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Abstract: Salient object detection (SOD) has been attracting a lot of interest, and recently many computational models have 
been developed. In this paper, we formulate a SOD model, in which saliency map is computed as a combination of the 
colour, its distribution-based saliency and orientation saliency. Similar to traditional SODs, the proposed method is based 
on super-pixel segmentation and super-pixelutilizes both colour and its distribution-based saliency to generate a coarse 
saliency map. However,  distinct from traditional SODs, we further use orientation contrast to optimize the coarse saliency 
map to obtain an improved saliency map. Our contributions are twofold. First, we combine colour uniqueness and its 
distribution with local orientation information (LOI) used in Itti’s model to effectively improve profiles of salient regions. 
Second, a reciprocal function is defined to substitute the Gabor function used in LOI and we have proved that the 
substitution could detect relatively homogeneous and uniform regions at the boundary of salient object, whereas it is what 
the traditional models lack. Our approach significantly outperforms state-of-the-art methods on four benchmark datasets 
while, we demonstrate that the proposed method runs as fast as most existing algorithms. 

1. Introduction
Salient object detection aims at accurately and 

uniformly detecting objects that grab human attention in 
images. Salient object detection methods commonly serve as 
the first step for a variety of computer vision applications, 
including object segmentation [1], image compression [2], 
object recognition [3], image retrieval [4], etc. 

Traditional saliency detection methods rely on 
various saliency cues. The most widely explored one is 
contrast, which has been shown to be the most influential 
factor to visual attention in the human vision system [5], [6]. 
Local and global contrast has been successfully adopted to 
derive saliency maps in various saliency detection methods, 
where the definition of contrast is based on various types of 
handcrafted image features (e.g., colour, intensity and 
histogram) at pixel or super-pixel scale [7], [8], [9].  

Some recent works also utilize various prior 
knowledge as informative saliency cues. Background prior 
[9-11] hypothesizes that regions near image boundaries are 
probably backgrounds. However, it often fails when salient 
objects touch image boundaries or have similar appearance 
with backgrounds. Compactness prior [12] advocates that 
salient object regions are compact and perceptually 
homogeneous elements. Objectness prior [13, 14] tends to 
highlight an image region which is likely to contain an 
object of a certain class. Although these priors can further 
provide informative information for salient object detection, 
they are usually explored empirically and have to be 
carefully tailored for adapting to different types of image 
data with a wide variety of objects and their contextual 
interactions, thereby making them less applicable to a wide 
range of problems in practice. 

In recent years, deep convolutional neural networks 
(CNNs) [15] have been employed in salient object detection 
to obtain more robust features, and have achieved 

substantially better results than traditional methods [16], 
[17]. Features extracted using CNNs contain more high-
level semantic information since those CNNs were typically 
pre-trained on datasets for visual recognition tasks. 
Generally, these methods can achieve favourable 
performance when the ground truth annotations of the 
training samples are given, but are time-consuming at the 
cost of high computational complexity and heavily rely on 
the properties of training data. 

In this paper, we formulate a salient object detection 
model, in which saliency map is computed as a combination 
of the colour, its distribution-based saliency and orientation 
saliency. Our approach consists of six steps. The first one is 
pre-segmentation, which segments an input image into 
multiple regions. Second, for each region we calculate its 
colour contrast and saliency, which illustrate that a salient 
object should have strong contrast to their surroundings. 
Third, we define second saliency, which is called colour 
distribution, to enhance the saliency of super-pixels 
belonging to the salient object and suppress the saliency of 
super-pixels belonging to the background. Fourth, we 
present a novel reciprocal function filter to generate 
orientation saliency. Fifth, we  integrate uniqueness, 
distribution and orientation contrast into the final saliency 
map. Finally, for the fused saliency map: a) super-pixelwe 
loop the first step to the fifth step to generate N scale 
saliency maps {S(1),S(2),…,S(N)} based on each of N different 
scale super-pixel segmentation of the input image; b) 
saliency map fusion algorithm in Sec. 3.6. is applied to fuse 
N scale saliency maps and yield the fused saliency map. 

In summary, this paper has the following 
contributions: 

·We combine colour uniqueness and distribution
with local orientation information (LOI) used in Itti’s model 
[18] to effectively improve profiles of salient regions. The
Itti’s model is discussed in the related work section.
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·We define a reciprocal function to substitute the
Gabor function used in LOI, and have proved that the 
reciprocal function could detect relatively homogeneous 
and uniform salient regions and achieve a remarkable 
improvement for the saliency detection. 

·We develop a complete saliency framework by
integrating our saliency model with multiscale image 
segmentations.

The rest of this paper is organized as follows. Sec. 2 
introduces related work and discusses their differences with 
our proposed method. The saliency computation framework 
is presented in Sec. 3. Sec. 4 shows experimental results to 
substantiate the effectiveness of the proposed method. 
Finally, conclusions are drawn in Sec. 5. 

2. Related work
According to surveys [19, 20] presented by Borji 

et.al., saliency detection methods are categorised into 
bottom-up and top-down. Since the proposed saliency 
detection method used in our framework belongs to the 
former, here we only review related bottom-up methods. For 
top-down category, we suggest to refer to surveys [19, 20]. 

As an earlier and original creative work, Itti et.al. [18] 
proposed a centre-surround model, which yields saliency 
map by using three local feature contrasts for intensity, 
colour and local orientation information of an image. The 
three centre-surround differences are generated by like-
DOG (Difference of Gaussian). So far, the model still is a 
prototype for the salient object detection. Specially, since 
2010, saliency detection has been made many significant 
progresses and many novel methods have been continuously 
proposed. According to Borji et.al.’s surveys, in existing 
methods, region-based salient object detection methods are 
increasingly popular with the development of super-pixel 
algorithms. For these methods, their general frameworks are 
that an input image is first over-segmented into many super-
pixels, and then based on these super-pixels regional 
saliency maps are derived. These regional saliency maps are 
defined as uniqueness in terms of global regional contrast 
and widely studied in these existing methods. Cheng et.al. [7] 
proposed a regional-contrast-based saliency extraction 
algorithm, which simultaneously evaluates global contrast 
differences and spatial coherence. However, saliency maps 
obtained using their methods may contain background 
clutter and sometimes highlight parts of the object. Perazzi 
et.al. [12] combine colour contrast and colour distribution to 
perform saliency detection. They show that complete 
contrast and saliency estimation can be formulated in a 
unified way using high dimensional Gaussian filters. Then, 
an up-sampling procedure is carried out to assign saliency 
value to each pixel. However, there exists an issue similar to 
Cheng's model, i.e., sometimes highlighting parts of the 
object. Yan et.al. [21] proposed a multi-layer approach to 
analyse saliency cues, which mainly tackles an issue that 
detection accuracy could be adversely affected if salient 
foreground or background in an image contains small-scale 
high-contrast patterns. Jiang et.al. [22] presented saliency 
detection via absorbing Markov chain on an image graph 
model, which jointly considers the appearance divergence 
and spatial distribution of salient objects and the background. 
However, the method preserves object boundary not well. Li 
et.al. [23] proposed a visual saliency detection algorithm 

from the perspective of reconstruction errors, in which 
image boundaries are first extracted via super-pixels as 
likely cues for background templates, from them dense and 
sparse appearance models are constructed. Zhu et.al. [24] 
proposed saliency optimization from robust background 
detection, which integrates the boundary prior or 
background information with other cues to yield saliency 
map. 

Inspired by the feature integration theory, some 
approaches focus on learning the linear fusion weight of 
saliency features. Liu et al. [25] propose to learn the linear 
fusion weight of saliency features in a Conditional Random 
Field (CRF) framework. Recently, the large-margin 
framework was adopted to learn the weights in [26]. Due to 
the highly non-linear essence of the saliency mechanism, the 
linear mapping might not perfectly capture the 
characteristics of saliency. In [27], a mixture of linear 
Support Vector Machines (SVM) is adopted to partition the 
feature space into a set of sub-regions that were linearly 
separable using a divide-and-conquer strategy. Alternatively, 
a Boosted Decision Tree (BDT) is learned to get an initial 
saliency map, which will be further refined using a high 
dimensional colour transform [28]. In [29], generic regional 
properties are investigated for salient object detection. Li et 
al. [30] propose to generate a saliency map by adaptively 
averaging the object proposals [31] with their foreground 
probabilities that are learned based on eye fixations features 
using the Random Forest regressor. Wang et al. [32] learn a 
Random Forest to directly localize the salient object on 
thumbnail images. Moosmann et al. [33] utilize a saliency 
map to guide the sampling of sliding windows for object 
category recognition, which is online learned during the 
classification process. 

In recent years, with neural network and deep 
learning continuously made progresses, many deep neural 
network models for salient object detection have been 
proposed. Huang et al. [35] formulate saliency detection 
problem as a multiple instance learning (MIL) task, where 
the object proposals and super-pixels are taken as bags and 
instances respectively. Jiang et al. [36] propose a supervised 
learning approach which utilizes the structural SVM 
framework and formulates the salient object detection and 
existence problems jointly in a single integrated objective 
function. He et al. [34] utilize a novel superpixel wise 
convolutional neural network approach, which called 
SuperCNN to learn the internal representations of saliency 
in an efficient manner. Li et al. [37] propose a multi-task 
deep saliency model based on a fully convolutional neural 
network with global input and global output. Li et al. [38] 
propose an end-to-end deep contrast network which consists 
of two complementary components, a pixel-level fully 
convolutional stream and a segment-wise spatial pooling 
stream. Liu and Han [39] propose an end-to-end deep 
hierarchical saliency network based on convolutional neural 
networks, which learns various global structured saliency 
cues and then hierarchical recurrent convolutional neural 
network (HRCNN) is adopted to further hierarchically and 
progressively refine the details of saliency maps. Hou et al. 
[47] propose a new method that provides rich multi-scale
feature maps by introducing short connections to the skip-
layer structures within the Holistically-Nested Edge
Detector (HED). However, even though for state-of-the-art
deep learning models for SOD similar to [37, 38, 39], there
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exists three deadly drawbacks: 1) a large scale training 
dataset with labels must  be accumulated in advance; 2) for 
each label, i.e., ground truth, in the training dataset, 
essentially it must depend on handcrafted SOD method to 
produce; 3) a deep learning model can be used to detect 
salient object from the input image only when it has been 
trained, however, it takes long time for training deep neural 
network. 

Therefore, handcrafted SOD method is still a 
fundamental research. The proposed saliency detection 
method is a handcrafted SOD method, which is motivated 
by the two models in [12] and [18], but it obviously 
differentiates from them and focuses on how to produce 
high quality saliency maps to totally highlight the entire 
object and ensure the boundary of the detected salient object  
has a better fitness to its corresponding ground truth. 

3. The saliency detection model 
Perazzi et. al. [12] proposed a saliency detection 

method, which has attracted many researchers to pay 
attention due to its simple and clear idea. The model simply 
uses two cues, colour and its distribution to detect salient 
regions and yield saliency map for a given image. It has a 
higher efficiency and a lower computational complexity. 
However, as shown in Figure 1 (b) and (d), many 
experiments have frequently demonstrated that some 
detected salient regions lack of integrity, especially near the 
boundary of salient region, not enough smooth, even some 
parts near the boundary of salient region are lost, see the 
little girl at the top row in Figure 1 (b) and (c), her head part 
has not been able to be detected in the corresponding 
saliency map and binary image. As it can be seen in Figure 1, 

other images also expose a similar phenomenon. Through 
investigating a reason why the phenomenon happens, we 
found that it is due to the so-called bottom-up model. As 
mentioned above, for any bottom-up saliency detection 
model,  it walks through such a process: 1) it segments an 
input image into many small regions or super-pixels, in fact 
the input image is transformed into a coarse-grain image 
since all pixels among each super-pixel are assigned to equal 
grey value; 2) based on the coarse-grain image, a saliency 
map is generated by merging primary features for each 
super-pixel. Thereby these super-pixel boundary 
discontinuities must be introduced into the final saliency 
map while they are merged into a larger region based on 
colour uniqueness and distribution. 

Therefore, we need to explore more reliable saliency 
detection model which can avoid the mentioned drawbacks 
as many as possible. Itti et.al. proposed a top-down model, 
namely "center-surround", which uses center-surround 
differences between a "center" fine scale and a "surround" 
coarser scale to yield the saliency feature maps, which are 
formed by three elementary features: intensity, four broadly-
tuned colour channel and LOI from oriented Gabor 
pyramids. Specially, we deeply analyse the single 
component, LOI and found it can provide profiles of salient 
regions as shown in Figure 2 (b). However, these profiles 
are consisted of some textures, in other words, these salient 
regions are not able to be homogeneously detected  though 
they have been improved in terms of integrity. At least near 
the boundary of salient region, the loss of part has never 
ever occurred. Furthermore, if we can find a method, which 
can detect relatively homogeneous and uniform salient 
region instead of the above one, then LOI saliency map will 

Fig. 1.  Comparison between salient filter (SF) and SF  with reciprocal function (SFR): a) source images; b) 
saliency maps yielded by SF; c) saliency maps yielded by SFR; d) threshold results yielded by SF; e) threshold 
results yielded by SFR; f) the gound truth. Where d) and e) are yielded by setting threshold 𝑻𝑻 =
𝟐𝟐×∑ ∑ 𝑺𝑺(𝒊𝒊,𝒋𝒋)𝑯𝑯

𝒋𝒋=𝟏𝟏
𝑾𝑾
𝒊𝒊=𝟏𝟏

𝑾𝑾×𝑯𝑯
 for their corresponding saliency maps, W and H are width and height of each saliency map, 

S(i; j) is the pixel at the point (i, j) in each saliency map. 
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be very viable and reliable. A so-called reciprocal function 
defined by equation (4) can be used to solve this issue, 
which owns a property similar to the Gabor function as 
Figure 3, but outperforms the latter in highlighting the 
distinctive regions. As Figure 2 (c) shows, a remarkable 
improvement for the saliency maps can be found. 

So far, we have found our visual attention model's 
idea, which is built based on three saliency contrasts: 
uniqueness, colour distribution and LOI. Here the two 
contrasts, uniqueness and colour distribution, are used for 
the proposed novel model to detect a coarse saliency map. 
Moreover, LOI contrast is used to supplement and tune the 
coarse saliency map. A smoothed and fine-grain saliency 
map can be attained in the end. Therefore, the procedure for 
our visual attention model includes Simple Linear Iterative 
Clustering (SLIC) super-pixel pre-segmentation [40], 
element uniqueness, element distribution, LOI to integrate 
uniqueness & distribution and LOI to compute the final 
saliency map. Our model is referred to as saliency filter with 
reciprocal function (SFR) since it is derived from the 
saliency filter model and reciprocal function filter, further it 
is formulated as follows. 

3.1. Pre-segmentation 

Similar to Perazzi's model [12], we first use SLIC 
super-pixels in Lab colour space to partition an image into 
spatial compact regions 𝑆𝑆𝑖𝑖 , 𝑖𝑖 = 1,2,3,⋯,  L with relatively 
consistent size. By utilizing the k-means clustering approach, 
the super-pixel algorithm SLIC can efficiently generate 
compact and orderly super-pixels. An expected 
segmentation can be achieved while we only pass the 

expected number of  pre-segmented super-pixels to the 
SLIC method. Therefore, for an  input image, to observe 
more segmentation details  we can easily use  SLIC 
algorithm  to  yield its various segmentations at multi-
scalessuper-pixelsuper-pixelsuper-pixel.  

We compute colour uniqueness and distribution at 
each scale, and these super-pixels are used as elementary 
processing units for element uniqueness and distribute 
description. Let ci and pi denote the average colour and 
centre position of the ith super-pixel respectively, which are 
calculated by  

𝑐𝑐𝑖𝑖 =
∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖
𝑖𝑖=1
𝑁𝑁𝑖𝑖

, 𝑝𝑝𝑖𝑖 =
∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖
𝑖𝑖=1
𝑁𝑁𝑖𝑖

  (1) 

where cij, pij, Ni are the jth colour, jth pixel and pixel number 
of the ith super-pixel respectively. 

3.2 Colour contrast saliency 

Each colour component belonging to a salient object 
should have a strong contrast to their surroundings [20]. 
Colour contrast saliency is yielded by the distinction of the 
ith super-pixel Si with the centre position pi and colour ci 
compared to all other super-pixel Sj : 

𝑆𝑆𝑖𝑖𝑐𝑐 = ∑ �𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗�2𝑤𝑤�𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗�
𝑁𝑁
𝑗𝑗=1   (2) 

where w(pi,pj) yields a local contrast term, which tries to 
emphasize that for two super-pixels belonging to the same 
object, there exists not only similar colours but also a nearer 
distance between them. This means that if there are similar 
colours and a nearer distance between Si and Sj, the two 
super-pixels are probably merged into a larger region and 
super-pixel Sj provides contribution to super-pixel Si. 
Therefore, the saliency of super-pixel Sj should be enhanced, 
whereas w(pi,pj) = 1 yields a global colour contrast, which 
cannot represent the sensitivity to local contrast variation. 
Generally, for the weight w(pi,pj) in Eq.(2), Gaussian 
blurring kernel w�𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗� = 1

𝜔𝜔
𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎𝑐𝑐2
�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗�2�can be

used to approximate it, σc controls the range of colour 
contrast operator, which allows for a balance between local 
and global effects, i.e., given a smaller σc value, colour 
contrast saliency map yielded by equation (2) preserves 
more local regions or local effect. Conversely, for a larger σc 
value, global effect is enhanced in the yielded saliency map 
whereas local regions are suppressed. ω is the normalization 
factor ensuring ∑ 𝑤𝑤�𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗� = 1𝑁𝑁

𝑗𝑗=1 . 

3.3 Colour distribution 

A super-pixel belonging to a salient object displays 
strong colour contrast to its surroundings, meanwhile, super-
pixel belonging to the background also probably displays 
strong colour contrast to its surroundings [41]. However, 
from human visual perception colour super-pixels belonging 
to the salient object will be distributed within the more 
compact range in spatial structure and have a smaller spatial 
variance, whereas for this colour super-pixels belonging to 
the background will be distributed over the entire image and 
have a bigger spatial variance. We need to further define a 

Fig. 2.  (a) source images; (b) saliency maps yielded by 
using Gabor filter on Gaussian pyramid sub-samples and 
bilinear interpolation; (c) saliency maps yielded by using 
reciprocal function filter on Gaussian pyramid sub-samples 
and bilinear interpolation. 
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corresponding second measure to enhance the saliency of 
super-pixels belonging to the salient object and suppress the 
saliency of super-pixels belonging to the background. 

For the ith super-pixel, we define its distribution 
measure by using the spatial variance Di of its colour ci, i.e., 
we measure its occurrence elsewhere in the image. As 
mentioned before, low variance indicates a spatially 
compact object, which should be considered more salient 
than spatially widely distributed elements. The spatial 
variance Di is calculated by 

 
𝐷𝐷𝑖𝑖 = ∑ �𝑝𝑝𝑗𝑗 − 𝜇𝜇𝑖𝑖�2𝜔𝜔𝑖𝑖𝑗𝑗

(𝑐𝑐)𝑁𝑁
𝑗𝑗=1                             (3) 

 
where 𝜔𝜔𝑖𝑖𝑗𝑗

(𝑐𝑐) = 1
𝑊𝑊𝑖𝑖
𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎𝑑𝑑
2 �𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗�2�  describes the 

similarity of colour ci and colour cj of super-pixels i and j, 
respectively, pj is the position of super-pixel j, and 𝜇𝜇𝑖𝑖 =
∑ 𝜔𝜔𝑖𝑖𝑗𝑗

(𝑐𝑐)𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1  defines the weighted mean position of colour ci, 

the parameter σd controls the colour sensitivity of the 
element distribution, a smaller σd suppresses colour effect 
between super-pixels so that distribution saliency map 
yielded by equation (3)  is more homogeneous, conversely,  
the opposite effect is gained.    
 

3.4 Orientation saliency 
 

Itti's "centre-surround" model uses centre-surround 
differences between a "centre" fine scale and a "surround" 
coarser scale to yield the saliency feature maps, which are 
formed by three elementary features: intensity, four broadly-
tuned colour channel and LOI from oriented Gabor 
pyramids. Contrasts as Figure 2 (b) are gained by using the 
LOI. For such LOI contrasts, these salient regions are 
roughly outlined, but there exist two main drawbacks: they 
are textured and not enough smooth near their boundaries. If 
these detected salient regions are homogeneous, uniform 
and enough smooth near the boundary areas, then we can 
use itti's model to correct lacks of parts near the regional 
boundary caused by saliency filter (SF) model. After 
investigating and analysing a large number of filters, a filter 
referred to as reciprocal function is used to substitute Gabor 

function in Itti's model and to attain the expected salient 
regions, which are homogeneous, uniform and smooth 
enough near their boundaries. 

The reciprocal function filter is formulated by 
 

f(𝑒𝑒,𝑦𝑦) = 1

𝜎𝜎��𝑥𝑥𝑐𝑐𝑥𝑥𝑥𝑥(𝜃𝜃)+𝑦𝑦𝑥𝑥𝑖𝑖𝑦𝑦(𝜃𝜃)�
2
+𝛾𝛾2�𝑦𝑦𝑐𝑐𝑥𝑥𝑥𝑥(𝜃𝜃)−𝑥𝑥𝑥𝑥𝑖𝑖𝑦𝑦(𝜃𝜃)�

2
�+1

      (4) 

 
where σ is control parameter, γ orientation curvature, and θ 
orientation angle. As shown in Figure 3, the four kernels are 
generated by the filter at the four orientations with the 
parameter values set above, which are similar to ones by the 
Gabor kernels. 

Furthermore, a novel LOI-based detection model is 
developed. Let I(i) an intensity image with I(i) = (r + g + b)/3, 
r, g, b being the red, green and blue channels of the source 
image I. I(i) is used to create a pyramid I(i)(m), where m is the 
scale.  For each pyramid I(i)(m), a kernel of oriented 
reciprocal filter f(𝑒𝑒, 𝑦𝑦, 𝜃𝜃)  with size 34 × 34 is used to 
generate Gaussian pyramid O(m, θ), where θϵ �0, 𝜋𝜋

4
, 𝜋𝜋
2

, 3𝜋𝜋
4
�. 

Note that different from conventional Gaussian pyramid, 
O(m, θ) here is generated by the proposed reciprocal 
function filter f(𝑒𝑒, 𝑦𝑦) substituting Gabor filter. Further, the 
local orientation contrast Oc(c, s, θ) at the orientation θ is 
calculated by 
 

𝑂𝑂𝑐𝑐(𝑐𝑐, 𝑠𝑠,𝜃𝜃) = |𝑂𝑂(𝑐𝑐, 𝜃𝜃)|⊕|𝑂𝑂(𝑠𝑠, 𝜃𝜃)|                     (5) 
 

where c∈{3, 4} and s=c+δ, δ∈{3,4}, ⊕ represents the 
summation operator pixel by pixel. Traversing c and s for 
equation (5), four intermediary maps are yielded at the 
orientation θ.  Finally, we integrate the 16 maps at four 
orientations 0, 𝜋𝜋

4
, 𝜋𝜋
2

, 3𝜋𝜋
4

 into a single orientation saliency map 
by equation (6): 
 

𝑂𝑂� = ∑ 𝑁𝑁 �⊕𝑐𝑐=3
4 ⊕𝑥𝑥=𝑐𝑐+3

𝑐𝑐+4 �𝑁𝑁�𝑂𝑂𝑐𝑐(𝑐𝑐, 𝑠𝑠,𝜃𝜃)���𝜃𝜃∈{0,𝜋𝜋4,𝜋𝜋2,3𝜋𝜋4 }          

(6) 
 

where N(·) represents normalizing operator. 

Fig. 3.  The 34×34 kernel masks yielded by the reciprocal function at the four orientations: 0,𝝅𝝅
𝟒𝟒

, 𝝅𝝅
𝟐𝟐

, 𝟑𝟑𝝅𝝅
𝟒𝟒

 are 
shown in columns (a), (b), (c), (d), respectively. The top row is their corresponding grey images, the bottom 
row is their corresponding surfaces. 
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To better understand the process calculating single 
orientation saliency map, a block diagram is shown as Fig.4. 
 

3.5.  Saliency assignment 
 

Our framework generating the saliency map includes 
two steps: the first step is carried out to obtain the colour-
distribution saliency map S(cd) by combining colour and 
distribution contrasts Si

(c) and Si
(d)

  for each super-pixel Si; 
the second step is carried out to obtain the final saliency 
map S by combining S(cd) and LOI 𝑂𝑂� pixel by pixel. 

For the first step, similar to SF model by normalizing 
both Si

(c) and Si
(d)

  to the range [0, 1]. For each super-pixel Si, 
its colour-distribution saliency map S(cd) is combined by 

 

𝑆𝑆𝑖𝑖
(𝑐𝑐𝑐𝑐) = 𝑆𝑆𝑖𝑖

(𝑐𝑐) ⊙ exp (−𝑘𝑘⋅𝐷𝐷𝑖𝑖)                        (7) 
 

where ⊙ is a m ultiply operator pixel by pixel, k is the 
scaling factor for the exponential. Traversing all N super-
pixels, S(cd) is obtained. 

For the second step, the final saliency map S is 
calculated by 

 
S = 𝑆𝑆(𝑐𝑐𝑐𝑐) ⊙  𝑂𝑂�                                     (8) 

 
Traversing all pixels in the source image I, S is obtained. 

Figure 1 shows some experimental results on two 
benchmark datasets MSRK10 [7] and ECSSD [21], where 
images in (d) and (e) are the binary ones generated by using 

our method and the SF model with threshed T =
2×∑ ∑ 𝑆𝑆(𝑖𝑖,𝑗𝑗)𝐻𝐻

𝑖𝑖=1
𝑊𝑊
𝑖𝑖=1
𝑊𝑊×𝐻𝐻

respectively, images in (f) are the 
corresponding ground truths. Compared (d) and (e) to (f) 
respectively, the images in (e) are closer to (f) and gain 
remarkable improvements, especially near the boundary 
areas of salient regions our visual attention model 
demonstrates better integrity. 

 
3.6. Saliency Map Fusion 

For an input image, SLIC method can easily be 
applied and generate various super-pixel segmentations by 
specified the number of super-pixels.  As Fig.5 shows, for a 
given image three different scale super-pixel segmentations 
are specified, where number of super-pixels are taken as 150, 
250, 350 respectively. Further, the proposed model is used 
for the three super-pixel segmentations and generates three 
corresponding saliency maps, as Fig.5 (c) can be seen 
between which exist slight differences. These differences 

Input an intensity image 𝐼𝐼(𝑖𝑖) 

Pyramids 𝐼𝐼(𝑖𝑖)(0), 𝐼𝐼(𝑖𝑖)(1),⋯ , 𝐼𝐼(𝑖𝑖)(8) are generated 

Generating Gaussian pyramid 𝑶𝑶(𝒎𝒎,𝜽𝜽)  for each  𝒎𝒎 𝒂𝒂𝒂𝒂𝒂𝒂 𝜽𝜽 , 𝑚𝑚 = 0,1,2,⋯ ,8, 𝜃𝜃 = 0, 𝜋𝜋
4

, 𝜋𝜋
2

, 3𝜋𝜋
4

: 
The kernel of oriented reciprocal filter 𝑓𝑓(𝑒𝑒,𝑦𝑦, 𝜃𝜃) with size 34 × 34 is used for Pyramids 
𝐼𝐼(𝑖𝑖)(0), 𝐼𝐼(𝑖𝑖)(1),⋯ , 𝐼𝐼(𝑖𝑖)(8) to generate Gaussian pyramids, total 36 Gaussian pyramids are yielded 
𝑂𝑂(0,0),𝑂𝑂 �0, 𝜋𝜋

4
� ,𝑂𝑂 �0, 𝜋𝜋

2
� ,𝑂𝑂 �0, 3𝜋𝜋

4
� ,⋯, 𝑂𝑂(8,0),𝑂𝑂 �8, 𝜋𝜋

4
� ,𝑂𝑂 �8, 𝜋𝜋

2
� ,𝑂𝑂 �8, 3𝜋𝜋

4
�  

Integrating the 16 local orientation contrasts  𝑂𝑂𝑐𝑐(𝑐𝑐, 𝑠𝑠, 𝜃𝜃) into orientation saliency map: 
1) Normalizing operator is used for each of 16 local orientation contrasts, i.e., 𝑵𝑵(𝑶𝑶𝒄𝒄(𝒄𝒄, 𝒔𝒔,𝜽𝜽)) ; 
2) Sum operator pixel by pixel is used for all 16 local normalized orientation contrasts to yield the final 

orientation saliency map 𝑂𝑂� = 𝑁𝑁�𝑁𝑁�𝑂𝑂𝑐𝑐(3,6,0)� ⊕𝑁𝑁�𝑂𝑂𝑐𝑐(3,7,0)� ⊕⋯  ⊕𝑁𝑁�𝑂𝑂𝑐𝑐 �4,7, 3𝜋𝜋
4
��⊕𝑁𝑁 �𝑂𝑂𝑐𝑐 �4,8, 3𝜋𝜋

4
��� 

Calculating local orientation contrast 𝑂𝑂𝑐𝑐(𝑐𝑐, 𝑠𝑠, 𝜃𝜃) at each orientation 𝜃𝜃: 
1) let 𝑂𝑂(3, 𝜃𝜃) "centre", let 𝑂𝑂(6, 𝜃𝜃),𝑂𝑂(7, 𝜃𝜃) "surrounding", LOC is calculated by 

𝑂𝑂𝑐𝑐(3,6, 𝜃𝜃) ← 𝑂𝑂(3, 𝜃𝜃) ⊕𝑂𝑂(6,𝜃𝜃) 
𝑂𝑂𝑐𝑐(3,7, 𝜃𝜃) ← 𝑂𝑂(3, 𝜃𝜃) ⊕𝑂𝑂(7,𝜃𝜃) 

2) let 𝑂𝑂(4, 𝜃𝜃) "centre", let 𝑂𝑂(7, 𝜃𝜃),𝑂𝑂(8, 𝜃𝜃) "surrounding"，LOC is calculated by 
𝑂𝑂𝑐𝑐(4,7,𝜃𝜃) ← 𝑂𝑂(4,𝜃𝜃) ⊕𝑂𝑂(7,𝜃𝜃) 
𝑂𝑂𝑐𝑐(4,8,𝜃𝜃) ← 𝑂𝑂(4,𝜃𝜃) ⊕𝑂𝑂(8,𝜃𝜃) 

At all four orientations 0, 𝜋𝜋
4

, 𝜋𝜋
2

, 3𝜋𝜋
4

, total 16 local orientation contrasts are generated 

𝑂𝑂𝑐𝑐(3,6,0),𝑂𝑂𝑐𝑐(3,7,0),𝑂𝑂𝑐𝑐(4,7,0),𝑂𝑂𝑐𝑐(4,8,0),⋯ ,𝑂𝑂𝑐𝑐 �3,6,
3𝜋𝜋
4 � ,𝑂𝑂𝑐𝑐 �3,7,

3𝜋𝜋
4 � ,𝑂𝑂𝑐𝑐 �4,7,

3𝜋𝜋
4 � ,𝑂𝑂𝑐𝑐 �4,8,

3𝜋𝜋
4 � 

Fig.4. The process calculating a single orientation saliency map 
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demonstrate the diversity of saliency maps under multi-scale 
segmentations. This kind of diversity shows that there exists 
an opportunity to gain the optimum saliency map from a 
series of multiscale saliency maps. We proposed an 
optimizing strategy: 1) the proposed model is applied to 
each of N scale segmentations, and  a series of N pre-refined 
saliency maps is generated, denoted as {S(1),S(2),…,S(N)}. 2) 
assuming that the final saliency map 𝑆𝑆𝑆𝑆  is a linear 
combination of the maps at each scale,  then  𝑆𝑆𝑆𝑆  is 
formulated as follows: 

 

{ }
1 2

( )

1
2

( )
1

, , ,
. . arg min .

L N v

N
k

k
k

N k
k i k ik

i I k F

SA S

s t S S
α α α

α

α α

=

=
∈

=

= −

∑

∑ ∑
    (9) 

Similar to [38], where the weights kα  can be learned by 
running a least-squares estimator over a validation dataset, 
indexed with Iv. 
There are many options for saliency fusion. For example, a 
conditional random field (CRF) framework has been 
adopted in [27] to aggregate multiple saliency maps from 
different methods. Nevertheless, we have found that the 
linear combination of all saliency maps can already serve 
our purposes well and is capable of producing aggregated 
maps with a quality comparable to those obtained from more 
complicated techniques, as Fig.5 (d) shows the proposed 
saliency fusion strategy can not only generate smoother 
results but also well preserve salient object contours. 

4.  Experimental Results 
4.1. Experimental Setup 

4.1.1 Datasets: We evaluate the proposed algorithms on 
four benchmark datasets: MSRA10K [7], ECSSD [21], 
PASCAL-S [14] and DUT-OMRON [42]. MSRA10K 
contains 10,000 images with various objects. Most images 

contain only one salient object and the backgrounds are 
usually clear. The ECSSD dataset contains 1000 images 
with complex scenes and is considered much more 
challenging. DUT-OMRON contains 5,168 challenging 
images, each of which has one or more salient objects and 
relatively complex background. We have noticed that many 
saliency annotations in this dataset may be controversial 
among different human observers. As a result, none of the 
existing saliency models has a high accuracy on this dataset. 
Finally, we also evaluate models over PASCAL-S dataset, 
which was built using the validation set of the PASCAL 
VOC 2010 segmentation challenge. It contains 850 images 
with the ground truth labelled by 12 subjects.  

 
4.1.2 Evaluation metrics: We use four universally-agreed 
standard metrics to evaluate our model: Precision-Recall 
(PR) curves, F-measure, the mean absolute error (MAE) and 
the area under ROC curve (AUC). For the sake of 
simplification, we use S to represent the predicted saliency 
map normalized to [0,255] and G to represent the ground-
truth binary mask of salient objects. For a binary mask, we 
use |·| to represent the number of non-zero entries in the 
mask. The PR curve reflects the object retrieval performance 
in precision and recall by binarizing the final saliency map 
using different thresholds. For a saliency map S, we can 
convert it to a binary mask M and compute Precision and 
Recall by comparing M with ground-truth G: 
 

          𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 =
|M ∩ G|

|M| , 𝑝𝑝𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 =
|M ∩ G|

|G| .              (10) 

 
Usually, neither Precision nor Recall can comprehensively 
evaluate the quality of a saliency map. To this end, the F-
measure is proposed as a weighted harmonic mean of them 
with a non-negative weight β: 
 

                 𝐹𝐹𝛽𝛽 =
(1 + 𝛽𝛽2)𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟

𝛽𝛽2𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟
                (11) 

Fig.5. Illustration of super-pixel segmentations and corresponding saliency maps for different scales. (a) source image; (b) 
super-pixel segmentations from top to bottom where number of super-pixels are taken as 150, 250,350 respectively; (c) 
saliency maps yielded for the three super-pixel segmentations; (d) saliency map optimized by fusing multiscale maps in 
cloumn (c); (e) Ground Truth 

（a） (b) （c） (d) （e） 
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As suggested by many salient object detection works (e.g., 
[7], [8], [12]), β2 is set to 0.3 to raise more importance to the 
Precision value. The AUC value is the percentage of the 
area under the ROC curve, which indicates how well the 
saliency map predicts the real salient objects. While ROC is 
a two-dimensional representation of  performance for a 
model, the AUC distils this information into a single scalar. 
As the name implies, it is calculated as the area under the 
ROC curve. A perfect model will score an AUC of 1, while 
random guessing will score an AUC around 0.5. LetS 

andG denote the continuous saliency map and the ground 
truth that are normalized to [0, 1]. The MAE score can be 
computed by 
 

             𝑀𝑀𝑆𝑆𝑀𝑀 =
1

𝑊𝑊 × 𝐻𝐻
��|𝑆𝑆̅(𝑒𝑒,𝑦𝑦) − �̅�𝐺(𝑒𝑒,𝑦𝑦)|  

𝐻𝐻

𝑦𝑦=1

𝑊𝑊

𝑥𝑥=1

        (12) 

 
As stated in [21], this metric favours method that 
successfully detects salient pixels but fails to detect non-

Fig. 6.  Visual comparison of saliency maps generated from 7 different methods, including ours. From left to right (columns): 
input, FT [44], RC [7], GC [46], HS [21], DRFI [43], LEGS [45], the proposed method and the ground truth.  

Fig. 7.  Precision-recall curves of different saliency detection methods on 4 benchmark datasets. 
Overall, the proposed approach performs well with higher precision in the case of a fixed recall. 
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salient regions over method that successfully detects non-
salient pixels but makes mistakes in determining the salient 
ones. 

 
4.1.3 Implementation: All the experiments are carried out 
using MATLAB on a desktop computer with an Intel i7-
3770 CPU (3.4GHz) and 32GB RAM. We empirically set σc 
= 0.25 (in Eq.2) and σd = 20 (in Eq. 3). In the orientation 
saliency model, we set parameters in Eq.4 as σ = 2.33, γ = 1, 
𝜃𝜃ϵ �0, 𝜋𝜋

4
, 𝜋𝜋
2

, 3𝜋𝜋
4
�. The Gaussian pyramid O(m, 𝜃𝜃), where 𝑚𝑚 ∈

{0,⋯ ,8}, is gained by the kernel of oriented reciprocal filter 
𝑓𝑓(𝑒𝑒,𝑦𝑦, 𝜃𝜃) with size 34 × 34  in all our experiments for the 
given intensity image I(𝑖𝑖)(𝑚𝑚). According to [12], we use 
k=6 in Eq. 7. For the saliency map fusion, here we take 
number of super-pixels under three scales of segmentations 
as 150, 250, 350 respectively.  
 

4.2. Comparison to other methods 
  

A qualitative as well as a quantitative evaluation is 
done in order to measure the performance of the proposed 
model, and is compared with the existing approaches. For 
fair comparison, we use the original source codes or the 
provided saliency detection results in the literature. 

We compared our model with several state-of-the-art 
models, including RC [7], HS [21], DRFI [43], FT [44], 
LEGS [45] and GC [46]. Among these methods, LEGS 
(deep learning) and DRFI (random forest regressor) are 
learning-based methods; RC and HS are based on global 
contrast; the classic methods FT are included as a baseline. 
Most of the saliency maps associated with the competing 
approaches can be obtained by running their publicly 
availabel source code using the default experimental 
configurations. 

A visual comparison is given in Fig. 6. As can be 
seen, our method performs well in a variety of challenging 

cases, in which the boundary of salient region can be 
continuously reserved. 

As part of the quantitative evaluation, we first use the 
Precision and Recall (P-R) curve to evaluate all the methods. 
We set the fixed threshold from 0 to 255 with an increment 

of 5 for a saliency map with consistent grey value, thus 
producing 52 binary masks. Using the pixel-wise ground 
truth data, 52 pairs of average P-R values of all the images 
included in the test datasets are computed. Fig. 7 shows the 
P-R curves where several state-of-the-art methods and the 
proposed algorithms perform well. 

We show the average Fβ values of all the competing 
approaches on the four benchmark datasets in Fig. 8. From 
Fig. 8, we observe that the proposed method achieves a 
better performance than the other ones in most cases. 

Most specifically, Table 1 reports their quantitative 
saliency detection performance w.r.t. the evaluation metrics 
(i.e., AUC and MAE) on the four benchmark datasets. From 
Figure 6 and Table 1, it is clearly seen that our approach 
performs favourably against the state-of-the-art methods in 
most cases. 

 
4.3. Analysis of Proposed Approach 

4.2.1 Effectiveness of the reciprocal function: As 
discussed in Sec. 3.4, the reciprocal function filter we 
proposed to substitute Gabor funstion in Itti's model can 
detect the expected salient regions, with homogeneous, 
uniform and smooth enough boundaries. To validate its 
effectiveness, we have evaluated the performance of our 
final saliency map with Gabor filter and with reciprocal 
function filter using the testing images in the PASCAL-S 
dataset. As shown in Fig.9, the model using reciprocal 
function performs much better than the one using Gabor 
filter in terms of the PR curve. 
 
4.2.2 Effectiveness of multiscale decomposition: Our 
method exploits information from multiple scales of image 
segmentation. The results are also shown in Fig.9. The 
performance of a single segmentation scale is not 
comparable to the performance of the fused model. The 
aggregated saliency map improves the average precision and 
the recall rate when it is compared with the result from the 
best-performing single scale. 

Table 1 Quantitative comparison for ECSSD, DUT-
OMRON, PASCAL-S and MSRA10K datasets. 

Fig. 8.  Average F-measure for the compared models on all 
four benchmark datasets. 

Fig. 9.  PR curves of the proposed model with the reciprocal 
function filter, Gabor filter and without multiscale fusion, 
respectively. 
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5. Conclusion 
In this paper, we propose a novel model for salient 

object detection in which saliency map is computed as a 
combination of the colour and its distribution-based saliency 
and orientation saliency. The proposed method is based on 
super-pixel segmentation to map the regional feature vector 
to a saliency score. We combine colour uniqueness and 
distribution with local orientation information and define a 
reciprocal function to substitute the Gabor function used in 
LOI, and have proved that the reciprocal function could 
produce a remarkable improvement for the saliency 
detection. Saliency scores across multiple layers are finally 
fused to produce the saliency map. We evaluate the 
proposed method extensively on the four benchmark 
datasets and make comparison with 6 state-of-the-art 
algorithms. Experimental results verify the detection 
accuracy and efficiency of our method.  

In the future, we shall continue to survey all types of 
detection and extraction methods based on salient object and 
further explore the new methods and their application in 
practice. 
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