

UWS Academic Portal

Trends in software reuse research

Barros-Justo, Jose L.; Benitti, Fabianne B.V.; Matalonga, Santiago

Published in:
Computer Standards & Interfaces

DOI:
10.1016/j.csi.2019.04.011

Published: 31/10/2019

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Barros-Justo, J. L., Benitti, F. B. V., & Matalonga, S. (2019). Trends in software reuse research: a tertiary study.
Computer Standards & Interfaces, 66, [103352]. https://doi.org/10.1016/j.csi.2019.04.011

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 29 Jul 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/227579654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.csi.2019.04.011
https://myresearchspace.uws.ac.uk/portal/en/publications/trends-in-software-reuse-research(80817594-9fe5-4742-bbca-7785d0bd172f).html
https://doi.org/10.1016/j.csi.2019.04.011

Accepted Manuscript

Trends in Software Reuse Research: A Tertiary Study

José L. Barros-Justo , Fabiane B.V. Benitti , Santiago Matalonga

PII: S0920-5489(18)30463-X
DOI: https://doi.org/10.1016/j.csi.2019.04.011
Reference: CSI 3352

To appear in: Computer Standards & Interfaces

Received date: 19 December 2018
Revised date: 26 April 2019
Accepted date: 26 April 2019

Please cite this article as: José L. Barros-Justo , Fabiane B.V. Benitti , Santiago Matalonga , Trends
in Software Reuse Research: A Tertiary Study, Computer Standards & Interfaces (2019), doi:
https://doi.org/10.1016/j.csi.2019.04.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.csi.2019.04.011
https://doi.org/10.1016/j.csi.2019.04.011

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Trends in Software Reuse Research: A Tertiary Study

José L. Barros-Justo
1
, Fabiane B.V. Benitti

2
, Santiago Matalonga

3

1School of Informatics (ESEI), Universidade de Vigo, Ourense 32004, Spain
2Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
3School of Computing, Engineering and Physical Science, University of the West of Scotland, Paisley PA12BE,

United Kingdom

Abstract:

Context: The reuse of software has been a research topic for more than 50 years. Throughout

that time, many approaches, tools and proposed techniques have reached maturity. However,

it is not yet a widespread practice and some issues need to be further investigated. The latest

study on software reuse trends dates back to 2005 and we think that it should be updated.

Objective: To identify the current trends in software reuse research.

Method: A tertiary study based on systematic secondary studies published up to July 2018.

Results: We identified 4,423 works related to software reuse, from which 3,102 were filtered

by selection criteria and quality assessment to produce a final set of 56 relevant studies. We

identified 30 current research topics and 127 proposals for future work, grouped into three

broad categories: Software Product Lines, Other reuse approaches and General reuse topics.

Conclusions: Frequently reported topics include: Requirements and Testing in the category

of Lifecycle phases for Software Product Lines, and Systematic reuse for decision making in

the category of General Reuse. The most mentioned future work proposals were

Requirements, and Evolution and Variability management for Software Product Lines, and

Systematic reuse for decision making. The identified trends, based on future work proposals,

demonstrate that software reuse is still an interesting area for research. Researchers can use

these trends as a guide to lead their future projects.

Keywords:

Software reuse; trends in software reuse; systematic literature review; tertiary study.

1. Introduction
The term software reuse was born 50 years ago, at the first International Conference on

Software Engineering (ICSE) in 1968 [1]. Since then, researchers and practitioners have

looked into software reuse for increases in productivity and cost savings. The increasing

number of publications along the years show that software reuse continues to be a topic of

interest in the software engineering agenda.

Throughout these years, several definitions have been proposed for software reuse. For the

purposes of this paper, we will use the definition provided by the IEEE Standard for

Information Technology-System and Software Life Cycle Processes-Reuse Processes [2]:

“Software reuse entails capitalizing on existing software and systems to create new

products.”

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Under the umbrella of this broad definition, several terms coexist, such as Component-Based

Development (CBD), Software Product Lines (SPL), Model-Driven Development (MDD),

Domain Engineering (or Domain Analysis) and Commercial-Of-The-Shelf (COTS) among

others [3]. There are also two main approaches to development: with-reuse (development

using pre-existing components) and for-reuse (development of reusable components) [4].

Reuse can also be explained from the point of view of its application scope as: vertical-reuse

(reuse of software in a given application domain) or horizontal-reuse (reuse of components

across several application domains) [5].

Furthermore, software reuse can describe both the use of pre-existing components to develop

new systems or maintaining an old product (legacy systems). Updated systems can be seen as

new versions of prior used systems.

Literature about software reuse is abundant and includes topics such as methodologies,

components, processes, economics, risks, models and organizational issues, among others. A

large amount of this literature includes suggestions for future work and proposals for

researchers. We are interested in identifying what these suggestions and proposals are, and

how they have evolved over time.

We believe that the field needs a compass because it is dispersed in multiple solution

proposals, including new techniques, tools and approaches. On the other hand, this study is

necessary because there has not been, as far as we know, a revision of the state of the art for

some time (the last being the work of Frakes and Kang in 2005 [6]).

To gather the evidence needed to achieve this, a systematic mapping study or a systematic

literature review (secondary studies), or still better, a systematic tertiary study putting

together all available evidence, systematically extracted and assessed by previous researchers

[7] would be the best approach.

The main contributions of this study are:

 C1: identify how many systematic secondary studies had been published about software

reuse since the inception of this term in the field of software engineering (i.e. 1968),

 C2: identify the key research topics and how they have evolved over time,

 C3: a taxonomy based on the classification of reported software reuse topics, and

 C4: a classification of proposals for future work, highlighting open research opportunities.

The rest of the paper is structured as follows: Section 2 presents the related work (i.e. other

tertiary studies) in the area of interest; Section 3 describes the research method and key

activities of the research protocol; Section 4 shows the Results and discuss the main findings.

Section 5 reports on Validity threats. Finally, Section 6 presents the conclusions.

2. Related work
We have found only one tertiary study in the area of software reuse, specifically in the

context of SPL. The work from Marimuthu and Chandrasekaran was presented at the

Software Product Line Conference (SPLC’17) in September 2017 [7]. Their work aimed to

identify secondary studies on SPL related topics. The authors analysed 60 secondary studies

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

published until December 31st 2016 and extracted data to answer five research questions.

Their interests were focused on the identification of the research topics, type of secondary

studies, active researchers and publication venues.

The search strategy followed by the authors consisted of the application of snowballing as the

first strategy, and automatic search to complement the results. However, the procedure for the

selection of seed papers is not detailed in their work, and only a reference is made to the

relevance of the studies (but not to how this relevance was measured), and the number of

citations reported by Google Scholar. They did not perform any additional manual search on

related conferences or workshops.

They use keywording of abstracts [8] to classify the selected studies into three facets: study

type, research topics and publication venues. For the research topic’s facet, they reported a

list of 32 items but did not explain how these topics were identified or why were they chosen.

An important outcome of the work from Marimuthu and Chandrasekaran is that the quality of

the analysed secondary studies was low. As an example, out of the 60 studies analysed, only

49 reported the inclusion and exclusion criteria, only 17 applied a search strategy combining

automatic search, snowballing and manual search, and, finally, the quality of the selected

primary studies was explicitly analysed in only 11 studies. These numbers show a clear threat

to the validity of the secondary studies included.

Marimuthu and Chandrasekaran concluded that SPL is a mature research area because the

secondary studies covered a wide range of topics, although many of these studies failed to

assess the quality of the primary works.

Since we only found one related tertiary study, we decided to complement this section with

four other documents to provide a broader base on the topic of interest: software reuse trends.

The work from Prieto-Díaz [9] identified three key trends in software reuse in 1991, limited

to the region of United States of America: 1) institutionalize the practice (i.e. make the reuse

practice more ―systematic‖); 2) smoothly integrate reuse in the process of software

development; and 3) standardize the methods for domain analysis (identification of reuse

opportunities).

In 1992, Krueger [10] produced a thorough analysis of the software reuse area. He agreed

with Prieto-Díaz on the need to institutionalize the practice, and the difficulties faced by

industries to adopt and integrate reuse in their current software development methodologies.

The main focus of the study was the identification of approaches to software reuse. To that

end, they produced a taxonomy to describe and compare different approaches, by

characterizing them in terms of its reusable artefacts and the way they are ―abstracted,

selected, specialized and integrated‖ [10]. Krueger concluded that the most crucial future

work would probably be the search for high-level abstractions for software artefacts.

Zand and Samadzadeh [11] published an opinion paper in 1995. They reviewed the status and

trends of software reuse by splitting the field in five key areas: 1) Organizational and

management issues; 2) Business modelling and Domain analysis; 3) Technology

infrastructure; 4) Storage and retrieval issues and 5) Measurement of reuse. Their final

conclusion regarding the trends was that this technology could not be applied successfully

unless the non-technical aspects were carefully studied, and this requires a significant

extension of the perspective in reuse research.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The most recent report is from Frakes and Kang [6] in 2005. They briefly summarize the

research in software reuse, including the main contributions and unresolved problems. A brief

survey was passed to attendees at the Eight International Conference on Software Reuse

(ICSR8). One of the four questions asked to the attendees was What are the top three

remaining problems for reuse research? The most frequent answers included a variety of

topics such as: scalability of solutions to very large systems, bring reuse to a broader range of

software domains, better representation mechanisms for software assets, sustaining reuse

programs on a long-term basis, relationship of reuse and domain engineering to newer

software development processes, and the identification and validation of measures of

reusability.

Our research extends the scope of Marimuthu and Chandrasekaran's work by considering the

entire spectrum of software reuse approaches, not just SPL. In addition, it updates the works

reported above, dating back more than 13 years. The objective of this study focuses, solely,

on the identification of proposals for future work and trends in research.

3. Research method
 This research is grounded on the Evidence-Based Software Engineering (EBSE) paradigm:

“EBSE (evidence-based software engineering) is concerned with determining what really

works, when and where, in terms of software engineering practice, tools and standards” [12].

The two key tools of EBSE are systematic mapping studies (SMS), also known as scope

studies [8] and systematic literature reviews (SLR) [13]. The main goal of a SMS is to

provide an overview of a research area, while an SLR focuses on aggregating all empirical

studies on a particular topic to synthesize new knowledge.

A tertiary study is defined as ―a secondary study that uses the outputs of secondary studies as

its inputs, perhaps by examining the secondary studies performed in a complete discipline or

a part of it” [14]. As observed by [14] the purpose of a secondary study is to categorise

available knowledge and observe trends in the available evidence.

After 50 years of research in software reuse, we claim that the state of the field has matured

enough for researchers to conduct tertiary studies. We have validated this claim by

performing several pilot searches to make sure that the number and quality of available

secondary studies would be suitable for the execution of a tertiary study.

The key activities to conduct a tertiary SMS are defined in a research protocol, which is

detailed in the following sections.

3.1. Goal and research questions

The Goal of this study is to conduct a tertiary study to identify the trends in software reuse

research and proposals for future work. To achieve this goal a tertiary SMS was conducted.

We are interested in studying how research in software reuse has evolved, and gain insight

about which of these research topics are considered the current Hot issues in software reuse?

To this end, we establish the following set of research questions (RQs):

 RQ1: How many secondary studies (SLR or SMS) were published since the

inception of software reuse to date (July 2018)?

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 RQ2: What research topics are being addressed in software reuse?

 RQ2.1: How have research topics evolved over time?

 RQ3: Which proposals for future research has been reported?

 RQ3.1: How have research topics evolved over time?

The rationale behind this set of RQs comes from the recognition that systematic reviews

(SMS and SLR) are a research method aimed at identifying the available evidence in a

specific field of knowledge, classifying existing data and synthesizing new knowledge. In this

sense, knowing the number of secondary studies (RQ1) provides information about the

interest in the research area and the amount of available evidence. Therefore, RQ1 fulfils the

objective of ensuring that the available data are sufficient to guarantee valid results for the

rest of the RQs.

On the other hand, RQ2 and RQ3 aim to identify current research (RQ2) and opportunities

for future research (RQ3). Finally, RQ2 and RQ3 investigate evolution over time, with the

aim of identifying trends.

3.2. Search strategies

Following the guidelines in [14] and [15] we designed and ran three complementary search

strategies to ensure that we find the largest number of available evidence: (1) Automatic

search, (2) Manual search and (3) Snowballing. To avoid bias in the automated search

strategy we included four complementary electronic data sources (EDS) which are well-

known among researchers and academics: ACM Digital Library (ACM DL), IEEE Xplore,

SCOPUS and Web of Science (WoS), as suggested in [16]. The first two covered the most

important journals and conferences in the field of software engineering [17,18] while the last

two are recognized as the largest general indexing services, including papers published by

ACM, IEEE, Elsevier, Springer and Wiley.

A pilot search conducted in SCOPUS allowed for the extraction of key terms related to

tertiary studies in software reuse. We extracted the author’s keywords from the retrieved

papers and selected the most frequent ones. Tuning up the set of key terms by using

synonyms and connecting them with logical operators let us evolve the search string and

adapted it to every EDS, as shown in Table 1.

Table 1 Search strings adapted for every EDS

EDS Search string Results Duplicate

ACM DL acmdlTitle:(+systematic literature review mapping) AND

keywords.author.keyword:(reuse reusability product-line

component-based)

68 2

IEEE

Xplore

("Document Title":systematic) AND (("Document

Title":literature) OR ("Document Title":review) OR (

"Document Title":mapping)) AND (("Author

Keywords":reus*) OR ("Author Keywords":product line)

OR ("Author Keywords":component-based))

14 14

SCOPUS TITLE (systematic AND (literature OR review OR mappin

g)) AND (KEY (reuse OR reusability OR "product

86 1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

line" OR "component-based")) AND (LIMIT-TO

(SUBJAREA,"COMP"))

WoS TI=(systematic AND (literature OR review OR mapping))

AND (TS=(reuse OR reusability OR "product line" OR

"component-based")) AND SU=Computer Science

74 55

 Total = 242 72

Selecting SCOPUS as the main EDS, after removing duplicates, the automated search

strategy retrieved 170 unique papers (242 – 72).

The manual search strategy focuses on the proceedings of the ICSR, the most relevant

conference in the research area. The following search string ran in SCOPUS on

09/august/2018, retrieved all the 483 published papers from 1994 to 2018:

“CONF (international AND conference AND on AND software AND reuse)”.

Finally, we conducted a forward and backward snowballing using 27 papers retrieved by the

automatic search as seeds. The selection of seed papers must guarantee that a varied set of

authors, affiliations, publishing years and publication venues are considered. The amount of

seeds is not as important as its quality. These 27 papers were randomly selected to avoid bias

but making sure that they fulfil the recommendations suggested by Wohlin [19] and

Badampudi [20]. The first iteration reviewed 1,792 references and 1,009 citations, which

produced a new set of 11 seed for a second iteration (624 references and 273 citations). The

snowballing process took into consideration the application of both the selection criteria and

the quality assessment of papers, in order to select the appropriate seeds for every iteration

and reduce effort.

3.3. Selection of works

The inclusion/exclusion criteria are summarised in Table 2. All decisions about

inclusion/exclusion were based on the analysis of three reviewers (the authors), working in

different pairings to help minimise bias.

The selection of the studies follows a cascade-style process, selected papers by inclusion

criteria I1 serves as inputs for I2. In the same way, papers not excluded by E1 serves as input

for E2 and so on.

Table 2 Inclusion/Exclusion criteria

Inclusion criteria

I1: The paper is written in English.

I2: The paper reports a systematic secondary study (SMS or SLR).

Exclusion criteria

E1. Duplicate reports of the same study (we consider only the most recent one).

E2: Posters, summaries of articles (less than 4 pages), books, dissertations, tutorials, slides,

panels and any piece of work that can be considered as grey literature.

E3: The focus of the paper is not software reuse or it did not report on future work.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Any secondary study not excluded by the above criteria will be included in the set of selected

papers. The application of the exclusion criteria was done at two different levels:

1. By reviewing the meta-data information (title-abstract-keywords), if this information

was not enough to exclude a paper then,

2. Review the full text, particularly the Conclusions and/or Future work sections.

Two authors (second and third), independently, carried out the process of paper selection.

These authors produced two sets of pre-selected papers. The first author integrated the two

previous sets, checked for inconsistencies and, when necessary, dealt with disagreements.

To deal with disagreements we applied the inclusive criteria A+B+C+D proposed in [21]. All

identified papers were selected, except those papers for which both reviewers agreed to

exclude them or, one author vote for exclusion while the other is in doubt.

This selection process produces a set of 74 unique papers. Unfortunately, one of these papers

could not be accessed online. Seventy-three papers were used as the input for the quality

assessment process described in the next section

3.4. Quality assessment

We used quality assessment criteria for filtering papers (selection process) and not for

synthesis purposes. This assessment might be useful for researchers who are interested in the

overall quality of the sources (secondary studies) that we used in our study, and therefore, in

the validity of the extracted data.

Each secondary study (SLR or SMS) was evaluated using the DARE criteria [22]. The

criteria are based on six quality assessment questions (QAs):

QA1. Are the Goal and the research questions clearly defined?

QA2. Is the literature search likely to have covered all relevant studies?

QA3. Are the review’s inclusion and exclusion criteria described and appropriate?

QA4. Were the basic data/studies adequately described?

QA5. Did the reviewers assess the quality/validity of the included studies?

QA6. Are validity threats reported and appropriate?

All of the secondary studies were scored based on how well they satisfied the quality criteria

described in Table 3. The overall quality score was calculated by summing up the six

individual criteria scores (QA1 to QA6) as suggested in [22]. Thus, the total quality score for

each study ranged between 0 (very poor) and 6 (very good). A paper has to get at least a 3.5

score (just over half the maximum score) to be included in our final set of selected studies.

Table 3 Quality ranking criteria

 Yes (1.0 score) Partial (0.5 score) No (0 score)

QA1 The goal and the research

questions are clearly defined

and reported in the study.

The goal of the study or the

research questions are weakly

defined.

The goal of the

study or the

research questions

are not reported.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

QA2 The authors have either

searched 4 or more digital

libraries and included

additional search strategies or

identified and referenced all

journals addressing the topic of

interest.

The authors have searched 2

or 3 digital libraries with no

extra search strategies, or

searched a defined but

restricted set of journals and

conference proceedings.

The authors have

search up to 2

digital libraries or

an extremely

restricted set of

journals.

QA3 The inclusion criteria are

explicitly defined in the study

The inclusion criteria are

implicit

The inclusion

criteria are not

defined and cannot

be easily inferred

QA4 Information is presented about

each primary study

Only summary information

about primary studies is

presented

The results of the

primary studies are

not specified

QA5 The authors have explicitly

defined quality criteria and

assessed every primary study

Quality issues are included as

research questions

No explicit quality

assessment of

individual primary

studies has been

attempted.

QA6 Validity threats are analysed

and reported;

Weak mentions to some

validity threats

No mentions to

validity threats.

The quality scores of all the secondary studies identified by the search strategies are reported

and available online
1
. Figure 1 shows the distribution of quality scores in the set of pre-

selected secondary studies from the automatic search. Almost half of the studies (25 out of

54) have a quality score between 5.0 and 6.0 (very good).

Figure 1 Distribution of quality scores

1
 https://goo.gl/SaNoyE

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The first author coordinated the quality evaluation process, and allocated the set of papers to

the second and third authors to do the quality assessment independently. When there was a

disagreement, the authors discussed the issues until they reached an agreement.

Finally, the only pre-selected paper from the manual search strategy was excluded during the

QA process.

The output of the quality assessment from the automatic search strategy produced a set of 48

selected papers. Another 11 papers were added from the snowballing process. The QA

process avoided the loss of time and effort in the processing of studies that, due to their low

quality, could negatively affect our results and conclusions.

3.5. Extraction of data

We created a Data Extraction Form (DEF) to objectivize the data extraction process. The

DEF was implemented in a spreadsheet format with rows and columns. Columns store the

data needed to answer every research question of our study, while rows represent the

reviewed studies. Every cell contains a text extracted from the original source that provides

data to answer the specific research question (RQ) in that column. Table 4 shows the fields

that make up our DEF, their concern and the correspondence with the research questions.

Table 4 Data extraction form

Field Concern/Research Question

F1 PaperID Internal use (Identification)

F2 Author(s) Documentation

F3 Title Documentation

F4 Type of the publishing venue

(Conference, Workshop or Journal)

Documentation

F5 Name of the publishing venue Documentation

F6 First author’s affiliation Documentation

F7 Research topic RQ2

F8 Number of primary papers RQ2

F9 Proposals for Future research RQ3

F10 Publishing Year RQ1, RQ2.1 and RQ3.1

To reduce potential bias, we followed a procedure similar to that of the selection process.

Two authors, independently, extracted data from half of the set of selected studies, while the

first author did the same in a random sample that included 15 studies from each half. Further

disagreements, if any, were resolved with a two-round discussion process.

Finally, three secondary studies were excluded during the process of data extraction, after

noticing that they do not fully conform to the inclusion criteria. The final set of selected

studies was made up of 56 works [51,23,25–50,24,52–78] that are listed in Appendix I:

Reviews included in this tertiary study.

Figure 2 shows the flow and results from the three search strategies and the application of the

selection criteria.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2 Final results from the search, selection, quality assessment and data

extraction processes

4. Results and discussion
Throughout this work, we have followed the recommendations about good reporting practice

offered by Budgen et al. in [22].

The space restrictions in a printed publication prevent the presentation of all the necessary

data to ensure the total replicability of the study. For this reason, we provided an online

resource to interested researchers, with all the data extracted and analysed during this work

(https://goo.gl/SaNoyE). The following subsections offer a summary of the most important

data, as well as a discussion of the most relevant aspects in relation to each RQ of the study.

4.1. RQ1: How many secondary studies (SLR or SMS) were published

since the inception of software reuse to date (July 2018)?

Figure 3 shows the distribution of the 56 selected secondary studies published from 2007 to

July 2018. Including the year 2011, and the period between 2013 and 2016, the average of

published works was above eight studies per year. It was foreseeable not to find secondary

studies published before 2007 since in 2004 Kitchenham published her seminal work on

secondary studies [79] in the area of software engineering, but only in 2007 the guidelines for

carrying them out appeared [80], and systematic secondary studies became popular in

software engineering.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3 Distribution of secondary studies per year

4.2. RQ2: What research topics are being addressed in software reuse?

To consolidate the extraction of the research topics, we applied the Crawford Slip Method

(CSM) [81]. CSM is a team classification method that relies on the use of post-it notes for

classifying and grouping terms. In CSM each term to be classified is written in a post-it note,

then the terms are read one-by-one. Whenever a new term is read, the classifiers can decide to

add it to a previous term (thereby creating a stack) or separate it from the rest. A name must

be assigned to every stack (the names of the stacks will become the names of the categories at

the end of the process).

The application of the CSM method resulted in the classification structure presented below.

To convey the strength of the evidence identified in each category, we use the following

notation (t, s, [SPN+]) next to the names in each leaf category. In this notation, t signifies the

number of individual topics that were extracted from the sources during the data extraction

phase. The value of s relates to the number of sources, and SNP+ stand for the identification

number of the sources (can be one or more sources), whose topics were assigned to each

category. For instance, Adoption of SPL (2, 1, [SP10]), mean that two topics (Maturity levels

and SPL, and Adoption of SPL) were extracted from one source (SP10).

1. Software Product Lines (43 studies)

1.1. Lifecycle Phases

1.1.1. Requirements (11,13, [SP4, SP5, SP6, SP8, SP15, SP22, SP26, SP28, SP35,

SP38, SP39, SP48, SP52])

1.1.2. Design (3,3, [SP28, SP35, SP39])

1.1.3. Development (3,3, [SP11, SP21, SP41])

1.1.4. Configuration (3,3, [SP22, SP21, SP41])

1.1.5. Testing (19, 8, [SP14, SP18, SP19, SP29, SP33, SP40, SP46, SP47])

1.1.6. Deployment (1,1, [SP43])

1.2. Project and Process Management

1.2.1. Maturity levels and SPL (2,2, [SP10, SP22])

1.2.2. Adoption of SPL (2,1, [SP10])

1.2.3. Agile & SPL (4, 4, [SP17, SP27, SP44, SP50])

1.2.4. Systematic reuse (1,1, [SP22])

1.2.5. Variability Management (7,6, [SP13, SP20, SP21, SP34, SP42, SP56])

1.2.6. Quality management and measurement (2,1, [SP37])

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1.2.7. Tool support (1,1, [SP40])

1.2.8. Evolution & Maintenance (7,5, [SP5, SP27, SP38, SP45, SP54])

1.3. Non-functional attributes

1.3.1. Safety Engineering (1,2, [SP11, SP51])

1.3.2. Model complexity (3,3, [SP22, SP30, SP32])

1.4. Systems of systems and SPL

1.4.1. Traceability (1,1, [SP55])

1.4.2. Dependency Management across systems (1,1, [SP22])

1.4.3. Inconsistency across SPL systems (1,1, [SP22])

1.5. Search-based software engineering and SPL

1.5.1. Techniques (1,1, [SP31])

1.5.2. Application in the software lifecycle (1,1, [SP31])

2. Other reuse approaches (3 studies)

2.1. Component-based reuse

2.1.1. Testing of component-based products (1,1, [SP49])

2.1.2. Metrics to measure the quality of CBSS and its components (1,1, [SP1])

2.1.3. Open source (2,1, [SP23])

3. General reuse topics (10 studies)

3.1. Systematic reuse decision making (6,5, [SP7, SP9, SP12, SP25, SP36])

3.2. Requirements management (3,3, [SP3, SP12, SP24])

3.3. Metrics and Measurement (1,1, [SP25])

3.4. Knowledge reuse (1,1, [SP53])

3.5. Business models (2,1, [SP23])

3.6. Reference Architectures for reuse (1,1, [SP2])

Although the meaning of many of the terms in the taxonomy is well known to researchers in

the area of software engineering, we have preferred to describe them below, to avoid possible

ambiguities or misinterpretations.

Software product lines (category 1) refers to ―a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific needs of a particular market

segment or mission and that are developed from a common set of core assets in a prescribed

way.‖, as stated by Clements and Northrop in [82].

Lifecycle phases (category 1.1) includes the specific phases of software development

involving SPLE. Requirements (category 1.1.1) is concerned with the identification an

analysis of real-world goals (user requirements) or limitations (system requirements). Design

(category 1.1.2) includes those activities related with the search for the best solution (the

most suitable), while Development (category 1.1.3) groups the two key activities:

development of core assets and the production of final software applications. Configuration

(category 1.1.4) includes the activities needed to adjust a set of variables, giving them

adequate values, to produce the final software artefacts. Testing (category 1.1.5) aims to

examine core assets, shared by many products derived from a product line, their individual

parts and the interaction among them. Finally, Deployment (category 1.1.6) encompasses all

the operations to prepare a system, or a new product from a product line, for its installation in

the user’s system.

Project and Process Management (category 1.2) includes a variety of research topics related

to the adoption of SPL (category 1.2.2) such as the use of specific tools (category 1.2.7) and

techniques (categories 1.2.3 and 1.2.4). The importance of quality assessment (category

1.2.6), the impact of maturity levels (category 1.2.1) and variability management (category

1.2.5) are also considered under this category, because they influence the evolution of the

SPL and the maintenance tasks (category 1.2.8).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The taxonomy includes a specific entry for Non-functional attributes (category 1.3). Safety

engineering (category 1.3.1) refers to the requirements stated in the functional safety

standards when safety critical products are developed in product lines. Typical SPLs involve

large number of features which are combined to form a huge variety of different products,

implemented using multiple and different types of software artefacts. Because of the sheer

amount of information, how to deal with model complexity is a hot research topic in SPL

(category 1.3.2).

When faced with the use of SPL in large interconnected systems (systems of systems),

professionals must ensure traceability (category 1.4.1) from the requirements to the final

artifacts. Traceability in Software Product Lines (SPL) is the ability to interrelate software

engineering artifacts through required links to answer specific questions related to the

families of products and underlying development processes. Dependency Management across

systems (category 1.4.2) deals with managing dependencies between several product lines

during the distributed derivation of products, such dependencies between product lines are

both technical and organizational. Finally, Inconsistency across SPL systems (category 1.4.3)

is about creating consistent configurations of interdependent product lines, an activity that is

challenging due to the various possible dependencies. The related product lines may be based

on different types of variability models. Changes in one model can have an impact on the

configuration based on another related model. Ignoring such inter-model constraints can

result in invalid product configurations.

Search-based software engineering and SPL (category 1.5): A typical SPL usually involves a

large number of systems and features, a fact that makes them attractive for the application of

SBSE techniques, which are able to tackle problems that involve large search spaces.

Techniques (category 1.5.1): There are a vast number of SBSE techniques available in the

literature and many of them can be used for different purposes in SPL. Application in the

software lifecycle (category 1.5.2): SBSE has been applied throughout the entire life cycle of

single systems and it is possible that it can also be applied through the entire life cycle of

SPLs.

Other reuse approaches (category 2) includes only one topic, component-based software

engineering (category 2.1), which has been characterized by two development processes: the

development of components for reuse and the development of component-based software

systems (CBSS) by integrating components that have been deployed independently. We have

included three subtopics in this category: the testing of component-based products (category

2.1.1), the available metrics to measure quality in CBSS (category 2.1.2) and the use of open

source (category 2.1.3) as a component.

Finally, general reuse topics (category 3) encompass a variety of areas that can be found

embedded in other categories, because of their generic nature.

To validate the resulting classification of research topics in software reuse, we compared the

previous structure to topics identified by Marimuthu and Chandrasekaran [7] and by Krueger

[10]. This exercise enabled us to observe that out of the 33 classification topics in [7], our

classification successfully covers 27 (82%). Furthermore, we argue that our classification

provides an enhanced picture of research topics on software reuse (Marimuthu and

Chandrasekaran focus was restricted to SPL). Our classification scheme has a stronger

internal consistency, depicted in the tree structure resulting from the CSM method when

compared to the linear structure proposed in [7]. In fact, to maintain that internal consistency,

our classification includes the topic "2. Other reuse approaches", although our selection

process only chose papers in the subcategory "2.1 Component-based reuse". By doing that,

we maintain an open classification, which can incorporate other reuse approaches in the

future, while keeping internal consistency.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, the taxonomy proposed by Krueger [10], focuses on reusable artefacts and

how they are summarized, selected, specialized and integrated. Our study focuses on the open

research lines and proposals for future research, which cover both development processes and

artefacts. Krueger's taxonomy included the following categories of approaches for software

reuse: high-level languages, design and code scavenging, source code components, software

schemas, application generators, very high-level languages, transformational systems and

software architectures. The differences of approach and focus, the purpose of the taxonomy

and, possibly, the time elapsed between the work of Krueger (1992) and ours (2018), explains

the null coincidence between both taxonomies.

4.2.1. RQ2.1: How have research topics evolved over time?

To study the interest of the topics, we mapped the year of publication of each secondary

study to the topics classification taxonomy presented in section 4.2.

As Figure 4 show, there is a steady interest in Lifecycle phases in SPL (twenty-five

secondary studies were published from 2009 to 2018). Within this category, requirements

engineering is the one with the most sources (13 papers). The topics with the second-longest

span of interest are Testing (eight studies in six years) and Configuration (3 studies identified

on a six-year span).

Figure 4 Trends for SPL research topics: the size of the bubble represents the number of

selected papers, while the numbers within the bubble denote the bibliographic references of

those papers. The Y-axis represents the main categories grouped in the SPL area (1.1 to 1.5)

Figure 5 shows that for the topics under the category General Reuse, the prevailing interest

lies in the ―Systematic reuse decision making‖. Five secondary studies [SP7, SP9, SP12,

SP25, SP36] were identified under this topic and their publication spans from 2007 to 2018.

The other recurring research topic is ―requirements management‖ with three studies [SP3,

SP12, SP24] published between 2014 and 2018.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5 Trends for General reuse research topics

4.3. RQ3: Which proposals for future research has been reported?

We identified more than one hundred proposals for future research (the full list is in

Appendix II: Proposals for future research). These proposals are based on the gaps identified

by the authors of the 56 selected secondary studies. The gaps were identified from the reading

of the full text, and were usually mentioned in the abstract, discussions or conclusions

sections. In other words, the authors of the secondary studies often propose future work items

that are identified gaps often from their research interest perspective. Conducting a tertiary

study, we cannot identify the primary empirical evidence; we have to rely on the work from

the authors of the secondary studies. In this sense, we highlight the "quality assessment"

(section 3.4) that describes the quality criteria used to select these secondary studies.

Table 5 summarises the proposals for future work classified by research topic and provides a

short rationale.

Table 5 proposals for future research

45 proposals.

There is a clear predominance of

activities related to the

Requirements engineering phase,

followed by Testing and Design.

The proposals related to

Configuration are scarce, and

only one proposal about a generic

Development activity was

reported.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

55 proposals.

The two most frequent categories

are Evolution & Maintenance and

Variability Management; they

both reach a 64% of the identified

proposals. On the other hand, the

Adoption of SPL and the use of

Agile development are the

proposals with less frequency,

which can be an indicator of the

maturity of those areas.

26 proposals.

The Systematic reuse of software

as a support for decision-making

is the most frequent proposals.

Knowledge management and the

use of generic Reference

architectures are the other two

most reported categories. We also

identified the need to develop

Metrics that allow for the

evaluation of performance, and to

keep improving the Requirements

phase to avoid misunderstandings.

Opportunities related to SPL research area stand out, we found 116 suggestions for future

work, while only 33 trends were pointed out regarding other reuse approaches or general

topics about reuse.

Two points stand out as recurrent in several topics:

1. the need for more tools to support the development (SP5, SP6, SP20, SP24, SP39,

SP40, SP49 and SP55), and

2. the need to run more empirical studies (SP4, SP5, SP7, SP18, SP28, SP29, SP30 and

SP33), particularly involving real cases of the industry (SP6, SP26 and SP48).

4.3.1. RQ3.1: How have research topics evolved over time?

To facilitate the visualization of the trends we have divided the classification data into five

graphs, three of them dedicated to the SPL category. For Figures 6 to 9, the text in the legend

refers to the codes in our proposed classification scheme (i.e. Testing in Figure 6 references

the topic 1.1.5 of our classification).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6 SPL Lifecycle Phases category: the size (and the figure inside) of the bubble

represents the number of selected papers. The Y-axis represents the main categories grouped

in the SPL area (1.1 to 1.5)

Our set of selected papers shows an interest in topics related to SPL Lifecycle Phases from

2009 to 2018. Data in Figure 6 demonstrate peaks on the number of publications in 2011 (5

studies), 2015 (5 studies) and 2016 (4 studies). Twenty-four studies (out of 56) were about

these five topics included in the category 1.1. (SPL Lifecycle phases).

Figure 7 SPL Process & Process Management category

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Thirty selected papers made proposals for future work in the area of SPL Project & Process

Management. Years with more published papers were 2011 (7 studies) and 2013, 2014 and

2015 (4 studies each year). Figure 7 shows that as in category 1.1, the year 2011 was the most

prolific for studies in the category 1.2.

Figure 8 SPL Non-Functional Attributes category

Only five studies focus on the topic of non-functional attributes in SPL (Figure 8). Four of

them were published in 2016 and one in 2017. The topics of interest include safety

requirements and the management of the complexity of the models, in particular, the

visualization techniques to facilitate the understanding of the features in an SPL

development.

Figure 9 General Reuse category

Figure 9 shows that from the 56 studies selected, only 12 report on topics related to the

category of General Reuse, not included in previous categories. Except for the SP36 study

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(outsider), the other studies are concentrated in the 2014-2018 period, with four studies

published in 2016. Twenty-six proposals have been extracted for future work, most of them

related to the need to apply a systematic reuse approach to facilitate the decision-making

process (3 papers, 8 proposals), although the topics of knowledge reuse and the use of

architectures with a high level of abstraction also received great interest.

Finally, as a visual summary, Figure 10 shows a mosaic combining all the proposals for

future work, classified by category and represented with distinctive colours.

Figure 10 Mosaic of Future work proposals: The left-hand side of the figure represents

the categories of General Reuse (light red) and Other Reuse Approaches (Component-based

reuse) in dark yellow (bottom-left). All of the others coloured rectangles represent

subcategories of the SPL topic. The number after the comma indicates the amount of future

work proposals drawn from each category of the taxonomy.

5. Validity threats
Being a tertiary study, the source of data for the results presented in this study all come from

secondary studies. Therefore, it is possible that there are topics in software reuse research that

have not yet been aggregated by secondary studies. As a result, our research methods is

―blind‖ to those studies, and therefore they are not captured by our results. However, the

number of secondary studies identified and analysed in our study (56), which in turn

identified and analysed more than 2,640 primary studies, guarantees that the observed trends

are significant (based on solid evidence).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A major concern in systematic secondary studies is finding all the relevant primary studies

(evidence). In this case, we used three complementary search strategies to ensure that we find

the largest number of related studies:

 Automatic search: we have searched in four databases covering major publications in

the area of software engineering, as suggested in [5].

 Manual search: reviewing all the papers published in the ICSR (the main conference

in the software reuse area, worldwide), since its first edition.

 Snowballing: backward and forward, using the guidelines from Wohlin [19].

Our search strings were designed to find the maximum number of systematic secondary

studies (SMSs or SLRs), but it is possible that they missed some studies that used a different

terminology to describe their review (e.g. ―study aggregation‖ or ―study synthesis‖).

Moreover, as there are many terms related to software reuse, our search might have been

limited if we had missed a relevant synonym. This could have limited the number of retrieved

papers and influenced our analysis with respect to the number of secondary studies published

until today. We validated the search string by contrasting the results of our automated search

with the selected papers reported by Marimuthu and Chandrasekaran [7]. The result is that

out of the 60 secondary studies selected in [7]:

a) 31 papers (52%) were also selected in our study;

b) 21 papers (35%) were identified during our research process, but fail to progress to

the data extraction phase, because the differences in our selection criteria; and

c) 8 papers (13%) where not identified by our search processes.

Snowballing did use only a sample (56% of the selected papers) as initial seeds, although it

could have easily used all the selected papers (48) from the automated search. However, our

hypothesis was that the Snowballing process achieves the same results regardless of the

number of seeds used as initial set, provided that this set includes a variety of references

(multiple authors, countries, organizations, years and publication venues). To this end, we

repeated the SB process using all the papers selected from the results of the automatic search

(48 documents) as seeds, obtaining the same results as with our original set of 27 seeds. This

represents a significant saving in time and effort, given the exponential growth nature of the

Snowballing process.

We did not inspect the place of the references as suggested by Wohlin but only the reference

lists (backward) and the citations (forward). Inspecting the place of a reference could also

suggest additional papers.

We have excluded technical reports or graduate theses retrieved by the search strategies. We

assume that good quality papers based on these works would appear as journal or conference

papers – particularly now that interest in systematic reviews is increasing.

The three authors agreed a preliminary review protocol, defined a data extraction form and a

process to obtain consistent relevant information, and checked whether the data to be

extracted would address the research questions. Moreover, as the crosscheck was necessary

among the reviewers, we had at least two researchers extracting data independently. The first

author dealt with any divergences and disagreements during this process.

In the process of assessing the quality of the studies, some of them did not fit perfectly into

the established criteria. In this case, each evaluator defined the approximation score, and the

study could be improperly excluded. To reduce this threat, the first author independently

evaluated 50% of the candidate studies in a random sample and submitted the differences for

discussion. A study was excluded only when the three authors reached an agreement on it.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Readers must consider that a systematic review is by definition limited by the search date, the

electronic sources and the key terms used in the search. Therefore, it is possible that other

papers will be included in a future replication of this study.

The authors of the secondary studies often propose future work items that are identified gaps

often from their research interest perspective. These are quite subjective discussion topics or

hypotheses. We summarize these proposals of future work, so our results are limited by the

previous features, and by the evolution of the reuse area itself.

There is always a risk in replicating a study and find similar and consistent results, we have

mitigated this validity threat by providing a detailed description of the protocol. Moreover, an

additional source of complementary information is published online and publicly available.

6. Conclusions and future work
We have carried out a tertiary study with the objective of identifying trends in software reuse

research. An exhaustive search in online databases, journals and conferences, allowed the

identification of a significant number of secondary studies. Fifty-six studies were selected,

after applying the exclusion criteria and quality assessment filters. The following conclusions

are based on data extracted from those 56 studies.

The quality assessment that we performed to select the studies to be included in this review is

a double-edged sword, on the one hand it can represent a validity threat (discarding studies

that should be included), on the other hand it ensures that the extracted data have a strong

scientific quality to justify the conclusions based on them.

As a result of the application of this research methodology and its findings, we claim the

following contributions resulted from our work

 C1: An identification of the number of secondary studies published about software

reuse.

The number of secondary studies published since 2007 shows an upward trend until 2014 and

a slight decrease until July 2018, this is probably because of a cut-off date in mid-2018 and a

delay of the search engines in indexing 2018 research. The period of greatest productivity is

2014-2016, with 27 published works (out of the 56 selected in this review). On the other

hand, the number of primary studies reviewed each year exceeds 300 in 2011 and during the

period 2013-2017 (our study only covers the first half of 2018).

These data confirm that interest in the research area of software reuse remains high.

While the affiliation of the first authors is very diverse, including countries in Latin America,

Europe, Asia and Africa, Brazil stands out from the rest with a production of 24 studies (out

of 56) in the 2010-2017 period. Also notable is the absence of studies from the USA.

 C2: The identification of key research topics and how they have evolved over

time, and

 C3: Design of a classification taxonomy to classify the research topics.

Section 4.2 presents a classification taxonomy of the identified research topics in software

reuse. By considering our classification taxonomy, we found that the following categories

represent the prevailing trends in reuse research:

 SPL/life cycle phases/Requirements

 SPL/life cycle phases/Testing

 SPL/Management/Agile

 SPL/Management/Quality & Measurement

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 SPL/Non-Functional attributes/Model complexity

 General Reuse topics/ Systematic reuse decision making

All of these categories have been mentioned (RQ2.2) for at least five years and with the last

secondary study published in the last two years.

 C4. Classification of proposals for future work, highlighting open research

opportunities.

 If we look at future research proposals, there is a recurrent topic in a call for the development

of tools for supporting the different lifecycle phases of software development. In addition to

this, researchers have made evident the need for empirical studies to generate more data and

knowledge about the tools and techniques that have been developed for software reuse.

When we compared the past research topics (RQ2.1) and future research proposals (RQ3.1),

it is evident that the problem of incorporating reuse in the software development lifecycle is

far from settled. For instance, category 1.1.1 Requirements was the focus of 13 secondary

studies identified in the past nine years. Yet it is also the category with most proposals for

future research. On the other hand, while Testing was the focus of 8 systematic studies, no

proposal for future work was drawn from them. Apart from the interest in Requirements from

both perspectives (current research and future proposals), the topics of Evolution and

Variability management in SPL, and Systematic reuse for decision making in the category of

General Reuse, were the most frequently mentioned proposals for future research (around

30% each one).

As future work, we intend to combine the evidence from this study with empirical data from

a survey to all the authors of the selected papers. The questionnaire will focus on the current

research activities and plans/expectations for future research. Once they are ranked, we think

they could serve as a guide for research opportunities and identification of new tool support

requirements. Another proposal for future work is the application of semiautomatic

techniques such as natural language processing, neural networks, support vector machines,

fuzzy logic, etc. These techniques could help create (or refine) the current taxonomy.

References

[1] M.D. McIlroy, J. Buxton, P. Naur, B. Randell, Mass-Produced Software Components,

in: Proc. 1st Int. Conf. Softw. Eng., Garmisch Pattenkirchen, Germany, 1968: pp. 88–

98.

[2] IEEE Standard, 1517-2010 - IEEE Standard for Information Technology--System and

Software Life Cycle Processes--Reuse Processes, 2010.

[3] J. Varnell-sarjeant, A.A. Andrews, Comparing Reuse Strategies in Different

Development Environments, in: Adv. Comput., 1st ed., Elsevier {BV}, 2015: pp. 1–

47. doi:10.1016/bs.adcom.2014.10.002.

[4] E.S. De Almeida, A. Alvaro, D. Lucrédio, V.C. Garcia, S.R. de Lemos Meira, A

survey on software reuse processes, in: Inf. Reuse Integr. Conf, 2005. IRI-2005 IEEE

Int. Conf. On., 2005: pp. 66–71.

[5] M. Griss, I. Jacobson, C. Jette, B. Kessler, D. Lea, Systematic software reuse, ACM

SIGSOFT Softw. Eng. Notes. 20 (1995) 17–20. doi:10.1145/223427.213969.

[6] W.B. Frakes, K. Kang, Software reuse research: Status and future, IEEE Trans. Softw.

Eng. 31 (2005) 529–536.

[7] C. Marimuthu, K. Chandrasekaran, Systematic Studies in Software Product Lines: A

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Tertiary Study, in: Proc. 21st Int. Syst. Softw. Prod. Line Conf. - Vol. A - SPLC ’17,

Seville, 2017: pp. 143–152. doi:10.1145/3106195.3106212.

[8] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic Mapping Studies in

Software Engineering, 12th Int. Conf. Eval. Assess. Softw. Eng. 17 (2007) 1–10.

doi:10.1142/S0218194007003112.

[9] R. Prieto-Díaz, Software reuse trends in the United States, in: Proc. Fifteenth Annu.

Int. Comput. Softw. Appl. Conf., 1991: pp. 6–7.

[10] C.W. Krueger, Software reuse, ACM Comput. Surv. 24 (1992) 131–183.

[11] M. Zand, M. Samadzadeh, Guest editors’ corner Software reuse: Current status and

trends, J. Syst. Softw. 30 (1995) 167–170. doi:10.1016/0164-1212(94)00131-6.

[12] EBSE Evidence-Based Software Engineering, Durham Univ. (n.d.).

http://community.dur.ac.uk/ebse/ (accessed August 25, 2018).

[13] D. Budgen, P. Brereton, Performing systematic literature reviews in software

engineering, Int. Conf. Soft. Engin. (2006) 1051. doi:10.1145/1134285.1134500.

[14] B.A. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Software Engineering and

Systematic Reviews, CRC Press, 2015.

[15] N. Bin Ali, M. Usman, Reliability of search in systematic reviews: Towards a quality

assessment framework for the automated-search strategy, Inf. Softw. Technol. 99

(2018) 133–147. doi:10.1016/j.infsof.2018.02.002.

[16] N. Bin Ali, K. Petersen, Evaluating strategies for study selection in systematic

literature studies, in: Proc. 8th ACM/IEEE Int. Symp. Empir. Softw. Eng. Meas., 2014:

p. 45. doi:10.1145/2652524.2652557.

[17] L. Chen, M. Ali Babar, H. Zhang, Towards an evidence-based understanding of

electronic data sources, in: Proc. 14th Int. Conf. Eval. Assess. Softw. Eng., 2010.

[18] M. Turner, Digital libraries and search engines for software engineering research: an

overview (Technical report), 2010.

https://community.dur.ac.uk/ebse/resources/notes/tools/SearchEngineIndex_v5.pdf.

[19] C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication

in software engineering, in: 18th Int. Conf. Eval. Assess. Softw. Eng. (EASE 2014),

2014: p. 38. doi:10.1145/2601248.2601268.

[20] D. Badampudi, C. Wohlin, K. Petersen, Experiences from using snowballing and

database searches in systematic literature studies, in: Proc. 19th Int. Conf. Eval.

Assess. Softw. Eng., 2015: p. 17. doi:10.1145/2745802.2745818.

[21] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic

mapping studies in software engineering: An update, Inf. Softw. Technol. 64 (2015) 1–

18. doi:10.1016/j.infsof.2015.03.007.

[22] D. Budgen, P. Brereton, S. Drummond, N. Williams, Reporting systematic reviews:

Some lessons from a tertiary study, Inf. Softw. Technol. 95 (2018) 62–74.

doi:10.1016/j.infsof.2017.10.017.

[23] R.E. Lopez-Herrejon, S. Fischer, R. Ramler, A. Egyed, A first systematic mapping

study on combinatorial interaction testing for software product lines, in: 2015 IEEE

8th Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2015 - Proc., 2015: pp. 1–

10. doi:10.1109/ICSTW.2015.7107435.

[24] M. Abdellatief, A.B.M. Sultan, A.A.A. Ghani, M.A. Jabar, A mapping study to

investigate component-based software system metrics, J. Syst. Softw. 86 (2013) 587–

603. doi:10.1016/j.jss.2012.10.001.

[25] A. Ahmad, P. Jamshidi, C. Pahl, Classification and comparison of architecture

evolution reuse knowledge—a systematic review, J. Softw. Evol. Process. 26 (2014)

654–691. doi:10.1002/smr.

[26] V. Alves, N. Niu, C. Alves, G. Valença, Requirements engineering for software

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

product lines: A systematic literature review, Inf. Softw. Technol. 52 (2010) 806–820.

doi:10.1016/j.infsof.2010.03.014.

[27] W.K.G. Assunção, R.E. Lopez-Herrejon, L. Linsbauer, S.R. Vergilio, A. Egyed,

Reengineering legacy applications into software product lines: a systematic mapping,

Empir. Softw. Eng. 22 (2017) 2972–3016. doi:10.1007/s10664-017-9499-z.

[28] W.K.G. Assunção, S.R. Vergilio, Feature Location for Software Product Line

Migration : A Mapping Study, in: Proc. 18th Int. Softw. Prod. Line Conf. Companion

Vol. Work. Demonstr. Tools - SPLC ’14, 2014: pp. 52–59.

[29] D. Badampudi, C. Wohlin, K. Petersen, Software component decision-making: In-

house, OSS, COTS or outsourcing - A systematic literature review, J. Syst. Softw. 121

(2016) 105–124. doi:10.1016/j.jss.2016.07.027.

[30] N.H. Bakar, Z.M. Kasirun, N. Salleh, Feature extraction approaches from natural

language requirements for reuse in software product lines: A systematic literature

review, J. Syst. Softw. 106 (2015) 132–149. doi:10.1016/j.jss.2015.05.006.

[31] J.L. Barros-Justo, F. Pinciroli, S. Matalonga, N. Martínez-Araujo, What software reuse

benefits have been transferred to the industry? A systematic mapping study, Inf. Softw.

Technol. 103 (2018) 1–21. doi:10.1016/j.ijmultiphaseflow.2015.10.008.

[32] J.F. Bastos, P.A. da Mota Silveira Neto, E.S. de Almeida, S.R. de Lemos Meira,

Adopting software product lines: A systematic mapping study, in: 15th Annu. Conf.

Eval. Assess. Softw. Eng. (EASE 2011), 2011: pp. 11–20.

[33] S. Baumgart, J. Froberg, Functional Safety in Product Lines -- A Systematic Mapping

Study, 2016 42th Euromicro Conf. Softw. Eng. Adv. Appl. (2016) 313–322.

doi:10.1109/SEAA.2016.58.

[34] D. Bombonatti, M. Goulão, A. Moreira, Synergies and tradeoffs in software reuse – a

systematic mapping study, Softw. - Pract. Exp. 47 (2017) 943–957.

doi:10.1002/spe.2416.

[35] L. Chen, M. Ali Babar, A systematic review of evaluation of variability management

approaches in software product lines, Inf. Softw. Technol. 53 (2011) 344–362.

doi:10.1016/j.infsof.2010.12.006.

[36] P.A. Da Mota Silveira Neto, I. Do Carmo MacHado, J.D. McGregor, E.S. De Almeida,

S.R. De Lemos Meira, A systematic mapping study of software product lines testing,

Inf. Softw. Technol. 53 (2011) 407–423. doi:10.1016/j.infsof.2010.12.003.

[37] J.R.F. Da Silva, F.A.P. Da Silva, L.M. Do Nascimento, D.A.O. Martins, V.C. Garcia,

The dynamic aspects of product derivation in DSPL: A systematic literature review, in:

Proc. 2013 IEEE 14th Int. Conf. Inf. Reuse Integr. IEEE IRI 2013, 2013: pp. 466–473.

doi:10.1109/IRI.2013.6642507.

[38] L.M.P.L.M.P. Da Silva, C.I.M.C.I.M. Bezerra, R.M.C.R.M.C. Andrade, J.M.S.J.M.S.

Monteiro, Requirements Engineering and Variability Management in DSPLs Domain

Engineering: A Systematic Literature Review, in: Proc. 18th Int. Conf. Enterp. Inf.

Syst. (ICEIS 2016), 2016: pp. 544–551.

[39] J. Díaz, J. Pérez, P.P. Alarcón, J. Garbajosa, Agile product line engineering—a

systematic literature review, Softw. - Pract. Exp. 41 (2011) 921–941. doi:10.1002/spe.

[40] E. Engström, P. Runeson, Software product line testing – A systematic mapping study,

Inf. Softw. Technol. 53 (2011) 2–13. doi:10.1016/j.infsof.2010.05.011.

[41] D. Flemstrom, D. Sundmark, W. Afzal, Vertical Test Reuse for Embedded Systems: A

Systematic Mapping Study, in: 2015 41st Euromicro Conf. Softw. Eng. Adv. Appl.,

2015: pp. 317–324. doi:10.1109/SEAA.2015.46.

[42] I. Groher, R. Weinreich, Variability support in architecture knowledge management

approaches: A systematic literature review, in: Proc. Annu. Hawaii Int. Conf. Syst.

Sci., 2015: pp. 5393–5402. doi:10.1109/HICSS.2015.634.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[43] G. Guedes, C. Silva, M. Soares, J. Castro, Variability Management in Dynamic

Software Product Lines: A Systematic Mapping, in: 2015 IX Brazilian Symp.

Components, Archit. Reuse Softw., 2015: pp. 90–99. doi:10.1109/SBCARS.2015.20.

[44] G. Holl, P. Grünbacher, R. Rabiser, A systematic review and an expert survey on

capabilities supporting multi product lines, Inf. Softw. Technol. 54 (2012) 828–852.

doi:10.1016/j.infsof.2012.02.002.

[45] M. Höst, A. Oručević-Alagić, A systematic review of research on open source

software in commercial software product development, Inf. Softw. Technol. 53 (2011)

616–624. doi:10.1016/j.infsof.2010.12.009.

[46] M. Irshad, K. Petersen, S. Poulding, A systematic literature review of software

requirements reuse approaches, Inf. Softw. Technol. 93 (2018) 223–245.

doi:10.1016/j.infsof.2017.09.009.

[47] M. Irshad, R. Torkar, K. Petersen, W. Afzal, Capturing Cost Avoidance through

Reuse: Systematic Literature Review and Industrial Evaluation, in: Proc. 20th Int.

Conf. Eval. Assess. Softw. Eng. - EASE ’16, 2016: pp. 1–12.

doi:10.1145/2915970.2915989.

[48] M. Khurum, T. Gorschek, A systematic review of domain analysis solutions for

product lines, J. Syst. Softw. 82 (2009) 1982–2003. doi:10.1016/j.jss.2009.06.048.

[49] M.A. Laguna, Y. Crespo, A systematic mapping study on software product line

evolution: From legacy system reengineering to product line refactoring, Sci. Comput.

Program. 78 (2013) 1010–1034. doi:10.1016/j.scico.2012.05.003.

[50] C. Lima, C. Chavez, A Systematic Review on Metamodels to Support Product Line

Architecture Design, in: Proc. 30th Brazilian Symp. Softw. Eng., 2016: pp. 13–22.

doi:10.1145/2973839.2973842.

[51] F.J. Affonso, K.R.F. Scannavino, L.B.R. Oliveira, E.Y. Nakagawa, Reference

Architectures for Self-Managed Software Systems: A Systematic Literature Review,

2014 Eighth Brazilian Symp. Softw. Components, Archit. Reuse. (2014) 21–31.

doi:10.1109/SBCARS.2014.18.

[52] R.E. Lopez-Herrejon, S. Illescas, A. Egyed, Visualization for Software Product Lines:

A Systematic Mapping Study, in: 2016 IEEE Work. Conf. Softw. Vis., 2016: pp. 26–

35. doi:10.1109/VISSOFT.2016.11.

[53] R.E. Lopez-Herrejon, L. Linsbauer, A. Egyed, A systematic mapping study of search-

based software engineering for software product lines, Inf. Softw. Technol. 61 (2015)

33–51. doi:10.1016/j.infsof.2015.01.008.

[54] R.E. Lopez-Herrejon, S. Illescas, A. Egyed, A systematic mapping study of

information visualization for software product line engineering, J. Softw. Evol.

Process. 30 (2018) 1–18. doi:10.1002/smr.1912.

[55] I. do C. Machado, J.D. McGregor, Y.C. Cavalcanti, E.S. de Almeida, On strategies for

testing software product lines: A systematic literature review, Inf. Softw. Technol. 56

(2014) 1183–1199. doi:10.1016/j.infsof.2014.04.002.

[56] S. Mahdavi-Hezavehi, M. Galster, P. Avgeriou, Variability in quality attributes of

service-based software systems: A systematic literature review, Inf. Softw. Technol. 55

(2013) 320–343. doi:10.1016/j.infsof.2012.08.010.

[57] B. Mohabbati, M. Asadi, D. Gašević, M. Hatala, H.A. Müller, Combining service-

orientation and software product line engineering: A systematic mapping study, Inf.

Softw. Technol. 55 (2013) 1845–1859. doi:10.1016/j.infsof.2013.05.006.

[58] P. Mohagheghi, R.R. Conradi, Quality, productivity and economic benefits of software

reuse: A review of industrial studies, Empir. Softw. Eng. 12 (2007) 471–516.

doi:10.1007/s10664-007-9040-x.

[59] S. Montagud, S. Abrahão, E. Insfran, S. Abrahￃﾣo, E. Insfran, S. Abrahão, E. Insfran,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A systematic review of quality attributes and measures for software product lines,

Softw. Qual. J. 20 (2012) 425–486. doi:10.1007/s11219-011-9146-7.

[60] L. Montalvillo, O. Díaz, Requirement-driven evolution in software product lines: A

systematic mapping study, J. Syst. Softw. 122 (2016) 110–143.

doi:10.1016/j.jss.2016.08.053.

[61] E. Murugesupillai, B. Mohabbati, D. Gaevic, A preliminary mapping study of

approaches bridging software product lines and service-oriented architectures, in:

Softw. Prod. Line Conf., 2011: pp. 1–8. doi:10.1145/2019136.2019149.

[62] C.R.L. Neto, P.A. da Mota Silveira Neto, E.S. de Almeida, S.R. de Lemos Meira, A

Mapping Study on Software Product Lines Testing Tools, in: SEKE 2012 - Proc. 23rd

Int. Conf. Softw. Eng. Knowl. Eng., 2012: pp. 628–634.

[63] L. Ochoa, O. González-Rojas, A.P. Juliana, H. Castro, G. Saake, A systematic

literature review on the semi-automatic configuration of extended product lines, J.

Syst. Softw. 144 (2018) 511–532. doi:10.1016/j.jss.2018.07.054.

[64] J.A.J.A. Pereira, K. Constantino, E. Figueiredo, A Systematic Literature Review of

Software Product Line Management Tools, in: Int. Conf. Softw. Reuse (ICSR 2015),

2014: pp. 73–89. doi:10.1007/978-3-319-14130-5_6.

[65] P.G.G. Queiroz, R.T.V. Braga, Development of critical embedded systems using

model-driven and product lines techniques: A systematic review, in: Proc. - 2014 8th

Brazilian Symp. Softw. Components, Archit. Reuse, SBCARS 2014, 2014: pp. 74–83.

doi:10.1109/SBCARS.2014.19.

[66] R.D.R.D. Santos Rocha, M. Fantinato, The use of software product lines for business

process management: A systematic literature review, Inf. Softw. Technol. 55 (2013)

1355–1373. doi:10.1016/j.infsof.2013.02.007.

[67] A.R. Santos, R.P. de Oliveira, E.S. de Almeida, Strategies for consistency checking on

software product lines, in: EASE - Int. Conf. Eval. Assess. Softw. Eng., 2015: pp. 1–

14. doi:10.1145/2745802.2745806.

[68] I.S. Santos, R.M. Andrade, P.A. Santos Neto, Templates for textual use cases of

software product lines: results from a systematic mapping study and a controlled

experiment, J. Softw. Eng. Res. Dev. 3 (2015) 1–29. doi:10.1186/s40411-015-0020-3.

[69] I.S. Santos, R.M.C. Andrade, P.A.S. Neto, How to describe SPL variabilities in textual

use cases: A systematic mapping study, in: Proc. - 2014 8th Brazilian Symp. Softw.

Components, Archit. Reuse, SBCARS 2014, 2014: pp. 64–73.

doi:10.1109/SBCARS.2014.16.

[70] S. Sepúlveda, A. Cravero, C. Cachero, Requirements modeling languages for software

product lines: A systematic literature review, Inf. Softw. Technol. 69 (2016) 16–36.

doi:10.1016/j.infsof.2015.08.007.

[71] S.P. Shashank, P. Chakka, D.V. Kumar, A systematic literature survey of integration

testing in component-based software engineering, in: 2010 Int. Conf. Comput.

Commun. Technol., 2010: pp. 562–568. doi:10.1109/ICCCT.2010.5640467.

[72] I.F. da Silva, P.A. da M.S. Neto, P. O’Leary, E.S. de Almeida, S.R. de L. Meira, Agile

software product lines: a systematic mapping study, Softw. - Pract. Exp. 41 (2011)

899–920. doi:10.1002/spe.

[73] L.R. Soares, P. Potena, I.D.C.I. do C. Machado, I. Crnkovic, E.S. De Almeida,

Analysis of Non-functional Properties in Software Product Lines: A Systematic

Review, in: 2014 40th EUROMICRO Conf. Softw. Eng. Adv. Appl., Institute of

Electrical & Electronics Engineers (IEEE), 2014: pp. 328–335.

doi:10.1109/seaa.2014.48.

[74] L.R. Soares, P.Y. Schobbens, I. do Carmo Machado, E.S. de Almeida, Feature

interaction in software product line engineering: A systematic mapping study, Inf.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Softw. Technol. 98 (2018) 44–58. doi:10.1016/j.infsof.2018.01.016.

[75] A. Souag, R. Mazo, C. Salinesi, I. Comyn-Wattiau, Reusable knowledge in security

requirements engineering: a systematic mapping study, Requir. Eng. 21 (2016) 251–

283. doi:10.1007/s00766-015-0220-8.

[76] G. Vale, E. Figueiredo, R. Abilio, H. Costa, Bad smells in software product lines: A

systematic review, in: Proc. - 2014 8th Brazilian Symp. Softw. Components, Archit.

Reuse, SBCARS 2014, 2014: pp. 84–94. doi:10.1109/SBCARS.2014.21.

[77] T. Vale, E.S. de Almeida, V. Alves, U. Kulesza, N. Niu, R. de Lima, Software product

lines traceability: A systematic mapping study, Inf. Softw. Technol. 84 (2017) 1–18.

doi:10.1016/j.infsof.2016.12.004.

[78] S. Younoussi, O. Roudies, All about software reusability: A systematic literature

review, J. Theor. Appl. Inf. Technol. 76 (2015) 64–75.

[79] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK, Keele

Univ. 33 (2004) 28. doi:10.1.1.122.3308.

[80] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature Reviews

in Software Engineering. Version 2.3, 2007. doi:10.1145/1134285.1134500.

[81] H.W. Dettmer, Brainpower networking using the Crawford Slip method, Trafford,

2003.

[82] P. Clements, L. Northrop, No Title, Softw. Prod. Lines Pract. Patterns. (2001).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix I: Reviews included in this tertiary study

ID Full Reference

[SP1] M. Abdellatief, A.B.M. Sultan, A.A.A. Ghani, M.A. Jabar, A mapping

study to investigate component-based software system metrics, J. Syst.

Softw. 86 (2013) 587–603. doi:10.1016/j.jss.2012.10.001.

[SP2] F.J. Affonso, K.R.F. Scannavino, L.B.R. Oliveira, E.Y. Nakagawa,

Reference Architectures for Self-Managed Software Systems: A Systematic

Literature Review, 2014 Eighth Brazilian Symp. Softw. Components,

Archit. Reuse. (2014) 21–31. doi:10.1109/SBCARS.2014.18.

[SP3] A. Ahmad, P. Jamshidi, C. Pahl, Classification and comparison of

architecture evolution reuse knowledge—a systematic review, J. Softw.

Evol. Process. 26 (2014) 654–691. doi:10.1002/smr.

[SP4] V. Alves, N. Niu, C. Alves, G. Valença, Requirements engineering for

software product lines: A systematic literature review, Inf. Softw. Technol.

52 (2010) 806–820. doi:10.1016/j.infsof.2010.03.014.

[SP5] W.K.G. Assunção, R.E. Lopez-Herrejon, L. Linsbauer, S.R. Vergilio, A.

Egyed, Reengineering legacy applications into software product lines: a

systematic mapping, Empir. Softw. Eng. 22 (2017) 2972–3016.

doi:10.1007/s10664-017-9499-z.

[SP6] W.K.G. Assunção, S.R. Vergilio, Feature Location for Software Product

Line Migration : A Mapping Study, in: Proc. 18th Int. Softw. Prod. Line

Conf. Companion Vol. Work. Demonstr. Tools - SPLC ’14, 2014: pp. 52–

59.

[SP7] D. Badampudi, C. Wohlin, K. Petersen, Software component decision-

making: In-house, OSS, COTS or outsourcing - A systematic literature

review, J. Syst. Softw. 121 (2016) 105–124. doi:10.1016/j.jss.2016.07.027.

[SP8] N.H. Bakar, Z.M. Kasirun, N. Salleh, Feature extraction approaches from

natural language requirements for reuse in software product lines: A

systematic literature review, J. Syst. Softw. 106 (2015) 132–149.

doi:10.1016/j.jss.2015.05.006.

[SP9] J.L. Barros-Justo, F. Pinciroli, S. Matalonga, N. Martínez-Araujo, What

software reuse benefits have been transferred to the industry ? A systematic

mapping study, Inf. Softw. Technol. (2018).

[SP10] J.F. Bastos, P.A. da Mota Silveira Neto, E.S. de Almeida, S.R. de Lemos

Meira, Adopting software product lines: A systematic mapping study, in:

15th Annu. Conf. Eval. Assess. Softw. Eng. (EASE 2011), 2011: pp. 11–20.

[SP11] S. Baumgart, J. Froberg, Functional Safety in Product Lines -- A Systematic

Mapping Study, 2016 42th Euromicro Conf. Softw. Eng. Adv. Appl. (2016)

313–322. doi:10.1109/SEAA.2016.58.

[SP12] D. Bombonatti, M. Goulão, A. Moreira, Synergies and tradeoffs in software

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

reuse – a systematic mapping study, Softw. - Pract. Exp. 47 (2017) 943–

957. doi:10.1002/spe.2416.

[SP13] L. Chen, M. Ali Babar, A systematic review of evaluation of variability

management approaches in software product lines, Inf. Softw. Technol. 53

(2011) 344–362. doi:10.1016/j.infsof.2010.12.006.

[SP14] P.A. Da Mota Silveira Neto, I. Do Carmo MacHado, J.D. McGregor, E.S.

De Almeida, S.R. De Lemos Meira, A systematic mapping study of

software product lines testing, Inf. Softw. Technol. 53 (2011) 407–423.

doi:10.1016/j.infsof.2010.12.003.

[SP15] J.R.F. Da Silva, F.A.P. Da Silva, L.M. Do Nascimento, D.A.O. Martins,

V.C. Garcia, The dynamic aspects of product derivation in DSPL: A

systematic literature review, in: Proc. 2013 IEEE 14th Int. Conf. Inf. Reuse

Integr. IEEE IRI 2013, 2013: pp. 466–473. doi:10.1109/IRI.2013.6642507.

[SP16] L.M.P. Da Silva, C.I.M. Bezerra, R.M.C. Andrade, J.M.S. Monteiro,

Requirements Engineering and Variability Management in DSPLs Domain

Engineering: A Systematic Literature Review, in: Proc. 18th Int. Conf.

Enterp. Inf. Syst. (ICEIS 2016), 2016: pp. 544–551.

[SP17] J. Díaz, J. Pérez, P.P. Alarcón, J. Garbajosa, Agile product line

engineering—a systematic literature review, Softw. - Pract. Exp. 41 (2011)

921–941. doi:10.1002/spe.

[SP18] E. Engström, P. Runeson, Software product line testing – A systematic

mapping study, Inf. Softw. Technol. 53 (2011) 2–13.

doi:10.1016/j.infsof.2010.05.011.

[SP19] D. Flemstrom, D. Sundmark, W. Afzal, Vertical Test Reuse for Embedded

Systems: A Systematic Mapping Study, in: 2015 41st Euromicro Conf.

Softw. Eng. Adv. Appl., 2015: pp. 317–324. doi:10.1109/SEAA.2015.46.

[SP20] I. Groher, R. Weinreich, Variability support in architecture knowledge

management approaches: A systematic literature review, in: Proc. Annu.

Hawaii Int. Conf. Syst. Sci., 2015: pp. 5393–5402.

doi:10.1109/HICSS.2015.634.

[SP21] G. Guedes, C. Silva, M. Soares, J. Castro, Variability Management in

Dynamic Software Product Lines: A Systematic Mapping, in: 2015 IX

Brazilian Symp. Components, Archit. Reuse Softw., 2015: pp. 90–99.

doi:10.1109/SBCARS.2015.20.

[SP22] G. Holl, P. Grünbacher, R. Rabiser, A systematic review and an expert

survey on capabilities supporting multi product lines, Inf. Softw. Technol.

54 (2012) 828–852. doi:10.1016/j.infsof.2012.02.002.

[SP23] M. Höst, A. Oručević-Alagić, A systematic review of research on open

source software in commercial software product development, Inf. Softw.

Technol. 53 (2011) 616–624. doi:10.1016/j.infsof.2010.12.009.

[SP24] M. Irshad, K. Petersen, S. Poulding, A systematic literature review of

software requirements reuse approaches, Inf. Softw. Technol. 93 (2018)

223–245. doi:10.1016/j.infsof.2017.09.009.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[SP25] M. Irshad, R. Torkar, K. Petersen, W. Afzal, Capturing Cost Avoidance

through Reuse: Systematic Literature Review and Industrial Evaluation, in:

Proc. 20th Int. Conf. Eval. Assess. Softw. Eng. - EASE ’16, 2016: pp. 1–12.

doi:10.1145/2915970.2915989.

[SP26] M. Khurum, T. Gorschek, A systematic review of domain analysis solutions

for product lines, J. Syst. Softw. 82 (2009) 1982–2003.

doi:10.1016/j.jss.2009.06.048.

[SP27] M.A. Laguna, Y. Crespo, A systematic mapping study on software product

line evolution: From legacy system reengineering to product line

refactoring, Sci. Comput. Program. 78 (2013) 1010–1034.

doi:10.1016/j.scico.2012.05.003.

[SP28] C. Lima, C. Chavez, A Systematic Review on Metamodels to Support

Product Line Architecture Design, in: Proc. 30th Brazilian Symp. Softw.

Eng., 2016: pp. 13–22. doi:10.1145/2973839.2973842.

[SP29] R.E. Lopez-Herrejon, S. Fischer, R. Ramler, A. Egyed, A first systematic

mapping study on combinatorial interaction testing for software product

lines, in: 2015 IEEE 8th Int. Conf. Softw. Testing, Verif. Valid. Work.

ICSTW 2015 - Proc., 2015: pp. 1–10. doi:10.1109/ICSTW.2015.7107435.

[SP30] R.E. Lopez-Herrejon, S. Illescas, A. Egyed, Visualization for Software

Product Lines: A Systematic Mapping Study, in: 2016 IEEE Work. Conf.

Softw. Vis., 2016: pp. 26–35. doi:10.1109/VISSOFT.2016.11.

[SP31] R.E. Lopez-Herrejon, L. Linsbauer, A. Egyed, A systematic mapping study

of search-based software engineering for software product lines, Inf. Softw.

Technol. 61 (2015) 33–51. doi:10.1016/j.infsof.2015.01.008.

[SP32] R.E. Lopez-Herrejon, S. Illescas, A. Egyed, A systematic mapping study of

information visualization for software product line engineering, J. Softw.

Evol. Process. 30 (2018) 1–18. doi:10.1002/smr.1912.

[SP33] I. do C. Machado, J.D. McGregor, Y.C. Cavalcanti, E.S. de Almeida, On

strategies for testing software product lines: A systematic literature review,

Inf. Softw. Technol. 56 (2014) 1183–1199.

doi:10.1016/j.infsof.2014.04.002.

[SP34] S. Mahdavi-Hezavehi, M. Galster, P. Avgeriou, Variability in quality

attributes of service-based software systems: A systematic literature review,

Inf. Softw. Technol. 55 (2013) 320–343. doi:10.1016/j.infsof.2012.08.010.

[SP35] B. Mohabbati, M. Asadi, D. Gašević, M. Hatala, H.A. Müller, Combining

service-orientation and software product line engineering: A systematic

mapping study, Inf. Softw. Technol. 55 (2013) 1845–1859.

doi:10.1016/j.infsof.2013.05.006.

[SP36] P. Mohagheghi, R. Conradi, Quality, productivity and economic benefits of

software reuse: A review of industrial studies, Empir. Softw. Eng. 12 (2007)

471–516.

[SP37] S. Montagud, S. Abrahão, E. Insfran, S. Abrahￃﾣo, E. Insfran, S. Abrahão,

E. Insfran, A systematic review of quality attributes and measures for

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

software product lines, Softw. Qual. J. 20 (2012) 425–486.

doi:10.1007/s11219-011-9146-7.

[SP38] L. Montalvillo, O. Díaz, Requirement-driven evolution in software product

lines: A systematic mapping study, J. Syst. Softw. 122 (2016) 110–143.

doi:10.1016/j.jss.2016.08.053.

[SP39] E. Murugesupillai, B. Mohabbati, D. Gaevic, A preliminary mapping study

of approaches bridging software product lines and service-oriented

architectures, in: Softw. Prod. Line Conf., 2011: pp. 1–8.

doi:10.1145/2019136.2019149.

[SP40] C.R.L. Neto, P.A. da Mota Silveira Neto, E.S. de Almeida, S.R. de Lemos

Meira, A Mapping Study on Software Product Lines Testing Tools, in:

SEKE 2012 - Proc. 23rd Int. Conf. Softw. Eng. Knowl. Eng., 2012: pp.

628–634.

[SP41] L. Ochoa, O. González-Rojas, A.P. Juliana, H. Castro, G. Saake, A

systematic literature review on the semi-automatic configuration of

extended product lines, J. Syst. Softw. 144 (2018) 511–532.

doi:10.1016/j.jss.2018.07.054.

[SP42] J.A. Pereira, K. Constantino, E. Figueiredo, A Systematic Literature Review

of Software Product Line Management Tools, in: Int. Conf. Softw. Reuse

(ICSR 2015), 2014: pp. 73–89. doi:10.1007/978-3-319-14130-5_6.

[SP43] P.G.G. Queiroz, R.T.V. Braga, Development of critical embedded systems

using model-driven and product lines techniques: A systematic review, in:

Proc. - 2014 8th Brazilian Symp. Softw. Components, Archit. Reuse,

SBCARS 2014, 2014: pp. 74–83. doi:10.1109/SBCARS.2014.19.

[SP44] R. Dos Santos Rocha, M. Fantinato, The use of software product lines for

business process management: A systematic literature review, Inf. Softw.

Technol. 55 (2013) 1355–1373. doi:10.1016/j.infsof.2013.02.007.

[SP45] A.R. Santos, R.P. de Oliveira, E.S. de Almeida, Strategies for consistency

checking on software product lines, in: EASE - Int. Conf. Eval. Assess.

Softw. Eng., 2015: pp. 1–14. doi:10.1145/2745802.2745806.

[SP46] I.S. Santos, R.M. Andrade, P.A. Santos Neto, Templates for textual use

cases of software product lines: results from a systematic mapping study

and a controlled experiment, J. Softw. Eng. Res. Dev. 3 (2015) 1–29.

doi:10.1186/s40411-015-0020-3.

[SP47] I.S. Santos, R.M.C. Andrade, P.A.S. Neto, How to describe SPL

variabilities in textual use cases: A systematic mapping study, in: Proc. -

2014 8th Brazilian Symp. Softw. Components, Archit. Reuse, SBCARS

2014, 2014: pp. 64–73. doi:10.1109/SBCARS.2014.16.

[SP48] S. Sepúlveda, A. Cravero, C. Cachero, Requirements modeling languages

for software product lines: A systematic literature review, Inf. Softw.

Technol. 69 (2016) 16–36. doi:10.1016/j.infsof.2015.08.007.

[SP49] S.P. Shashank, P. Chakka, D.V. Kumar, A systematic literature survey of

integration testing in component-based software engineering, in: 2010 Int.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Conf. Comput. Commun. Technol., 2010: pp. 562–568.

doi:10.1109/ICCCT.2010.5640467.

[SP50] I.F. da Silva, P.A. da M.S. Neto, P. O’Leary, E.S. de Almeida, S.R. de L.

Meira, Agile software product lines: a systematic mapping study, Softw. -

Pract. Exp. 41 (2011) 899–920. doi:10.1002/spe.

[SP51] L.R. Soares, P. Potena, I. do C. Machado, I. Crnkovic, E.S. de Almeida,

Analysis of Non-functional Properties in Software Product Lines: A

Systematic Review, in: 2014 40th EUROMICRO Conf. Softw. Eng. Adv.

Appl., Institute of Electrical & Electronics Engineers (IEEE), 2014: pp.

328–335. doi:10.1109/seaa.2014.48.

[SP52] L.R. Soares, P.Y. Schobbens, I. do Carmo Machado, E.S. de Almeida,

Feature interaction in software product line engineering: A systematic

mapping study, Inf. Softw. Technol. 98 (2018) 44–58.

doi:10.1016/j.infsof.2018.01.016.

[SP53] A. Souag, R. Mazo, C. Salinesi, I. Comyn-Wattiau, Reusable knowledge in

security requirements engineering: a systematic mapping study, Requir.

Eng. 21 (2016) 251–283. doi:10.1007/s00766-015-0220-8.

[SP54] G. Vale, E. Figueiredo, R. Abilio, H. Costa, Bad smells in software product

lines: A systematic review, in: Proc. - 2014 8th Brazilian Symp. Softw.

Components, Archit. Reuse, SBCARS 2014, 2014: pp. 84–94.

doi:10.1109/SBCARS.2014.21.

[SP55] T. Vale, E.S. de Almeida, V. Alves, U. Kulesza, N. Niu, R. de Lima,

Software product lines traceability: A systematic mapping study, Inf. Softw.

Technol. 84 (2017) 1–18. doi:10.1016/j.infsof.2016.12.004.

[SP56] S. Younoussi, O. Roudies, All about software reusability: A systematic

literature review, J. Theor. Appl. Inf. Technol. 76 (2015) 64–75.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix II: Proposals for future research

Full list of identified proposals for future work

Proposal

ID
Proposal for Future Research Research

Topic
Paper

ID
Publishing

Year

1 Revising the existing definition of CBSS metrics for

better precision in measurement.
2.1.2 SP1 2013

2 Combining more than one metric based on logical

conditions by which a subset of problems is detected, to

 characterize and evaluate CBSS with real information.

3 Combination of the existing design techniques and knowledge

types for the design of RAs&RMs for SMSS.
3.6 SP2 2014

4 Evaluation of RAs&RMs for SMSS.

5 Establishment of a terminology for the self-* software

systems domain.

6 Periodically updating the SLR to monitor the evolution of

RAs&RMs for SMSS.

7 Reuse knowledge mining and discovery: Knowledge

capturing and identification.
3.4 SP3 2014

8 Dynamic, runtime evolution: architecture change mining as a

complementary and integrated phase for architecture change

execution.

3.6

9 Enhance the use of Natural Language Processing and

Information Retrieval techniques in addressing variability

within the mostly textual nature of requirements.

1.1.1 SP4 2010

10 Focus not only on the proactive product line adoption

strategy, but also on extractive and reactive strategies and

their combinations.

11 Conduct more comparative studies, e.g., by empirically

assessing the cost-effective degrees of different methods and

techniques.

12 Build an empirical base for sharing the cross-checking data,

including requirements documents, requirements models,

tools, validation results, etc.

13 Conduct and report empirical studies more rigorously.

14 Automation and tool support. 1.2.7

1.2.8

SP5 2017

15 Exploiting multiple sources of information for reengineering. 1.2.8

16 Feature management

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17 Hybrid approaches

18 Refactoring techniques

19 Need of use guidelines

20 New measures and metrics 1.2.6

21 More robust empirical evaluation 1.2.6

22 The implementation of tools to perform the phases is

fundamental to the practice and use in the industry.
1.1.1
1.2.7

SP6 2014

23 Empirical evaluation considering real cases. 1.1.1

24 Automatic recovery of constraints.

25 Hybrid approaches can improve the results when compared

with only one kind of strategy.

26 To combine different sources of information to improve the
results in the feature location/mapping.

27 That new measures and metrics to evaluate reuse

opportunities of artefacts in different abstraction
levels.

28 Applying search-based algorithms

29 The implementation of the entire process to support automatic
migration of existing variants to an SPL.

30 Determining the order of importance and magnitude of the

factors.
3.1 SP7 2016

31 Providing empirical evidence on comparisons of component

origins with regard to the factors.

32 Proposal of novel solutions taking (#30) and (#31) into

consideration.

33 Suitable metrics in the context of requirements reuse for

SPLE.
1.1.1 SP8 2015

34 To conduct a systematic literature review to deepen the

knowledge about the processes of reuse and how the benefits

are transferred to the industry.

3.1 SP9 2018

35 To investigate the development of simpler protocols that can

be used in industry to gather relevant data, such as return on

investment, while applying rigorous methods.

36 Use a quality model to integrate the benefits of reuse and

relate them to specific reuse processes.

37 Develop and validate a model suitable to link reuse benefits

to economic values (strategic or financial).

38 To consider the relationships between SPL adoption and

factors such as company maturity and organization structure

1.2.2 SP10 2011

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in more detail.

39 Patterns to assist in SPL adoption and overcoming SPL

adoption barriers.

40 Case Studies in Safety Engineering and SPL. 1.3.1 SP11 2016

41 To build a catalogue for software reuse to better understand

how exactly the different non-functional requirements and

context factors affect reusability.

3.1
3.2

SP12 2017

42 A large majority of the reported VM approaches have not

been sufficiently evaluated using scientifically rigorous

methods.

1.2.5 SP13 2011

43 Development of new approaches to managing variability in

increasingly large and complex family of systems.

44 How to maintain the traceability between development and

test artefacts, and the management of variability through the

whole development life cycle.

1.1.6 SP14 2011

45 To use the acquired knowledge about dynamic derivation to
improve a product derivation process in a context-aware

DSOPL.

1.1.4 SP15 2013

46 Modelling and treatment of NFRs still in domain analysis. 1.1.1
1.2.5

SP16 2016

47 Evaluating quality attributes using assets different of

variability models.

48 A mechanism to check the consistency and that be able to

modify the variability model at runtime.

49 Defining a pattern to represent the variability in DSPLs.

50 Exploring approaches that can be used for eliciting the FRs.

51 Determining approaches to support the found gaps and to

define a formal process for DSPLs RE and VM.

52 APLE (Agile Product Line Engineering) architecture and

APLE traceability are still open research challenges.
1.2.3 SP17 2011

53 To be able to support traces between features and core-assets

to easily implement maintenance tasks in a systematic and

(semi)-automatic way.

54 Launch empirical studies that use and evaluate the proposals
to give solid foundation to SPL testing.

1.1.6 SP18 2011

SP29 2015

SP33 2014

55 The feasibility and practical applicability of applying

different approaches to vertical test reuse in embedded

systems development in general, and in automotive system

development in particular.

1.1.6 SP19 2014

56 Is necessary to integrate variability modelling, capturing of 1.2.7 SP20 2015

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

related design decisions, and architectural solutions in one

tool environment.
1.2.5

57 There is still very weak evidence for variability in the context

of SAKM (software architecture knowledge management).
The published approaches have not yet been applied in case

studies or industrial projects.

1.2.5

58 Investigate interaction between Non-functional requirements

and context and its effect on variability configuration.
1.2.5 SP21 2015

59 Methods are needed to support structuring large models in the

context of MPL (Multi product lines).
1.2.5 SP22 2012

60 Development of methods to support sharing of models.

61 Primary study on dependencies across SPL.

62 How companies can transform their proprietary software to

open source and build a community on it and more case

studies on implementation of specific methodologies for

dealing with different aspects of open source in industry.

2.1.3 SP23 2011

63 To identify the reasons behind the lack of industrial validation

of requirements reuse approaches.
3.2 SP24 2018

64 Varieties of different tools are used by different requirement

reuse approaches. A separate study is required to analyse the

working of these tools, their strengths, and weaknesses.

1.2.7
3.2

65 Validate reuse cost models and metrics with the industry. 3.3 SP25 2016

66
The presence of empirical evidence of any sort with at least

some intent to explain the overall design and execution of a

validation (e.g. a pilot test in industry).

1.1.1 SP26 2009

67 The integrated or guided reengineering of (typically object-

oriented) legacy code and requirements
1.2.8 SP27 2013

68 Specific aspect-oriented or feature-oriented refactoring into

SPLs.

69 Refactoring for the evolution of existing product lines.

70 Definition of a decision model to support the selection of the

metamodel according to the SPL project.
1.1.2
1.3.2

SP28 2016

71 Investigation on the migration/transformation from one

metamodel to another.

72 Performing empirical studies to investigate the use of these

metamodels in SPL projects.

73 Experimental evaluation of the testing techniques identified. 1.1.6 SP29 2015

74 To take a closer look on the interaction capabilities on the
approaches to visualization for SPL and analyse the empirical

foundations on which they rely upon.

1.3.2 SP30 2016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

75 The developing adequate community-wide testing

benchmarks, exploiting more SPL knowledge to reduce the

search effort, the strong need to provide robust tooling

support.

1.5 SP31 2015

76 Product line scoping and design in the area of manufacturing

and marketing that relies on SBSE techniques.

77 To perform a comparative study of the tools that visualize

feature models with special focus on scalability, and apply

visualization techniques for SPL testing.

1.1.6
1.3.2

SP32 2017

78 Call for empirical assessment as means to improve accuracy

of the identified testing strategies
1.1.6 SP33 2014

79 Case studies on variability quality attributes in service-based

systems.
1.2.5
1.2.6

SP34 2013

80 Integration or adoption of SO (service-orientation) in SPLE

(especially related to DSLPs).
1.1.2 SP35 2013

81 Verifying economic returns of reuse, using comparable and

consistent metrics for measuring reuse.
3.3 SP36 2007

82 Evaluating reuse of COTS or OSS components, integrating

reuse activities in software processes, better data collection

and evaluating return on investment.

83 To define a quality model for SPL. 1.2.6 SP37 2012

84 To conduct primary studies to validate measures for SPL is an

opportunity

85 Studies on FOP, AOP or DOP took the form of academic

evaluations aiming at proving their resiliency upon SPL

evolution. No evidences were found on the applicability of

these approaches in an industrial setting.

1.2.8 SP38 2016

86 Decision-making on whether product specifics should be

promoted to SPL core assets.

87 Change impact analysis upon architectural changes.

88 Inconsistency detection for assets other than variability

models. ―Document change‖ was left out since no study was

found on this activity.

89 Exploring better ways to tailor the service granularity of

service-oriented product line to enhance reusability.
1.1.4 SP39 2011

90 To conduct extensive experimental study to measure

effectiveness of approach so that it can be further explained in

a service composition process.

1.2.6

91 To take service oriented product line architecture approach

and apply it in different domains to validate the real benefits.
1.1.2
1.2.6

92 Approach to include dynamic adaptation of agents and

integration to support automation.
1.1.2
1.2.7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

93 Propose to create supporting tools and models to aid in

service oriented application development and variability

management.

1.2.7
1.1.3
1.2.5

94 There is no tool suitable to all testing levels of a SPL,
researchers need to consider the feasibility of adapting

existing tools or constructing new tools.

1.2.7
1.1.6

SP40 2012

95 More experiments involving SPL testing tools are needed.

96 Benchmark quality attributes in semi-automatic

configurations of SPL.
1.2.6 SP41 2018

97 Lack of industrial support during product configuration. 1.1.4 SP42 2014

98 The definition of process/software metrics to compare

approaches about the combination of PLE (Product Line

Engineering) and MDE (Model-Driven Engineering) for the

development of SCES (Safety-Critical Embedded Systems),

and conduct experiments to try to measure its effectiveness.

1.2.6 SP43 2014

99 PL approaches for BPM are still at an early stage and gaining

maturity.
1.2.2 SP44 2013

100 Faster feedback on consistency checking 1.1.6 SP45 2015

101 A robust framework to support coevolution of the SPL

artefacts would probably improve the evolution process
1.2.8

102 Together with the handling inconsistencies may be reasonable

to track findings, decisions and actions made through

consistency management policies

103 To propose a new SPL use case template or to investigate

which template is better.
1.1.1

SP46 2015

104 Experimental study comparing different templates to SPL
variabilities in textual use cases in terms of ease of use or

comprehensibility.

1.2.5 SP47 2014

105 Research on requirements modelling languages for SPLs has

generated a myriad of languages that differ in the set of

constructs provided to express SPL requirements. Their

general lack of empirical validation and adoption in industry,

together with their differences in maturity, draws the picture

of a discipline that still needs to evolve.

1.1.1 SP48 2016

106 Is CBSE suitable when there are frequently changing

requirements (i.e. I Agile fashion)?
2.1.1 SP49 2010

107 How to achieve common component standardization and

environmental characteristics?

108 Investigation/case study of CBSE in Software industry.

109 Testing tools in CBSE. 1.2.7
2.1.1

110 Conduct a Survey with Agile and SPL experts to improve

understanding.
1.2.3 SP50 2011

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

111 To provide support for the trade-off analysis among

competing NFPs both at domain engineering and application

engineering levels.

1.3 SP51 2014

112 To analyse dependencies between different kinds of NFPs
and the SPL lifecycle-related practices.

113 To understand practitioner’s perceived strengths, limitations,

and needs associated with using NFPs for SPL practices in

the industry.

114 Dynamically analyse systems to collect specifications and

interactions at control and data flows.
1.1.1 SP52 2018

115 Early detections could benefit from structural (source code)

and operational (data and control flows) analysis to evaluate

the efficiency of previously detected interactions. The

opposite could also be interesting, traceability from source

code to models.

116 To explore new knowledge representation models and

evaluate how they could enrich the SRE (Security

requirements engineering) knowledge elicitation process and,

consequently, this knowledge reuse.

3.4 SP53 2015

117 Current ontology languages are limited and that there is a

need for semantically richer knowledge models.

118 At the industrial level, the question arises about the real

practices of industrials on knowledge reuse during security

requirements elicitations and analyses.

119 The lack of automated support and the fact that many of the

SRE methods rely on reusable knowledge that is not standard

remain as issues.

120 Authors identified 70 bad smells and 95 refactoring methods

to SPL and they suggest exploring and classifying the

refactoring methods listed, identifying what refactoring

methods can be applied to minimize or solve some bad

smells, and exploring variability smells to detect gaps in

literature aims to propose new smells.

1.1.2
1.2.8

SP54 2014

121 The complex nature of variability in software product lines

scenarios.
1.4.1 SP55 2017

122 The gap between problem and solution space assets.

123 Comparison between traceability proposals for SPL and

single-system development.

124 The use of traceability to locate proper SPL assets.

125 The lack of proper tools. 1.2.7
1.4.1

126 Few works examined barriers of reusability, which can

motivate organizations to adapt software reusability

approaches.

3 SP56 2015

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

127 The studies about maturity models of software reuse are

limited, so exploring this domain for helping organizations to

audit his maturity reuse levels.

