (1992). Fall in skin temperature 

of exercising man. British Journal of Sports Medicine. 26, 29-32. 

Towlson, C., Midgley, A. W., and Lovell, R. (2013). Warm-up strategies of professional 

soccer players: practitioners' perspectives. Journal of Sports Sciences 31, 1393-1401. 

Zois, J., Bishop, D., Fairweather, I., Ball, K., and Aughey, R. J. (2013). High-intensity 

re-warm-ups enhance soccer performance. International Journal of Sports Medicine 34, 

800-805. 

 

Lin H, Tong TK, Huang C, Nie J, Lu K, Quach B. Specific inspiratory muscle warm-up enhances badminton 
footwork performance. Appl Physiol Nutr Metab. 2007 Dec;32(6):1082-8. 

Tong TK, Fu FH, Chow BC. Nostril dilatation increases capacity to sustain moderate exercise under nasal 
breathing condition. J Sports Med Phys Fitness. 2001 Dec;41(4):470-8. 

Gao C, Zhang X, Wang D, Wang Z, Li J, Li Z. Reference values for lung function screening in 10- to 81-
year-old, healthy, never-smoking residents of Southeast China. Medicine (Baltimore). 2018 
Aug;97(34):e11904. 

 

  



 

27 
 

Figure legends  

 
Figure 1. The timeline of Pre-P1, Post-P1, and Pre-P2 measurements in the six experimental trials. Pre-P1, 
Pre-phase one; Post-P1, Post-phase one; Pre-P2, Pre-phase two; PImax, maximum inspiratory pressure; 
SEPT, sport-specific endurance plank test; Tskin, whole-body mean skin temperature; tHb, blood volume 
index; HR, heart rate; [La], blood lactate; RPB, rating of perceived breathlessness; RPE, rating of perceived 
exertion. 
 

Figure 2. The P1-IEP and P2-IEP of a typical participant. P1, Phase one; P2, Phase 2; IEP, intermittent 
exercise protocol; P1-IEP activities (duration, frequency, percentage of total time designated to the activity); 
1st S, 2nd S, and 3rd S, the three sets of 3 x 4-s repeated sprint ability test. 
 

Figure 3. The changes in peak velocity, mean velocity, and acceleration of the repeated-sprint ability tests 
between the P1-IEP and P2-IEP in RWU in comparison to that of CON. Error bars indicate uncertainty in 
the true mean changes with 90% confidence intervals. Trivial areas were calculated from the smallest 
worthwhile changes. (Peak velocity: mean difference = 5.31%, ±90%CL = ±0.11%, QC = 99.9 / 0.0 / 0.1,; 
Mean velocity: 4.03%, ±0.2%, 99.7 / 0.1 / 0.2%; Acceleration: 2.60%, ±9.0%, 74.4 / 14.2 / 11.3%) 
 

Figure 4. The percentage change (∆) in (A) peak velocity, and (B) mean velocity between P1-IEP and P2-
IEP plotted against the ∆PImax (circle symbols) and ∆SEPT performance (rhombus symbols) between 
Post-P1 and Pre-P2. ♦ and ● are data in RWU trial. ◊ and ○ are data in CON trial. Solid lines are the lines 
of regression.  
 

Figure 5. The skin temperature of the 12 selected sites measured at the time point of Pre-P2. All the 
temperature measured in RWU trial were significantly lower than the corresponding values in CON trial 
(p<0.05). 
 

 

Table legends 

 
Table 1. Physical characteristics of the participants (n=9). 
 

Table 2. Changes in inspiratory muscle (PImax) and core muscle (SEPT) functions following P1-IEP (Post-
P1), and before P2-IEP in CON (CON_Pre-P2) and RWU (RWU_Pre-P2) trials by comparing with baseline 
value (Pre-P1) (n=9). 
 

Table 3. Changes in repeated-sprint ability between P1-IEP and P2-IEP in CON and RWU trials (n=9). 
 

Table 4. Changes in blood volume index (tHb) and whole-body mean skin temperature (Tskin) following 
P1-IEP (Post-P1), and before P2-IEP (Pre-P2) in CON and RWU trials by comparing with baseline value 
(Pre-P1) (n=9). 
 

TABLE 5. The physiological and perceptual responses at Pre-P1, Post-P1, and Pre-P2, and immediate 
following the three sets of repeated-sprint ability tests (1st S, 2nd S, 3rd S) in each IEP in the CON and RWU 
trials (n=9). 
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