

UWS Academic Portal

An experimentation framework for mobile multi-tenant 5G networks integrated with
CORE network emulator
Serrano Mamolar, Ana; Pervez, Zeeshan; Alcaraz Calero, Jose M.

Published in:
Proceedings of the 2018 IEEE/ACM 22st Interna:onal Symposium on Distributed Simula:on and Real Time
Applica:ons (DS-RT)

DOI:
10.1109/DISTRA.2018.8600932

Published: 01/01/2018

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Serrano Mamolar, A., Pervez, Z., & Alcaraz Calero, J. M. (2018). An experimentation framework for mobile multi-
tenant 5G networks integrated with CORE network emulator. In E. Besada, Ó. R. Polo, R. De Grande, & J. L.
Risco (Eds.), Proceedings of the 2018 IEEE/ACM 22st Interna:onal Symposium on Distributed Simula:on and
Real Time Applica:ons (DS-RT): October 15-17, 2018, Madrid, Spain (pp. 155-162). (IEEE Conference
Proceedings). Madrid: IEEE. https://doi.org/10.1109/DISTRA.2018.8600932

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

https://doi.org/10.1109/DISTRA.2018.8600932
https://uws.pure.elsevier.com/en/publications/0162a4b7-c005-42ef-beb9-afc8a7574c8a

UWS Academic Portal

An experimentation framework for mobile multi-tenant 5G networks integrated with
CORE network emulator
Serrano Mamolar, Ana; Pervez, Zeeshan; Alcaraz Calero, Jose M.

Published in:
Proceedings of the 2018 IEEE/ACM 22st Interna:onal Symposium on Distributed Simula:on and Real Time
Applica:ons (DS-RT)

DOI:
10.1109/DISTRA.2018.8600932

Published: 01/01/2018

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Serrano Mamolar, A., Pervez, Z., & Alcaraz Calero, J. M. (2018). An experimentation framework for mobile multi-
tenant 5G networks integrated with CORE network emulator. In E. Besada, Ó. R. Polo, R. De Grande, & J. L.
Risco (Eds.), Proceedings of the 2018 IEEE/ACM 22st Interna:onal Symposium on Distributed Simula:on and
Real Time Applica:ons (DS-RT): October 15-17, 2018, Madrid, Spain (pp. 155-162). (IEEE Conference
Proceedings). Madrid: IEEE. https://doi.org/10.1109/DISTRA.2018.8600932

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

This is an Open Access item distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27 May 2019

https://doi.org/10.1109/DISTRA.2018.8600932
http://csvpureres01:8083/portal/en/publications/an-experimentation-framework-for-mobile-multitenant-5g-networks-integrated-with-core-network-emulator(0162a4b7-c005-42ef-beb9-afc8a7574c8a).html

An Experimentation Framework for Mobile
Multi-Tenant 5G Networks integrated with CORE

Network Emulator
Ana Serrano Mamolar

School of Engineering and Computing
University of the West of Scotland

ana.serrano@uws.ac.uk

Zeeshan Pervez
School of Engineering and Computing

University of the West of Scotland
zeeshan.pervez@uws.ac.uk

Jose M. Alcaraz Calero
School of Engineering and Computing

University of the West of Scotland
Jose.Alcaraz-Calero@uws.ac.uk

Abstract—Currently, there is a lack of tools for real validation
of 5G scenarios. The increasing traffic demand of 5G networks
is pushing network operators to find new cost-efficient solutions.
The selected solution is a multi-tenancy approach that, together
with user mobility will impose some architectural changes. This
approach increases service dynamism making it necessary to have
tools that provide these new capabilities to be able to validate
each development. This work presents a novel experimentation
framework for the emulation of 5G scenarios providing them
with real-time user mobility and multi-tenancy. The functionality
of this novel framework has been validated through different
experiments.

Index Terms—Network Emulation, 5G networks, Multi-tenant,
Mobile network

I. INTRODUCTION

The arrival of 5G networks is expected for 2020 when fully
standardised 5G networks will deliver unprecedented levels
of connectivity and hit the market. 5G will support multi-
tenancy models, enabling operators to share infrastructures,
reducing costs and energy consumption. This new paradigm
forces 5G to ensure high flexibility regarding the topology and
to be designed as sustainable and scalable technology. This
architectural flexibility will also allow operators to enrich their
portfolio with new services as platform offered as a service,
network functions and infrastructure. Within this context,
the network shall rapidly adapt to this new wide range of
requirements across such a versatile architecture [1]. In order
to quantify how new technical solutions would affect the
quality of experience (QoE) of end-users, or how the 5G
system would perform in a use case or any other aspects
related to the 5G data plane, specific evaluation tests are
needed. Some network operators are already applying changes
in their infrastructures to be ready to provide 5G services to
their users [2] [3]. Some of them already have a real testbed for
running different experiments. However, there are more actors
implied in the development of 5G networks and services other
than infrastructure providers. These actors, such as software
developers, integrators, vertical businesses, need to test their
solutions in real 5G infrastructures, in order to check the
feasibility of their solutions. The lack of tools to try new

5G-compliant services may hamper their entry into the 5G
market. This work provides an experimentation framework for
testing the data plane of 5G scenarios, providing two important
capabilities of a 5G infrastructure: mobility and multi-tenancy.

Since 5G infrastructures will be composed of tenants/oper-
ators that will share computational resources owned by the
infrastructure provider, it is essential to guarantee that the
traffic of each tenant is entirely isolated. Another requirement
for 5G infrastructure is to provide users with complete mo-
bility across antennas. Fig. 1 depicts a possible deployment
of a 5G scenario where there are physical resources that are
shared through a virtual layer; where the main architectural
elements of the 5G architecture are also depicted. An inter-
ested reader may refer to Kim et. al. [4] for a comprehensive
description of different architectural elements envisioned in
the 5G architecture. In the figure, there are mobile users
labelled as User Equipment (UE). A GPRS (General Packet
Radio Service) Tunnelling Protocol (GTP) is used in order
to assure user mobility and identify a UE connected to an
antenna that belongs to one operator of the 5G network.
Furthermore, in order to isolate each tenant/operator traffic,
it is used VxLAN/GRE encapsulation. When looking for
tools to test the capabilities of the network and its services
it is essential to include the implementation of these two
encapsulations protocols as a requirement, to make sure the
services are 5G-compliant. This work represents, as to the
best of our knowledge, the first emulator that provides these
5G capabilities.

The rest of this paper is organised as follows. Section II
provides a brief literature review of previous works with tools
for testing 5G scenarios. Section III provides details of the
proposed solution design and implementation. In addition,
Section IV shows some examples of the validation process.
Finally, the conclusion and future work are provided in Section
V.

II. RELATED WORKS FOR 5G NETWORK RESEARCH TOOLS

Some open source tools allow networking researchers to
validate their network designs. Most of them are not emulation
but simulation tools. Nonetheless, different efforts have been978-1-5386-5048-6/18/$31.00 ©2018 IEEE

Fig. 1. Brief scheme of a 5G infrastructure.

made in the area of integrating simulation and emulation of
5G networks.

OpenAirInterface [5] is an open source initiative for LTE/5G
network emulation. It provides an implementation of network
nodes such as, eNodeB, UE, Evolved Packet Core (EPC)
and Remote Radio Heads (RRH), that run on general pur-
pose computing platforms. It allows to build LTE and 5G
networks on personal computers and connect them to real
User Equipment (UE) such a smartphone, or to software-
based ones. ns-3 [6] is an open source network simulator
written in C++ and python for developing new protocols
and analysing complex architectures with support for LTE.
Mezzavilla et. al. presented [7] a module for ns-3 to provide
millimetre wave (mmW) models. mmW is considered as a
key technology in 5G [8]. Omnet++ [9] is a component base
C++ simulator for building network simulations. It can be
used under Academic Public Licence. It has a framework
approach, providing the basic machinery and tools to write
simulations, without providing specific simulation components
for computer networks. Different simulation models such as
the Mobility Framework [10] or the INET framework [11] can
be used. The INET framework includes a mmW module and
a module to simulate LTE called SimuLTE [12] that can be
used to simulate 5G networks. Matlab provides a simulation
environment to test 5G algorithms for rapid prototyping and
deployment. To simulate a 5G network with Matlab, many
modules are needed, such as Simulink, Antenna toolbox or
LTE system Toolbox. Algorithms can be tested with Soft-
ware Defined Radio platform and FPGA hardware support.
A discrete event simulator for R was presented in [13]. In
[14], the authors presented the application of simmer for
the design and analysis of three different 5G scenarios. The

TRIANGLE EU project is developing a framework emulator
[15] to help mobile app developers and device vendors to test
their solutions utilising existing FIRE testbeds that combine
proper realistic hardware and software components.

The Common Open Research Emulator (CORE) [16] is
a major open-source tool that is widely used for both re-
search and military purposes. For the best of our knowledge,
there exists no framework based on CORE that provides the
aforementioned 5G capabilities. The presented work offers a
framework that combines CORE with an open Gateway GPRS
Support Node (GGSN) and an open multilayer virtual switch.

Literature still lacks contributions in providing real emula-
tion testbeds. Most of the tools found are simulators, which
is not a good approach for measuring the performance of the
network since they are not wholly aware of real hardware
capabilities and their limitations [17]. On the other hand,
most of the tools depend on built-in modules that manage the
network at the link level. None of them provides a framework
to manage multi-tenancy in a 5G network and explore multi-
operator architectures. The main motivation of this research
work is to provide a real emulation framework together with
5G network capabilities of mobility and multi-tenancy.

III. FRAMEWORK DESIGN

The framework proposed is based on CORE emulator [18],
a tool for building virtual infrastructures. In contrast with
simulators, CORE as an emulator builds a representation of
a real x86-64 PC architecture using Linux containers and
then creating virtual infrastructures by connected such con-
tainers within a network topology in real-time. This emulator
allows developers to run real applications and protocols taking

advantage of virtualisation provided by the Linux network
namespaces.

The CORE has a backend (core-daemon) that manages the
emulated sessions and build emulated networks using kernel
virtualisation. It uses bridging and packet manipulation for
virtual networks. This backend is controlled via the graph-
ical interface (core-gui). In order to allow running different
services on different physical machines, CORE provides its
socket-based API. To connect to a Linux network namespace
of CORE and run commands in that namespace, CORE
provides the vcmd program. This program is also used for
setting up a node and running processes within it. In fact, this
program is also used in this work to run scripts in particular
nodes of the infrastructure to provide 5G capabilities.

A. Integration with CORE emulator

The main components of the CORE architecture are shown
in Fig. 2, together with the extension presented in this work
to provide 5G capabilities. The presented work include an
installer of the framework. The main components installed by
the installer, with their corresponding dependencies are: the
CORE emulator 1, OpenVSwitch 2, and SGSN 3. The CORE
emulation provides the emulation foundations. OpenVSwitch
is used to provide VXLAN/GRE encapsulation to allow multi-
tenant isolation. SGSN is used to provide GTP and mobility
support. Once the framework is installed, the user can start
using it by deploying one of the templates scenarios. The
interaction of the user through the framework is made by three
entry points:

• The definition of a network scenario, following one of the
templates provided in .imn format, the format that CORE
emulator uses to define scenarios. These templates de-
scribe different network topologies which match several
network business schemes. Thus, some templates con-
sider different network domains and a different number
of tenants per Infrastructure-as-a-Service (IaaS) compute,
management planes for each tenant and/or for the IaaS
itself. These scenarios defined in the templates only
provide the network topology.

• The definition of the configuration file that describes im-
portant issues related to the deployment and the business
logic of the network. For instance, in this configuration
file, the user can indicate if it is needed to mirror the traf-
fic in the 5G core segment for inspection purposes, either
in the infrastructure provider, or the operators/tenants of
such infrastructure, or even both of them, depending on
the selected template. In that case, the mirror will be
enabled. With this mirror enabled, a Network Intrusion
Detection System (NIDS) could be deployed by the user
in the service node included in the template, which is the
one that will receive the mirrored information from the
mirror node.

1https://www.nrl.navy.mil/itd/ncs/products/core
2https://www.openvswitch.org/
3https://osmocom.org/projects/osmosgsn/wiki/OsmoSGSN

• The normal interaction with the CORE emulator through
its core-gui or via the vcmd program to run any soft-
ware in a given node, for example, the installation and
configuration of the NIDS.

Fig. 2. Architecture of CORE with the extension for 5G capabilities.

B. Emulator capabilities

The framework together with the installation is also pro-
vided with several templates as a guidance of use. Every
template represents a real 5G infrastructure, and any of them
can be used by the user to test their implementations instead of
implementing their own 5G scenario from scratch. An example
of a template is shown in Fig. 3.

For any scenario, which follows the scheme of a template,
this framework detects the significant roles of the 5G infras-
tructure to implement the necessary modifications to achieve
a real 5G scenario. The most significant modifications are
the building and configuration of encapsulation protocols in
order to provide connectivity to the network. A brief diagram
of those bridges is shown in Fig. 4 for a scenario where a
compute is acting as IaaS, and it is allocating a virtual operator.
In this figure, two users are represented as UE-1 and UE-2,
an IaaS compute in the edge segment and another in the core
segment of the 5G network, and a virtual operator allocated
in Virtual Machines (VM) of these computes. In this case,
the IaaS has different interfaces for the data path and one for
control and management. In the specific case of the compute
in the edge, interfaces 4 and 5 are the ones connected with
the access segment, 0 is the one connected with the core
segment through a central node, 2 and 3 are the ones that
connect the compute with the virtual operator, and finally 1 is
connected to the management node. In the core segment, the
IaaS compute has an interface 0 which is the connection point
with the edge segment, the interface 4 is the connection point
with other domains, interfaces 2 and 3 connect the compute
with its virtual tenant operator, and finally interfaces 1 and

Fig. 3. Example of a template provided with the 5G framework.

5 are respectively connected to the core management node
and the mirror node. Both user mobility and multi-tenancy
should be configured to provide proper connectivity to the
two users in Fig. 4. In order to provide the user’s mobility,
it is necessary to implement a GTP encapsulation protocol in
the points indicated in the figure. Moreover, finally, to isolate
tenant traffic it is necessary to encapsulate and de-encapsulate
the traffic using VxLAN or GRE protocols in the bridges
indicated in the figure. Thus, for every traffic sent from UE-1
to UE-2 through this infrastructure the traffic is encapsulated
and de-encapsulated as shown in Fig. 4 from point A to G.

Fig. 3.

Fig. 4. Diagram of bridging and tunnelling for the case of an IaaS allocating
one virtual operator, and traffic encapsulation provided.

The example shown in Fig. 4 could be reproduced with

one of the templates provided with the framework. In such
templates, there are included the nodes that play different
roles: UEs, IaaS computes in the edge and core segment,
virtual tenant operator VMs in the edge and core segment, a
node for edge management, a node for core management, and
a node for mirroring and inspecting the traffic. The framework
identifies all those roles by parsing the names of the nodes that
should follow a particular naming pattern depending on their
role, listed below. These patterns are configurable through the
configuration file. All of these nodes are represented in the
template showed in Fig. 3.

The naming pattern and the roles are identified as follows:

• EDGE-IAAS-X-n : This node represents a compute in the
edge segment that will act as an IaaS compute. Any node
with the EDGE-IAAS prefix will be treated like that by
this framework, applying the corresponding actions in the
deployment of the scenario. Specifically, if this node is
connected to one or more virtual operator node (EDGE-
5GDSP-CU), the framework needs to build different
bridges to provide the proper connectivity. One of the
bridges will have to implement encapsulation to isolate
the traffic of each tenant. X represents the administrative
domain and n represents the id of the compute node.

• EDGE-5GDSP-CU-X-Y-n : This node represents a VM
in the edge segment that will belong to a Virtual Operator
allocated in an IaaS computer associated. X represents the
id of the tenant, Y represents the id of the VM allocated
in such compute and n is the id of the VM.

• CORE-IAAS-X-n : This node represents an IaaS compute
in the core segment. If the IaaS is hosting a tenant, this
node will be connected to a CORE-5GDSP-UPF node. X
represents the administrative domain and n is the id of
the compute node.

• CORE-5GDSP-UPF-X-Y-n : This node corresponds to
the virtual machine of a tenant allocated in an IaaS
compute in the core. X represents the id of the tenant, Y
represents the id of the VM allocated in such compute
and n is the id of the VM.

• IAAS-SERVICE-X-Y represents the node connected
through the management network to the IaaS nodes. If
the mirror is enabled, this node will receive all the traffic
passing through the IaaS core segment nodes. In this
node, any management service could be deployed, either
through the vcmd program or the core-gui.

• 5GDSP-SERVICE-X-Y represents the node connected
through the management network to the virtual operators.
In this node, any management service could be deployed
to control the nodes of the virtual operators. Depending
on the business logic defined, this nodes will be managed
either by the IaaS or the virtual operator itself.

C. Implementation

The integration of the framework with CORE is made via
the vcmd program. This work has been implemented with bash
scripting. Thus, different scripts are executed in the nodes of
the scenario depending on its role in the 5G network, through
this program. In order to facilitate the setup of the experimen-
tation testbed to the user, an installer has been developed for
Linux platforms, to install all the modules, their prerequisites
packets as well as its configuration. Furthermore, a start.sh
script is provided to run any experiment, once the framework
has been installed. This script expects a configuration file like
the one provided and an .imn format scenario following the
templates provided. The configuration file allows the user to
select the following parameters:

• Unique interface names. This is a patch in the original
vnode python script of CORE in order to achieve a unique
identifier for each interface. For this purpose, it combines
the name of the node with the index of the interface. If
this option is disabled, the interfaces of the scenario will
be named as default (eth0 for instance) when the scenario
is launched.

• Prefix names of the critical nodes.
• Encapsulation protocol for tenant isolation (VxLAN or

GRE).
• Enable mirror if possible. If the scenario provided con-

tains a node with the prefix of the mirror switch, and this
option is enabled, the framework will execute the script
to enable the mirror.

When the start.sh script is executed, the machinery of the
framework gets the scenario and the configuration file and
start running the scripts to build the needed bridges for this
scenario and implement the encapsulation tunnels according to

the topology given and the configuration defined. The imple-
mentation of the GTP tunnels has been made with Openggsn,
running several scripts locally in the two nodes that compose
the tunnel. The implementation of VxLAN and GRE encapsu-
lation has been made with OpenvSwitch. Every ovs command
from OpenvSwitch has to be run locally also, with unique
process run and unique database per node to be managed.
This is to avoid conflicts with duplicated names of interfaces
and bridges. An extract of the script executed in each node
to setup OpenvSwitch is shown in Listing. 1. When CORE
instantiates a new node through the program vnoded, it creates
a Linux network namespace, and listen on a control channel
for commands. This control channel is a UNIX domain that
follows the pattern /tmp/pycore.$sessionid/$nodename. Thus,
for example /tmp/pycore.56342/EDGE-IAAS-0-0 refers to the
node EDGE-IAAS-0-0 of session 56342.

mkdir -p openvswitch

ovsdb-tool create /tmp/pycore.$sessionid/$nodename.conf/

openvswitch/conf.db "$ovspath"/vswitchd/vswitch.

ovsschema

ovsdb-server /tmp/pycore.$sessionid/$nodename.conf/

openvswitch/conf.db --remote=punix:/tmp/pycore.

$sessionid/$nodename.conf/openvswitch/db.sock \

--remote=db:Open_vSwitch,Open_vSwitch,manager_options \

--private-key=db:Open_vSwitch,SSL,private_key \

--certificate=db:Open_vSwitch,SSL,certificate \

--bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert \

--pidfile=/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/ovsdb-server.pid \

--log-file=/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/ovsdb-server.log \

--detach \

--unixctl=/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/ovsdb-server.ctl

ovs-vswitchd unix:/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/db.sock \

-vconsole:emer \

-vsyslog:err \

-vfile:info \

--mlockall \

--no-chdir \

--log-file=/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/ovs-vswitchd.log \

--pidfile=/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/ovs-vswitchd.pid \

--detach \

--monitor \

--unixctl=/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/ovs-vswitchd.ctl

Listing 1. Bash script extract for OpenvSwitch setup.

In the example shown in Fig. 4 the VxLAN encapsulation
is achieved by following the steps detailed below. Listing. 2
shows an extract of the bash scripts where VxLAN encap-
sulation is implemented following those steps. In this extract
$sessionid represents the identifier of the session managed by
core-daemon, and $nodename is the name of the node defined
in the .imn scenario.

Besides the bridge created between interfaces 4, 5 and 2
in Fig. 4, there is another bridge that will implement the

VxLAN encapsulation. First, an ovs bridge is created adding
a port with the interface in the IaaS compute that is connected
with the output interface of the tenant machine, 3 in Fig. 4.
$brname refers to the name of the bridge. After creating the
bridge, ip is added to the output interface of the IaaS, 0 in
Fig. 4, that has no ip defined by default in the scenario. Then,
new ports are added to the last bridge created in order to
create the overlay network within the different IaaS nodes,
which ipś are represented by $iaas nodes ip in Listing. 2,
setting an interface with the encapsulation type indicated in
the configuration file, VxLAN or GRE, and represented by
$tuneltype in Listing. 2. Note that it is necessary to pass the
location of the database db.sock to every ovs command, which
is the local database of each machine represented by a node
of CORE.

sudo ovs-vsctl --db=unix:/tmp/pycore.$sessionid/$nodename.

conf/openvswitch/db.sock add-br $brname

sudo ovs-vsctl --db=unix:/tmp/pycore.$sessionid/$nodename.

conf/openvswitch/db.sock set bridge $brname stp_enable=

true

ip link set $brname up

sudo ovs-vsctl --db=unix:/tmp/pycore.$sessionid/$nodename.

conf/openvswitch/db.sock add-port $brname ${v_iface}

ip addr add $ipbridge dev ${p_iface}

i=0

for ip in "${iaas_nodes_ip[@]}"

do

sudo ovs-vsctl \

-- db=unix:/tmp/pycore.$sessionid/$nodename.conf/

openvswitch/db.sock \

add-port $brname ${tunneltype}_$i \

-- set interface ${tunneltype}_$i \

type=$tunneltype \

options:remote_ip=$ip

((i++))

done

Listing 2. Bash script extract for VxLAN implementation.

IV. VALIDATION OF THE FRAMEWORK

In this section, the framework capabilities described in
previous sections will be validated. This test has been run in a
Virtual Machine created from scratch for the validation, with
just the operating system installed, Ubuntu 16.04. Once the
installer finished, a template has been tested. The template
scenario that has been used is precisely shown in Fig. 3,
which is a network with one domain, one IaaS and two
tenants allocated in the IaaS. In this case, the management of
each tenant is independent of the IaaS. Thus, in The selected
encapsulation protocol for tenant isolation in this test has
been VxLAN. The name of the interfaces of each node is
not unique, and the mirroring is enabled. Fig. 3 shows that
three different mirror-nodes mirror the traffic from the three
managed entities, the IaaS, tenant-0 and tenant-1. The traffic
is mirrored to three different service nodes IAAS-SERVICE-
0, 5GDSP-0-0-SERVICE and 5G-DSP-0-1-SERVICE, that be-
long to the three entities respectively. This service nodes will
manage their respective networks. Thus, each service node is
connected to a management node, see prefix MGMT, that is

connected to the corresponding nodes to be managed in their
network. For the validation of the capabilities, some UDP
traffic has been generated from the node labelled as UE-1,
which belongs to tenant-0, to the node labelled as SERVER-
0, and the traffic has been captured in different points of the
infrastructure. These points are represented with a letter in a
loupe in Fig. 3. When the start.sh script calls the bridging
scripts, the framework first implements the needed bridges,
as shown in Fig. 4. Then, it implements the GTP tunnels for
user mobility. In this case, since there are two tenants per
IaaS, four bridges are needed in each IaaS node. Furthermore,
one bridge is implemented in each tenant node. These bridges
are dynamically implemented with OpenVSwitch following
Listing. 2 and they are built managing a unique database per
namespace. Two of the bridges of each IaaS, one per tenant,
will implement an interface type VxLAN for encapsulation
and de-encapsulation. For the communication between the UE-
1 and the SERVER-0 nodes, a tunnel has been dynamically
built with Openggsn.

Fig. 5. Capture of the traffic in the tun0-00 interface of the client (point
labeled as A in Fig.3). Before GTP tunneling.

Fig. 6. Capture of the traffic in the eth4 interface of the IaaS compute in the
EDGE (point labeled as C in Fig.3). Before VxLAN encapsulation.

Fig. 5 shows the traffic sent from UE-1 before applying any
encapsulation. The traffic has been gathered precisely at point
labelled as A in Fig.3. The traffic sent is an RTP over UDP
flow. This user is connected to an antenna, that is connected to
the Distributed Unit E-DSP-DU-0-8, that is in turn connected
to the node EDGE-IAAS-0-1. In this scenario, each packet
sent from UE-1 to SERVER-0 is first encapsulated over GTP.

Fig. 7. Capture of the traffic in the eth0 interface of the IaaS compute in the
EDGE (point labeled as D in Fig.3). After VxLAN encapsulation.

Fig. 8. Capture of the traffic in the eth4 interface of the IaaS compute in the
CORE (point labeled as F in Fig.3). After VxLAN de-encapsulation.

Then the traffic enters into the EDGE-IAAS-0-1 at the edge
through one of its interfaces. Fig. 6 shows the traffic captured
in this input interface of the IaaS. The traffic has been gathered
exactly at the point labelled as C in Fig. 3.

GPRS tunnelling protocol can be seen in Fig. 3. The input
interface of the IaaS is connected through a bridge with the
interface that is connected to the EDGE-5GDSP-CU-0-0-3,
which represents the virtual machine of tenant-0 in this IaaS
compute of the edge. The traffic goes through this tenant
machine and returns to the IaaS node where it is finally
encapsulated to provide tenant isolation. This encapsulation
inserts the identification of the tenant. In this stage, the flow
is double encapsulated as it is shown in Fig. 7. The traffic
has been gathered exactly at the point labelled as D in Fig.3.
After that, the traffic passes through the CENTRAL-IAAS-
SWITCH-0-3 and pass through the CORE-IAAS-0-5 node
where the traffic is VxLAN de-encapsulated. Fig.8 shows the
traffic captured in the output interface of this node. Finally,
the traffic is GTP de-encapsulated before being received by
the destination user SERVER-0. The traffic has been gath-
ered exactly at point labelled as F in Fig.3. This execution

validates the dynamic encapsulation achieved in each of the
different network segments of the architecture. The dynamic
encapsulation is critical to allow users to run their services in a
real 5G data plane where edge and core network segments are
present, where dynamic GTP and VXLAN/GRE encapsulation
are provided and where mobility is achieved by the control
plane provided by the Openggsn software. To the best of our
knowledge, this is the first attempt to provide an emulator that
allows the user to define its own 5G infrastructure and thus it
is automatically deployed with such capability.

This framework allows network researchers to test and
benchmark their services while the industry moves towards
5G. Any solution for network managing could be tested within
this framework in a real 5G data plane, including users, tenant
and infrastructure management. The dynamism of this frame-
work allows the user to explore different network monitoring
schemes, and different network management approaches, as
well as new network protection strategies.

V. PERFORMANCE EVALUATION

In this section, a performance evaluation of CORE emulator
together with an assessment of the time overhead associated
with the proposed extension are detailed. The evaluation has
been made in terms of time consumed by the CORE to deploy
an scenario and then, by the proposed extension to deploy the
5G capabilities. The evaluation tests have been executed for
different scenarios varying the number of nodes.

The topology of each scenario used for the experiments
follows the same scheme as showed in Fig. 3, but with just
one tenant per IaaS. The scenarios used for the validation
have been created ranging the number of IaaS entities from 1
to 100, resulting in scenarios ranged from 59 nodes to 3713

0 1,000 2,000 3,000 4,000

0

500

1,000

1,500

2,000

Number of nodes.

Se
co

nd
s

CORE time
5G setup time

Fig. 9. Results of the time spent by CORE emulator to deploy scenarios with
different numbers of nodes and the overhead added by the proposed extension
to deploy the 5G connectivity.

nodes. The scenarios have been executed on an Intel Core i7
CPU 4.20 GHz, 32GB RAM hosting a Virtual machine with
8GB RAM and 4 cores. For the experiment, each scenario has
been deployed with core-gui in batch mode, which is without
launching the graphical interface, and then the 5G capabilities
have been applied with the extension proposed. Both times,
the time of CORE and the time of the extension that manages
the 5G connectivity have been measured in the experiment and
showed in Fig. 9. In Fig. 9 it can be seen how the time spent
by CORE grows proportionally with the number of nodes.
Also, it is shown how the overhead added by the proposed
extension is a tiny part of the total time. For instance, for the
biggest scenario, with 3713 nodes and 5760 links, CORE takes
an average of 2011 seconds to deploy it, while the extension
proposed takes 20 seconds to set-up the 5G connectivity, that
means, tenant isolation and user mobility.

VI. CONCLUSION

In this paper, a novel framework for the emulation of
5G scenarios is provided. This framework is integrated with
CORE emulator allowing the creation of different scenarios
which topologies match several 5G business architectures.
Furthermore, this framework provides the scenarios with user
mobility and multi-tenancy as key capabilities in a 5G in-
frastructure. Some validation tests have shown the dynamic
encapsulation happening in the 5G infrastructure along the
different network segments in order to allow users to check
their compliance with these requirements imposed by 5G
infrastructures. The experimental tests deploying scenarios
with different sizes prove a minimal overhead added to the
CORE emulator by the extension proposed regarding deploy-
ment time. As a future work, this framework will explore
the distributed mode of CORE emulator to provide higher
hardware capabilities.

ACKNOWLEDGMENT

This work has been funded in part by the European Com-
mission Horizon 2020 5G PPP Programme under grant agree-
ment number H2020-ICT-2014-2/671672 SELFNET (Self-
Organized Network Management in Virtualized and Software
Defined Networks). This work has been additionally funded
by the UWS 5G Video Lab project.

REFERENCES

[1] “5G Vision.” [Online]. Available: https://5g-ppp.eu/wp-
content/uploads/2015/02/5G-Vision-Brochure-v1.pdf

[2] A. Prasad, Z. Li, S. Holtmanns, and M. A. Uusitalo, “5G micro-operator
networks A key enabler for new verticals and markets,” in 2017
25th Telecommunication Forum (TELFOR). IEEE, nov 2017, pp. 1–4.
[Online]. Available: http://ieeexplore.ieee.org/document/8249272/

[3] E.-M. Oproiu, I. Gimiga, and I. Marghescu, “5G Fixed Wireless
Access-Mobile Operator Perspective,” in 2018 International Conference
on Communications (COMM). IEEE, jun 2018, pp. 357–360. [Online].
Available: https://ieeexplore.ieee.org/document/8430184/

[4] J. Kim, D. Kim, and S. Choi, “3GPP SA2 architecture and functions
for 5G mobile communication system,” ICT Express, vol. 3, no. 1, pp.
1–8, 3 2017.

[5] OpenAirInterface Software Alliance, “OpenAirInterface - 5G software
alliance for democratising wireless innovation,” 2015. [Online].
Available: http://www.openairinterface.org/

[6] “ns-3.” [Online]. Available: https://www.nsnam.org/
[7] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan,

and M. Zorzi, “End-to-End Simulation of 5G mmWave Networks,”
IEEE Communications Surveys & Tutorials, pp. 1–1, 2018. [Online].
Available: http://ieeexplore.ieee.org/document/8344116/

[8] F. Boccardi, R. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, feb 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6736746/

[9] “OMNeT++ Discrete Event Simulator - Home.” [Online]. Available:
https://www.omnetpp.org/

[10] “Mobility Framework (MF) for OMNeT++.” [Online]. Available:
http://mobility-fw.sourceforge.net/

[11] “OMNeT++ Discrete Event Simulator - Home.” [Online]. Available:
https://www.omnetpp.org/

[12] “SimuLTE - LTE User Plane Simulator for OMNeT++ and INET.”
[Online]. Available: http://simulte.com/

[13] I. Ucar, B. Smeets, and A. Azcorra, “simmer: Discrete-Event Simulation
for R.” [Online]. Available: https://arxiv.org/pdf/1705.09746.pdf

[14] I. Ucar, A. Hernández, P. Serrano, and A. Azcorra, “Design and
Analysis of 5G Scenarios with simmer: An R Package for Fast DES
Prototyping.” [Online]. Available: https://arxiv.org/pdf/1801.09664.pdf

[15] “An End-to-End Testing Ecosystem for 5G
The TRIANGLE Testing House Test Bed.”
[Online]. Available: https://www.triangle-project.eu/wp-
content/uploads/2016/06/triangle eucnc16 cameraready.pdf

[16] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE:
A real-time network emulator,” in Proceedings - IEEE Military
Communications Conference MILCOM, 2008. [Online]. Available:
https://www.researchgate.net/publication/261091924

[17] L. Angrisani, D. Capriglione, G. Cerro, L. Ferrigno, and G. Miele,
“Experimental analysis of software network emulators in packet delay
emulation,” in 2017 IEEE International Workshop on Measurement and
Networking (M&N). IEEE, sep 2017, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/8078382/

[18] “Common Open Research Emulator (CORE) — Networks
and Communication Systems Branch.” [Online]. Available:
http://www.nrl.navy.mil/itd/ncs/products/core

