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Abstract: Mycotoxins are toxic secondary metabolites of low molecular weight produced by
filamentous fungi, such as Aspergillus, Fusarium, and Penicillium spp. Mycotoxins are natural
contaminants of agricultural commodities and their prevalence may increase due to global warming.
Dangerous mycotoxins cause a variety of health problems not only for humans, but also for
animals. For instance, they possess carcinogenic, immunosuppressive, hepatotoxic, nephrotoxic,
and neurotoxic effects. Hence, various approaches have been used to assess and control mycotoxin
contamination. Significant challenges still exist because of the complex heterogeneous nature of
food composition. The potential of combined omics approaches such as metabolomics, genomics,
transcriptomics, and proteomics would contribute to our understanding about pathogen fungal
crosstalk as well as strengthen our ability to identify, isolate, and characterise mycotoxins pre and
post-harvest. Multi-omics approaches along with advanced analytical tools and chemometrics
provide a complete annotation of such metabolites produced before/during the contamination of
crops. We have assessed the merits of these individual and combined omics approaches and their
promising applications to mitigate the issue of mycotoxin contamination. The data included in this
review focus on aflatoxin, ochratoxin, and patulin and would be useful as benchmark information for
future research.

Keywords: Aflatoxin; genomic; metabolomics; LC-MS/MS; LC-HRMS; ochratoxin; patulin;
proteomics; transcriptomics

Key Contribution: This review discusses the input of omics approaches in solving aflatoxin,
ochratoxin and patulin contamination issues. Vital information about current studies using
metabolomics, genomics, proteomics, and transcriptomics approaches are highlighted.

1. Introduction

Mycotoxin contamination poses a global challenge for society due to their presence in a wide
range of crops [1–4]. Several reports have described mycotoxicoses outbreaks as a result of mycotoxin
contamination in different parts of the world, especially in Africa, America, and Asia [5–11]. Therefore,
maintaining a safe supply of food/feed for human and animal consumption is a critical issue.
Mycotoxins are toxic secondary metabolites of low molecular weight produced by filamentous
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fungi [12]. Aflatoxins, ochratoxins, and patulin are polyketide-derived mycotoxins that are commonly
found in crops, leguminous plants, and animal products [13,14]. More specifically, Aflatoxins and
ochratoxins belong to the coumarin-type polyketides while patulin belongs to the lactone-type
polyketides. Aflatoxins are produced by many species of Aspergilli [1,10,13,15–17] whereas ochratoxins
and patulin can be produced by different genera of Aspergillus and Penicillium [13,18,19] (see Table 1).
All of these fungi can grow on specific crops under favorable conditions of temperature and humidity,
and generate mycotoxins before, during, and after harvesting, handling, and shipment [20–22].
Aflatoxins are the most widespread group of mycotoxins that are primarily found in cereals,
oilseeds [10,15], tree nuts, spices, and milk and dairy products [1,17]. Ochratoxin is another common
mycotoxin produced during the storage of different crops such as cereal crops, nuts and dried
fruits [6,12,22] whereas patulin is common in fruit and vegetable-based products, mostly apples [23,24].
Aflatoxin B1 (AFB1) is the most potent natural product that is classified as group A carcinogen.
Ochratoxin A (OTA) is classified as group 2B-possible human carcinogen while there is no adequate
information related for the carcinogenicity of patulin in experimental animals conducted and no
evaluation of the carcinogenicity of patulin to humans. Therefore, patulin is classified as group 3 on
the International Agency for Research on Cancer (IARC) classification [10,24,25].

Table 1. Polyketide derived mycotoxins.

Mycotoxin Structure Fungal Species IARC Classification Ref.

Aflatoxin B1
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Human and animal food/feed supplies contaminated with mycotoxin not only result in health
hazards but also causes major economic loss [27]. Therefore, it is necessary that strategies are developed
to control pre- and post-harvest mycotoxin contamination in crops. In the last 50 years, scientists
globally have investigated mycotoxin biosynthesis and reported the presence of genetic factors,
biotic, and abiotic elements that affect mycotoxin production [1,16,28]. While legal regulation has
been implemented by many countries for food quality assurance, establishing guidelines to control
mycotoxins is still a challenge throughout the world, particularly in developing countries where
the balance between sufficient food supply and the quality of food is an issue [29,30]. However,
developing effective strategies to control mycotoxin production during pre-harvesting phase requires
the implementation of “high-throughput” omic tools which have the potential to provide a better
understanding of mycotoxin issue [31].

Omics tools can be used as a platform to drive hypothesis-based investigations to suggest
strategies to control mycotoxin production, for example, using a bio-competitive strategy [32].
Genomics, proteomics, transcriptomics, and metabolomics classify the main disciplines of the wider
omics family of technologies (Figure 1). Omics approaches have been rapidly taken up in many
fields over the last ten years including food, environmental, medical, molecular, and natural sciences.
More than 36,000 research articles related to omics have been published over the last ten years in



Toxins 2018, 10, 433 3 of 26

PubMed that demonstrates the increasing interest exponentially in omics technology in the modern
era [33].
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Using omics tools in mycotoxin research provides new insights into the genetic constitution of
filamentous fungi, information about fungal responses to different ecological factors [14,34] as well as
information about mycotoxin biosynthesis under various of environmental conditions [31]. Omics tools
can subsequently play a significant role in identifying the microbial strains that can be used against
mycotoxigenic strains of Aspergillus or Penicillium by suppressing their mycotoxin production [35] or
identifying the plant constituents that inhibit mycotoxin production [36].

In 2008, Bhatnagar et al. reviewed the potential of omics tools including genomics, proteomics,
metabolomics for solving the aflatoxin contamination problem [14]. They indicated that the aim of
using omics tools in recent studies is to get a comprehensive assessment of the molecules that make
up biological samples such as the cell, tissue or organism. Additionally, assessment of cellular RNA,
proteins, primary and secondary metabolites facilitates the study of the fundamental cellular pathways
in the host plants and fungi which provides new opportunities to solve food safety problems by
interrupting the probability of pre-harvest infection [14,37]. Another recent review has discussed
the omics contributions in understanding mycotoxin production under diverse environmental
conditions [31]. Although omics tools are less prominent in the practical application, they have
already started to yield practical food safety solutions such as array-based biosensors for multiplex
mycotoxin analysis [32,38]. However, the challenge for the scientists is to provide reliable data to
support the risk assessment of foodborne mycotoxins [4]. In this current review, we highlight these
omics approaches and their promising applications to mitigate the issue of mycotoxin contamination.

2. Metabolomics Approach

The Metabolomics approach reveals the primary or secondary metabolites that are present
in the metabolome of a biological sample under a given set of conditions, which is known as
phenotype [39,40]. The metabolome is the collection of all low molecular weight metabolites
(small molecules of MW ≤1000 Da), which are produced by a living cell during their metabolism, and
provides the closest insight to the physiological behaviour of the cell [41]. The metabolic profile of a
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biological sample shows the metabolites that are depleted or overexpressed in response to different
environmental, genetic, pathological, and developmental conditions [41–43]. While the analytical
technology is advancing rapidly, there are still significant gaps in our knowledge of the biochemical
crosstalk between the pathogenic fungi and the host plants/crops. Metabolite profiling or metabolome
analysis represents the new tool that facilitates our understanding of fungal cell factories [44,45].
Therefore, metabolites reflect how the cell functions [41,46]. In metabolomics, we search for metabolite
differences in the metabolic state of a biological system under investigation condition with the aim to
identify metabolites changes under the experimental conditions. This technique could measure the
functional phenotypes or fingerprint of biochemical perturbations of the sample before/during the crop
invasion by mycotoxigenic fungi, and during the process of contamination by mycotoxins [14,37,47].
Metabolomics studies can be classified into targeted or non-targeted approaches [45,48]. The targeted
metabolomics approach is usually used when the scientist has a set of metabolites to measure or specific
question to answer. For example, Eshelli et al. used a targeted metabolomics method to investigate the
biodegradation of Aflatoxin B1 [43]. However, the non-targeted approach is used to identify as many
metabolites as possible without any attention to specific metabolites [34]. Therefore, non-targeted
metabolomics relies on databases that have been generated globally to capture the information from
other metabolomics studies such as METLIN, ChemSpider, and PubChem.

When looking at mycotoxin research, it was reported that the fungal metabolomes change during
the fungal growth or the fungal development on the host plant [49] and in the presence of other
microorganism or in response to the environment variations [40,50]. Few studies have used these
changes in the metabolome to identify the pathogenic fungi such as the classification of Aspergillus flavus
strains is based on its chemical markers produced through active gene expression [50–52]. A recent
review by Garcia-Cela et al. indicated that metabolomics is used for identifying and predicting
the function of unknown genes by comparison with the metabolic markers caused by a genetic
manipulation such as gene deletion or insertion [31]. Falade et al. have investigated the metabolites
produced during fungal growth on maize and their correlation with aflatoxin levels. They indicated
that metabolites including trehalose, mannitol, and sorbitol are significant for the accumulation of
the aflatoxin [49]. Another study used metabolomics tools to detect mycotoxins accumulation in
different crops. Aflatoxins accumulation occurs in different concentrations with limit of quantification
of AFB1 3.0 µg/kg, AFB2 10.0 µg/kg, AFG1 10.0 µg/kg, AFG2 8.2 µg/kg, AFM1 7.9 µg/kg, and OTA
15.0 µg/kg, and OTB 9.9 µg/kg when the fungal development occur on different substrates [53].

Analytical Techniques Used in Mycotoxin Metabolomics Studies

Initial trials focused on quantifying a single mycotoxin. Thin layer chromatography was
first employed by Scott et al. in 1970 and successfully used to identify eighteen mycotoxins
including aflatoxins B1, B2, G1, G2, and ochratoxin A using a general solvent system of toluene-ethyl
acetate-formic acid or benzene-methanol-acetic acid followed by spraying p-anisaldehyde spray
reagent [8]. The active fluorescence mycotoxins, AFB1 and OTA, were observed as green and
blue fluorescence spots under short and long ultraviolet wavelengths, respectively. Subsequently,
research moved to the determination of multiple mycotoxins for quantitative and screening purposes.
Consequently a range of chromatographic techniques have been used such as high pressure liquid
chromatography (HPLC) and gas chromatography (GC) that stand alone or coupled in more advanced
instruments as what is referred to as “hyphenated techniques” such as gas chromatography coupled
to mass spectrometry (GC-MS), gas chromatography-tandem mass spectrometry (GC-MS/MS),
liquid chromatography coupled to mass spectrometry (LC-MS), liquid chromatography-tandem mass
spectrometry (LC-MS/MS), and liquid chromatography coupled to nuclear magnetic resonance and
mass spectrometry (LC-NMR-MS). These hyphenated systems are currently the most widely applied
analytical tools for the detection of mycotoxins [3,41,54–58].
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Changing from HPLC to ultra-high pressure liquid chromatography (UHPLC) enhances the
ability to detect more metabolites in shorter runtimes. The UHPLC coupled quadrupole-orbital ion
trap MS method was used to detect 26 common mycotoxins including aflatoxins B1, B2, G1, and G2,
ochratoxin A and B in commercially available finished grain or nut products from corn, rice, wheat,
almond, peanut, and pistachio [59]. This method showed the potential of hybrid mass analysers for
the detection of mycotoxins in food commodities [59]. Rubert et al. used UHPLC-QTOF to investigate
plant-pathogen crosstalk and follow the changes in the metabolic fingerprinting, which led to the
development of biomonitoring tools for early detection of mycotoxins in wheat [60]. Another study
by Oplatowska-Stachowiak et al. used UHPLC-MS/MS to determine the mycotoxin content in dried
grain [61]. LC-MS/MS appears to be the most applied technique for the analysis of targeted or
known mycotoxin where the analytes are brokedown or fragmented (collision induced fragmentation)
and these fragment ions are subsequently detected. Of these systems, triple and quadrupole mass
analysers are the most common. Operated under a single reaction monitoring (SRM) mode the
triple quadrupole analysers provide high sensitivity and selectivity increasing the possibility of the
detection of mycotoxins at the micrograms scale. LC-MS/MS (qQq) can determine, qualitatively and
quantitatively, the targeted mycotoxins [62]. While the mass analyser works well in the targeted
analysis of mycotoxins, the main limitation of the LC-tandem MS/MS analyser is its ability to
detect only targeted or known metabolites not the transformed or modified mycotoxins, unless
they are pre-identified [63]. The selectivity and sensitivity of the metabolites depend on the MS
analyser. The development of triple quadrupole (qQq) MS analysers played a significant role before
the introduction of HR-MS (high resolution) analysers [54]. As qQq mass analysers meet the standard
requirements that are necessary for the identification of mycotoxins, they provide cost-effective
instrumental access and the capability for MSn determination of toxins [54,64]. Malachova and
co-authors were able to optimize and validate a quantitative liquid chromatography-tandem mass
spectrometric method. They not only covered all regulated mycotoxins in four model food matrices,
but also detected 295 metabolites [65].

LC-HRMS is a convenient analytical tool to approach the tentative identification of targeted
as well as untargeted mycotoxins making it ideal for metabolomics study [66]. Considering the
advantages of both techniques for mycotoxin determination, the LC-HRMS approach was found to
be more appropriate as it has an enhanced resolution compared to LC-MS/MS. The accurate masses
obtained from the LC-HRMS provides information on all ions generated and do not depend on ion
fragments for identification. Additionally, the ability of its full scan mode allows the identification of
targeted and non-targeted compounds [54,62]. Researchers recently focused on method optimisation
for untargeted metabolomics such as chemometric analysis that provides a powerful tool to distinguish
between different metabolites [60]. Chemometric analysis is the analysis that was utilised to analyse the
mathematical and statistical designs to provide the most relevant chemical information by analysing
chemical structures and get data concerning biochemical systems [60,67,68]. A recent study indicated
that smart chemometrics-assisted analytical strategy that combines with liquid chromatography-full
scan-mass spectrometry for multi-mycotoxins analysis in complex cereal samples without sufficient
clean-up step [69]. However, with the LC-HRMS, it is possible to design workflow for targeted and
routine quantification as well as for untargeted metabolomics and qualitative analysis with the same
instrument [64]. The Time-of-Flight (TOF) and Orbitrap HR-MS techniques are the most widely
used instruments for the untargeted determination of mycotoxin metabolites [43,64,70] because of
their ability to tentatively identify the screened targeted and untargeted compounds, high sensitivity
and selectivity, and accurate mass measurement/mass resolution [66]. A recent review by Righetti
reviewed recent advances and future challenges in modified mycotoxin analysis, and highlighted why
HRMS has become a key instrument in mycotoxin research [64].
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Limit of detection (LOD) and limit of quantification (LOQ) are two attributes used to validate
the analytical method and to assess the likelihood that mycotoxins are within the regulatory limits.
Low LOQ and LOD values are needed for comprehensive and sensitive detection of mycotoxins in
samples [54,71]. Thus, it is possible to use these validated methods to enforce regulatory limits on the
mycotoxin detection in food commodities. Several targeted and non-target metabolomics for aflatoxin,
ochratoxin and patulin detection are highlighted in Table 2 where the available data are presented
for LC-MS-based targeted or non-targeted techniques (LC-MS/MS, LC-HRMS) used for the detection
of aflatoxins, ochratoxins, and patulin. Apart from LCMS based techniques, GC-MS has also been
used in mycotoxin detection. In Table 2, different types of matrices (cereals, seeds, spices, etc.) have
been tested. The matrix effects are one of the major concerns in the detection of mycotoxins due to
the possibility of masking or overestimating the detection of analytes by co-extracted compounds,
which influence the final result. Therefore sample pre-treatment, extraction, and clean-up methods are
required, but are not covered specifically in this review. This has been recently reviewed by Malachova
and co-authors [62].
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Table 2. Metabolomics analysis applications and detection performance criteria for targeted and untargeted mycotoxin detection.

Toxin Crops Detection Techniques (Targeted or Non-Targeted) LoD * LoQ * Ref.

AFB1, G1 Peanuts, corn, soy beans
Targeted and Non-targeted
HPLC-ESI-MS-qTOF, ESI+

UHPLC-ESI-MS/MS, sSRM
0.1–0.3 µg/kg 0.2–0.9 µg/kg [50]

AFB1, B2, G1, G2, M1, OTA
Feed and feed raw materials (silage,
maize, wheat, wheat by-products,

barley, soy beans, sunflower seeds)

Targeted and Non-targeted
LC-ESI-MS/MS (QTRAP)

ESI+, ESI−, sSRM
n/a n/a [72]

AFB1, B2, G1, G2, M1, M2,
OTA, OTB, Patulin

Almonds, hazelnuts,
peanuts, pistachio

Targeted
UHPLC-ESI-MS/MS (qQq), ESI+, ESI−, sSRM n/a

AFB1 3.0 µg/kg
AFB2 10.0 µg/kg
AFG1 10.0 µg/kg
AFG2 8.2 µg/kg
AFM1 7.9 µg/kg
OTA 15.0 µg/kg
OTB 9.9 µg/kg

PAT n/a

[53]

AFB1, B2, G1, G2, OTA Barley
Targeted

GC-MS/MS (qQq), EI, derivatizied,
LC-ESI-MS/MS (QTRAP), ESI

AFs 2.0 ng/kg
OTA 2.0 ng/kg

AFs 3.5 ng/kg
OTA 3.5 ng/kg [58]

AFB1, B2, G1, G2 Rice, sorghum
Targeted

LC-ESI-MS/MS or UHPLC-ESI-MS/MS
(tandem quadrupole), ESI+, sSRM

0.1–1.0 µg/kg 0.28–0.9 µg/kg [73]

AFB1, B2, G1, G2, OTA Wheat, corn and rice cereals
Targeted

UHPLC-ESI-MS/MS (tandem quadrupole)
ESI+, sSRM

0.1–5.0 µg/kg,
(AFB1 0.03 µg/kg) 0.1–25.0 µg/kg [74]

AFB1, B2, G1, G2, M1, OTA Various foods and feed (24 types of
corn feeds, peanut butter)

Targeted
UHPLC-ESI-MS/MS (qQq tandem) ESI+,

ESI−, sSRM

AFs 0.003 µg/kg
AFG2 0.006 µg/kg
OTA 0.064 µg/kg

AFs 0.01 µg/kg
AFG2 0.02 µg/kg
OTA 0.21 µg/kg

[75]

AFB1, B2, G1, G2, OTA Maize Targeted
LC-ESI-MS/MS (QTRAP qQq) ESI+, ESI−, sSRM

AFB1 0.6 µg/kg
AFB2 0.3 µg/kg
AFG1 0.4 µg/kg
AFG2 0.8 µg/kg
OTA 0.6 µg/kg

n/a [76]

AFB1, B2, G1, G2, OTA Barley based breakfast cereals,
maize, peanuts

Targeted
UHPLC-ESI-MS/MS (QTRAP qQq) ESI+ ESI−

(in single run), sSRM

AFs 0.05 µg/kg
OTA 0.1 µg/kg

AFs 0.1 µg/kg
OTA 0.25 µg/kg [77]
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Table 2. Cont.

Toxin Crops Detection Techniques (Targeted or Non-Targeted) LoD * LoQ * Ref.

AFB1, B2, G1, G2, OTA Durum wheat, corn flakes, maize and
maize crackers

Targeted
LC-ESI-MS/MS (QTRAP qQq) ESI+ ESI−, sSRM n/a AFs 1.0 µg/kg

OTA 1.0 µg/mg [78]

AFB1, B2, G1, G2, OTA
Muesli, wheat flakes, oats, raisins,
sultanas, whey powder, hazelnuts,

whole meal bread

Targeted
LC-ESI-MS/MS (tandem quadrupole) ESI+, sSRM

AFB1 0.05 ng/g
AFB2 0.03 ng/g
AFG1 0.03 ng/g
AFG2 0.03 ng/g
OTA 0.03 ng/g

AFB1 0.1 ng/g
AFB2 0.05 ng/g
AFG1 0.05 ng/g
AFG2 0.05 ng/g
OTA 0.4 ng/g

[79]

AFB1, B2, G1, G2, OTA Barley, corn, corn gluten, infant
cereals, oat, rice, rye, wheat

Targeted
LC-ESI-MS/MS (QTRAP qQq tandem mass) ESI+,

ESI−, sSRM
n/a AFs 1.0–10.0 µg/kg

OTA 0.5–2.5 µg/kg [80]

AFB1, B2, G1, G2, OTA Maize, rice, wheat Targeted
LC-ESI-MS/MS (qQq tandem) ESI+, sSRM

AFB1 0.12–0.21 g/kg
AFB2 0.06–0.7 µg/kg
AFG1 0.07–2.3 µg/kg
AFG2 0.11–2.2 µg/kg
OTA 0.18–3.2 µg/kg

AFB1 0.12–0.21 µg/kg
AFB2 0.06–0.7 µg/kg
AFG1 0.07–2.3 µg/kg
AFG2 0.11–2.2 µg/kg
OTA 0.18–3.2 µg/kg

[81]

AFs, OTA
Black pepper, infant food (apple baby

food), paprika, sunflower seed,
wheat flour

Targeted
UHPLC-ESI-MS/MS (QTRAP tandem) ESI+,

ESI−, sSRM,
Non-targeted

UHPLC-ESI-HRMS (TOF) ESI+ ESI−

n/a n/a [82]

AFB1, B2, G1, G2, OTA, OTB,
OTC, Patulin Maize, wheat Targeted

HPLC-ESI-MS/MS (QTRAP qQq), ESI+, ESI−, sSRM 0.03–220 µg/kg n/a [83]

AFB1, B2, G1, G2, M1,
OTA, Patulin

Apple puree, green pepper,
hazelnut, maize

Targeted
UHPLC-ESI-MS/MS (QTRAP) ESI+, ESI−, sSRM

AFB1 0.6 µg/kg
AFB2 0.6 µg/kg
AFG1 1.2 µg/kg
AFG2 2.3 µg/kg
AFM1 0.6 µg/kg
OTA 1.2 µg/kg
PAT 35.9 µg/kg

AFB1 1.9 µg/kg
AFB2 4.0 µg/kg
AFG1 7.6 µg/kg
AFG2 8.7 µg/kg
AFM1 2.1 µg/kg
OTA 3.7 µg/kg

PAT 119.7 µg/kg

[65]

AFB1, B2, G1, G2, OTA Barley
Targeted

UHPLC-HRMS (Orbitrap)
Heated EPI (HEPI), HEPI+, HEPI−

n/a n/a [84]

OTA Barley Targeted
UHPLC-FTHRMS HEPI, HEPI+, HEPI− n/a n/a [85]

AFB1, B2, G1, G2, OTA Black radish, Ginkgo biloba,
garlic, soy

Targeted
UHPLC-ESI-MS/MS (qQq), ESI+, sSRM

AFs 6.0 ng/g
OTA 1.0 ng/g

AFs 2.0 ng/g
OTA 0.3 ng/g [86]
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Table 2. Cont.

Toxin Crops Detection Techniques (Targeted or Non-Targeted) LoD * LoQ * Ref.

AFB1, B2, G1, G2, M1,
OTA, OTB

Maize, groundnut, sorghum, millet,
rice, wheat, soy, dried fruits, infant

foods, other processed food,
animal feed

Targeted
HPLC-ESI-MS/MS (QTRAP) ESI+, ESI−, sSRM

AFB1 3.0 µg/kg
AFB2 6.0 µg/kg
AFG1 8.0 µg/kg
AFG2 8.0 µg/kg
AFM1 4.0 µg/kg

OTA, OTB 5.0 µg/kg

n/a [87]

AFB1, B2, G1, G2, M1, OTA Breakfast cereals (maize, wheat, rice,
multigrain, chocolate)

Targeted
HPLC-fluorescence detector-EI-MS/MS, sSRM

AFB1 0.003 µg/kg
AFB2 0.001 µg/kg
AFG1 0.006 µg/kg

AFG2 n/a
AFM1 0.011 µg/kg
OTA 0.006 µg/kg

AFB1 0.009 µg/kg
AFB2 0.004 µg/kg
AFG1 0.018 µg/kg

AFG2 n/a
AFM1 0.032 µg/kg
OTA 0.019 µg/kg

[88]

OTA Wheat flour, coffee, spices, wine, beer
Targeted

HPLC-MS/MS (ion trap),
(1) ESI+ (2) APCI, sSRM

0.5 µg/kg 1.4 µg/kg [89]

AFB1, B2, G1, G2 Peanut, peanut butter, spices, figs Targeted
LC-APCI-MS/MS (qQq), APCI+, sSRM, targeted 0.1 µg/kg n/a [90]

Patulin
Wheat, rice, spelt, oat, soy, tapioca

based cereals (cassava), pasta,
infant food

Targeted
GC-MS/MS (qQq), electron impact ion source (EI),

SRM, derivatizied, targeted
n/a 5–10 µg/kg [56]

AFs—aflatoxins, AFB1—aflatoxin B1, AFB2—aflatoxin B2, AFG1—aflatoxin G1, AFG2—aflatoxin G2, AFM1—aflatoxin M1, APCI—atmospheric pressure chemical ionization; EI—electron
impact ionization; ESI—electrospray ionization; GC—gas chromatography; HEPI—heated electron spray ionization; HRMS—high resolution mass spectrometry; LC—liquid
chromatography; qQq—triple quadrupole; QTOF—quadrupole time of flight; sSRM—scheduled selected reaction monitoring; TOF—time of flight; UHPLC—ultra-high pressure
liquid chromatography; n/a—not available) LoD—limit of detection, LoQ—Limit of quantificatin.
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3. Genomics Approach

A genome consists of all the genetic material contained in a cell of an organism and contains all
the necessary information for life. More specifically, it is the complete set of nuclear DNA (coding and
noncoding DNA) as well as the genetic material that contain their DNA as in the mitochondria or
chloroplast. The genome contains the specific instructions that are necessary for the organism to build
and maintain itself [39]. In general, this cell-specific information is encoded in genes, which contains
information to code proteins. However, to understand the cellular functions, it is necessary to know the
function of all the proteins and the relationship between genes that are expressed (or which proteins
are present).

The first complete DNA sequence was obtained in 1992 from the Saccharomyces cerevisiae, and
in 1995, the bacterial genome of Haemophilus influenza was also sequenced [39]. The sequencing
of the human genome was completed in 2004, which took around twelve years [91]. The process
of (1) characterisation of the structure of the genome of an organism, (2) comparison of sequence
genomes with related organisms, and (3) finally, identification of the functions and the interactions
of the synthesised proteins or gene is known as genomic analysis [14]. Identifying and interpreting
the genomes of a biological sample and characterising their functions that are associated with these
genes will give an overall picture of the biological sample. Functional genomics help to understand
the interaction between the fungus and its host plant that provides insight about the plant-fungal
gene interaction and mycotoxin production [14]. This information assists researchers in developing
strategies to control mycotoxin production [4].

The genomics approach can be considered as a pre-harvest application to identify genes that
are responsible for the mycotoxin production. Several genomic studies on mycotoxigenic fungi have
been carried out so far, especially on aflatoxin producing A. flavus [92–95]. The first genomic analysis
of the A. flavus was completed by the Food and Feed Safety Research Unit of Southern Regional
Research Center, USDA/ARS, under the Expressed Sequence Tags (EST) project and identified more
than 7200 unique EST sequences [96]. More recently, the complete genomic analysis was completed by
J. Craig Venter Institute, USA using sophisticated and modern bioinformatics techniques where more
than 12,000 functional genomes were identified from A. flavus [97]. Bioinformatics tools identified
that, among them, the coding/encoding protein enzymes are involved in aflatoxin production [98].
Recently, different genomic tools have been used to fulfil the aim of the research, for example, Ion
Torrent Personal Genome Machine (PGM), microarray analysis, quantitative reverse transcription-PCR
(qRT-PCR) [99–101]. Many research studies used different matrices and different types of genetic tools
to identify the genes that are responsible for the mycotoxin production and can develop or validate
screening methods. Additionally, from the genomic approach, it is possible to identify and differentiate
the mycotoxin-producing genes in wild types as well as mutant strains. Table 3 summarises the uses
of genomics tools in mycotoxin research.

Table 3. Genomic tools used in mycotoxin research.

Genomic Tools Mycotoxins Crops Comments Ref.

Ion Torrent Personal
Genome Machine (PGM) Aflatoxins — Whole genome sequencing [99]

Microarray analysis,
quantitative reverse
transcription-PCR

(qRT-PCR)

Aflatoxins — Aflatoxin biosynthesis [100]

Microarray analysis Aflatoxins — Whole genome sequencing [101]

Microarray analysis Aflatoxins — Gene expression profiles [102]
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Table 3. Cont.

Genomic Tools Mycotoxins Crops Comments Ref.

Whole genome sequencing —

Identify genes differentially
expressed in wild-type veA and
veA mutant strains that could be
involved in aflatoxin production.

[92]

RT-PCR and
reverse-transcription PCR Peanuts Develop a screening method [96]

PCR and LAMP-based
group specific

Rice, nuts, raisins,
dried figs

Develop a screening method to
detect several aflatoxin producing

species in a single analysis
[103]

Microarray Aflatoxins,
ochratoxin A Wheat grain Rapid detection for mycotoxins [104]

Genomics Analysis for Mycotoxin Producing Fungi

Aspergillus flavus has played an essential role in the advance understanding of aflatoxigenic genes,
biosynthetic pathways, aflatoxin metabolism, the effect of secondary conditions like abiotic conditions
on the aflatoxin production, biotic interaction with plants, animals, and humans [105]. Additionally,
genomic analysis of other Aspergillus spp. and a comparative study of that with the genomes of
A. flavus allowed for better understanding of the aflatoxins or other mycotoxin producing ability of
other Aspergillus spp. and their pathogenicity [99]. It is noteworthy that not all Aspergillus spp. are
toxigenic species. For example, A. oryzae has a great economic impact due to its extensive use in food
fermentation process in South-East and East Asian countries for the production of soy sauce [95,106].
Morphologically, both A. flavus and A. oryzae are similar. DNA comparability between A. flavus and
A. oryzae indicates about 98% similarity, and thus, both A. flavus and A. oryzae contain similar genome
size; 36.8 and 36.7 Mb, respectively [95].

Therefore, DNA sequencing of field fungal isolates and their comparison with the gene sequence
of aflatoxin-producing Aspergillus section Flavi would be crucial to identify target genes and control
aflatoxin production in crops [107]. Faustinelli et al. have isolated 240 Aspergillus strains from peanut
seeds during 2014. The genome sequence of all isolates was carried out using Next-Generation
Sequencing analysis. They were able to categorise these 240 isolates into nine clades, and among them,
three non-aflatoxigenic, five aflatoxigenic A. flavus species, and one A. parasiticus were identified [108].
Another study used the functional genomics to assess the climate change impact on A. flavus and
aflatoxin production; the study revealed that global temperature, water availability and rising CO2

levels affect the expression of the aflatoxin biosynthetic regulatory gene aflR [109].
Recently, the number of studies investigating the gene sequence of ochratoxin A (OTA) producing

species to identify genes responsible for producing OTA has increased [110,111]. Ochratoxin A
biosynthesis was previously unknown. A new insight into OTA biosynthetic pathway was given
through deletion of a non-ribosomal peptide synthetase gene in A. carbonarius [110]. A recently
reported complete genome sequence of the filamentous fungus A. westerdijkiae illustrated the
putative biosynthetic gene cluster of OTA and the genome of A. westerdijkiae that contains more
than 50 secondary biosynthetic gene clusters where most of them were type I polyketide synthase
(PKS) and non-ribosomal peptide synthase (NRPS) gene clusters [111]. Around 716 cytochrome
P450 enzymes, 633 carbohydrate-active enzymes, and 377 proteases were involved in ochratoxin
biosynthesis [111,112]. Furthermore, two hybrid t1pks-nrps gene clusters were also involved in
OTA biosynthesis [112]. Patulin biosynthesis is still under investigation with omics tools [113].
More information was recently revealed relating to the genes responsible for patulin production by
using different fungal species [114]. A recent study identified two strains of Penicillium spp. producing
patulin [110]. This study provided significant information related to the molecular network of patulin
biosynthesis and mechanisms of fungal host interactions specifically for Penicillium spp. The genome
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sequence of the isolates of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) revealed 55 gene clusters
related to secondary metabolites of which 15 genes were related to patulin biosynthesis [115]. Similarly,
15 genes were involved in patulin biosynthesis by Aspergillus clavatus. To date, only four genes
encoding 6-methylsalicylic acid synthase, m-cresol hydroxylase, m-hydroxybenzyl alcohol hydroxylase,
and isoepoxydodehydrogenase have been characterised [114]. However, the complete genome for
Aspergillus clavatus is still not available. The explanation of the fungal genome sequence data can be
achieved by using the other fungal EST database such as the NCBI GenBank database [14], A. flavus EST
database, A. oryzae EST database, and the A. oryzae whole genome sequence. However, comparing the
genome sequence may identify the differences in genome structure, significant pathogenic characters,
and secondary metabolite (SM). Table 4 summarised different fungal isolates according to their genome
size and their ability to produce mycotoxin.

Table 4. Mycotoxigenic strains and their genome sizes.

Fungal Strains Genomic Size (Mbp *) Mycotoxin Mycotoxigenic Ref.

LOAM00000000 flavus 36.0 Aflatoxin Yes

[108]

LIZI00000000 flavus 36.4 Aflatoxin Yes
LIZJ00000000 flavus 36.3 Aflatoxin Yes

LOAK00000000 flavus 35.9 Aflatoxin Yes
LOAL00000000 flavus 35.8 Aflatoxin Yes

LOAP00000000 parasiticus 30.1 Aflatoxin Yes
NRRL 13137 nominus 36.1 Aflatoxin Yes [99]

Aspergillus korhogoensis N/a Aflatoxin Yes [116]
Aspergillus westerdijkiae 36.1 Ochratoxin A Yes [111]
Aspergillus carbonarius 36 Ochratoxin A Yes [110]
Penicillium expansum 33.52 Patulin Yes [115]
Penicillium italicum 28.99 Patulin Yes [115]

* Mbp-mega base pairs.

4. Transcriptomics Approach

Transcriptomics is one of the most recently developed fields emerging from the genomic era [117].
After the completion of genomic studies, research has focused attention on finding the next step of gene
expression and cellular functions. The genetic information stored in DNA and cannot be transcribed
into proteins. Therefore, for protein synthesis, DNA is copied to RNA in a process called transcription.
This step is the essential regulatory step for gene expression [118]. Thus, the transcriptomics is the
study of the complete and whole set of RNA, transcript from the genome produced by genes under
specific conditions from a specific tissue or cell type [56,57].

Transcriptome analysis allows researchers to understand the expression of the genome at the
transcription level that provides information on the gene structure. For instance, a sequence that
encodes with a direct function or an intermediate then later translated into protein; increase or
decrease the production of protein (gene expression regulation), protein modifications, functions of
the synthesised gene products, and evolutionary changes of the end biological processes [119,120].
Therefore, genes tend to regulate and express in different biological and physiological conditions, and
accordingly, different proteins could be synthesised. For example, transcribed genes from mycotoxin
infected plant cells are different from the transcribed genomes of the non-mycotoxin infected plant cell.
Hence, they are essential in signaling and biochemical processes.

Transcriptomics and advanced analytical tools together play a major role in understanding
complex biological systems and help to develop novel biomarkers. Thus, it has the potential ability for
early stage diagnosis and in finding effective treatments in the medicinal or agricultural industry [121].
Furthermore, transcriptome analysis would further reveal the regulation network of biological
processes and eventually to help in crop improvement [119,122].
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Transcriptional Profiling

Transcriptional profiling is the comprehensive study of the complete set of RNA transcripts
from the genomes of a cell or tissue or an organism. Many methods have been used to study the
RNA transcripts such as Northern blots, nylon membrane arrays, reverse transcriptase quantitative
PCR (RT-qPCR), and the serial analysis of gene expression (SAGE). Currently, gene expression
microarrays and whole transcriptome shotgun sequencing (WTSS) are the most rapid, widely used,
and high-throughput tools used in transcriptome quantification [47,123–125]. In mycotoxin research,
RT-qPCR, high-throughput microarray analysis and shotgun analysis (RNA-seq) have been extensively
used [126]. Most of the transcriptomic studies on aflatoxins, ochratoxins, and patulin investigated
the fungus-plant crosstalk, the abiotic factors affecting mycotoxin production and mycotoxin toxicity
mechanisms. A recent study indicated that RNA sequencing data on A. favus infection on Zea mays
was used to identify genes of interest involved in this cross-species network. The genes identified
found to have a connection between aflatoxin production and vascular transport. Moreover, the study
indicated that mycotoxin-producing fungus A. flavus utilised different mechanisms in response to
the induction of resistance genes in Z. mays during the early interaction of the two organisms [127].
Transcriptional analysis of maize kernels used to identify the resistance genes with response to the
aflatoxins produced by A. flavus and comparing with known aflatoxin defense genes was carried
out by Shu et al. [128]. This study showed that genes identified during the infection of maize were
expressed during the early or late stage of infection [128]. Another study used RNA sequencing and
transcriptomic profiling to differentiate the gene response of A. flavus infected and susceptible peanut
genotypes. A large number of genes was altered due to aflatoxin production. Thus, identification
of the genes that are responsible for the host-pathogen crosstalk could be used in breeding resistant
varieties [129]. Another study suggested that production of fungal metabolites are associated with
the stress conditions. Transcriptomics study of mycotoxin-producing fungi A. flavus in different
concentration of H2O2-supplemented media to induce oxidative stress was conducted. The results
showed that isolates which produced higher levels of aflatoxin exhibited fewer differentially expressed
genes in increased stress conditions. Thus, secondary metabolites including aflatoxins may be produced
as a response to the oxidative stress conditions [130]. For Ochratoxin, a recent review of transcriptomic
studies indicated that the transcriptomic studies carried out do not clarify the modes of action of
OTA but have contributed to relevant toxicological information. Therefore, suggested to integrate
the transcriptomic studies with classical toxicology studies and other omics tools to have a better
understanding of the factors that contribute to OTA modes of action [131]. Table 5 summarises the
studies related to transcriptomics studies on aflatoxins, ochratoxins, and patulin.

It is obvious that a considerable amount of work still needed to be carried out on transcriptional
analysis of AFB1, OTA and PAT to extract more useful information on the biosynthesis of mycotoxin at
the transcriptomics level, which opens new avenues to study and understand the biology behind these
mycotoxins. This is particularly true for PAT, which we anticipate will lead to a future control strategy.
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Table 5. Transcriptomics studies for aflatoxin, ochratoxin, and patulin.

Mycotoxin Studies Outcomes Ref.

Aflatoxin B1

Identification of essential transcription factors
for adequate DNA damage response after

benzo (a) pyrene and aflatoxin B1 exposure by
combining transcriptomics with

functional genomics.

Transcriptomics and functional genomics
tools used to investigate the genotoxicity

of aflatoxin B1.
[132]

Aflatoxin B1 induces persistent epigenomic
effects in primary human hepatocytes

associated with hepatocellular carcinoma.

Transcriptomics and epigenome studies
used to understand the mechanisms of
hepatocellular carcinoma development.

[8]

Quercetin tests negative for genotoxicity in
transcriptome analyses of liver and small

intestine of mice.

Genotoxicity related pathways in mice
liver and small intestine. [133]

Combined cytotoxicity of aflatoxin B1 and
deoxynivalenol to hepatoma HepG2/C3A cells.

Different cytotoxicity pathways and their
apoptotic process might be the

mechanism of the synergistic cytotoxicity
of HepG2/C3A carcinoma cells.

[134]

Integrated analysis of transcriptomics and
metabolomics profiles in aflatoxin B1-induced

hepatotoxicity in rat.

Gluconeogenesis, lipid metabolism
disorder, and induced hepatotoxicity

affect majorly after the acute
AFB1 exposure.

[122]

Identification of early target genes of aflatoxin
B1 in human hepatocytes, inter-individual

variability and comparison with other
genotoxic compounds.

Gene subset from AFB1 induced human
hepatocytes identified several genes
which are potential biomarkers of

genotoxic compounds.

[135]

Aflatoxins
Use of functional genomics to assess the

climate change impact on Aspergillus flavus and
aflatoxin production.

Global temperature, water availability
and rising CO2 levels affect the

expression of the aflatoxin biosynthetic
regulatory gene aflR.

[109]

Ochratoxin A

Different toxicity mechanisms for citrinin and
ochratoxin A revealed by transcriptomic

analysis in yeast.
OTA deregulates developmental genes. [136]

Disruption of liver development and
coagulation pathway by ochratoxin A in

embryonic zebrafish.

OTA exposure led to a deficiency of
coagulation factors. [137]

Transcriptomic alterations induced by OTA in
rat and human renal proximal tubular in vitro
models and comparison to rat in vivo model.

The study provided a non-genotoxic
mechanism of OTA-induced

carcinogenicity.
[138]

Patulin Transcriptomic responses of the basidiomycete
Sporobolomyces sp. to the mycotoxin patulin.

Exposure to PAT directed the changes in
gene expression in Sporobolomyces sp. This

finding may lead to develop a
bio-detoxification process.

[139]

5. Proteomics Approach

The terms “proteome” were introduced by Marc Wilkins in 1986 [140]. Proteomics is analogous
to genomics, which applies the evolving synergistic technologies of molecular biology, biochemistry,
genetics, and analytical chemistry to analyse the gene products, i.e., proteins [14,141]. With the
availability of genomic information and improvements in the sensitivity and throughput of analytical
technology, proteomics is becoming increasingly important for many different aspects of related
studies. Since proteins serve as important components of major signaling and biochemical pathways,
studies at protein levels are essential to reveal molecular mechanisms to underlying in the biological
processes [142]. Genes that code for enzymes essential to basic cellular functions are expressed in all cell
types, whereas those with specific functions are expressed only in specific cell types. Thus, proteomics
is a more complicated process than the genomics since the genome of an organism is constant while
proteome differs depending on biotic and abiotic factors [14]. Due to the presence of a vast number of
proteins in a cell, their analysis is a challenging task; as well as the sample preparation [143].
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With the recent development of mass spectrometry (LC-ESI-MS/MS (tandem mass), MALDI-TOF
(matrix-assisted laser ionisation-time of flight) mass spectrometry, protein analysis, and sequencing
have become greener techniques since protein identification, and quantification was laborious and
required a large amount of sample [144]. The fact that smaller amounts of material are now sufficient,
faster analysis, the ability to the throughput of large numbers of samples, and robustness makes
MS-based protein analysis or “proteomics” a popular and rapidly evolving area of research especially
in looking at biomarkers for disease identification in medicine and agricultural research [144,145].
In this respect, the nano-scale LC-MS/MS technique has been a widely used tool in proteomics.
This also enables higher sensitivity for the detection of peptides when the sample is limited [146,147].
Mass spectrometry is capable of extracting data from relatively complex mixtures of peptides.
More importantly, if the complexity of the mixture is low, there is a high chance of identification
of peptides. Consequently, the complexity of the sample presented for analysis can be reduced after
the breakdown of the biological sample and generation of a cocktail of cells and cellular components,
by the separation of proteins from the mixture. Techniques using gel electrophoresis (1D and 2D),
chromatographic separations (ion exchange, size exclusion, affinity and reversed phase) can help to
reduce the complexity. However, these methods cannot be used to detect the proteins due to the
presence of unresolved peptides and proteins. Therefore, to analyse complex mixtures of peptides,
electrophoresis or chromatographic methods are insufficient [148], and other techniques need to be
employed. These include 2D gel electrophoresis which is widely used in proteomics as it simplifies the
complex protein mixtures by resolving them into individual proteins or small groups of proteins [149].
The tryptic digestion of proteins produces the highest yield of peptides of optimal length for MS
analysis [141,144]. Therefore, in the proteomic analysis, the cleaved peptides after the trypsin digestion
are analysed by LC and data-dependent mass spectrometric methods. The peptide sequences are
subsequently identified based on the obtained MS/MS data using software such as ProteinPilot
against specified databases such as UniProt and National Centre for Biotechnology Information (NCBI).
For example, researchers have utilised 2D gel electrophoresis with isobaric tags for relative and
absolute quantitation (iTRAQ) analysis. The iTRAQ method used in quantitative proteomics by mass
spectrometry techniques (tandem MS/MS) or (MALDI TOF MS/MS) to determine the number of
proteins from different sources in a single experiment to identify potential biomarkers in response to
fungal infection [150–156].

Proteomics research in mycotoxicology field not only improves our understanding of cellular
behaviour by studying the different patterns of protein content but also enhances information on the
effect of biotic factors and how they induce variations on the protein profile during the development
of crop or the mycotoxigenic fungi. Additionally, it provides information about how the plants
response to fungal infection and mycotoxin production and how they contribute to plant disease
processes. A recent comparative study investigated proteome analysis of Penicillium verrucosum that
was fermented under short wavelength light and showed stress-related proteins associated with
mycotoxin biosynthesis [157]. Another study used a proteomics approach to modify cuminaldehyde
thiosemicarbazone structure which induces the inhibition of aflatoxin biosynthesis and sclerotial
development in Aspergillus flavus [158]. Such studies indicated the possible use of proteomic approaches
to identify new proteins that possess fungistatic or anti-aflatoxigenic activity. Table 6 summarises the
proteomics studies for aflatoxin, ochratoxin, and Patulin. It highlights the greater number of proteomics
studies for aflatoxin than for ochratoxin and patulin. The use of proteomics as a novel tool in aflatoxin
research has been reviewed [159]. There are many factors that influence mycotoxin biosynthesis such
as fungal species, host plants, nutritional and environmental signals [160]. Nöbauer and co-authors
were able to provide a comprehensive protein identification for P. verrucosum by using shotgun
proteomics [160]. They were able to get further information about the role of adaptive changes on
fungal physiology that effects secondary metabolite production [160]. Additionally, drought stress and
preharvest aflatoxin contamination on the groundnuts (Arachis hypogaea L.) also has been reviewed
recently concluding that more research is required to investigate the genes that related to resistance
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associated proteins [161]. Wang and co-authors used proteomic tools to analyse the immune response
in cotyledons of Arachis hypogaea infected with Aspergillus flavus [162].

Proteomics approach was used to identify the biomarkers produced by pathogenic A. flavus as a
response of oxidative stress. High, moderate and no aflatoxin producing A. favus were used in this
study and identified more than 1000 proteins. Among them, 220 were differentially expressed [163].
Additionally, the proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing
conditions were investigated. The proteome analysis identified nine proteins possibly involved in
diverse biological functions, two of them (acetyl glutamate kinase and TBA1_emeni tubulin alpha-1
chain) were linked to OTA production [155]. For proteomics studies on PAT, we identified four articles
after researching PubMed using proteomics and PAT as keywords. Most of the studies identified
were investigating the proteome changes in Penicillium expansum during spore germination [164] and
fungal development on different media to investigate the pathogen-host interaction mechanism [165].
The discovery of proteins signals in response for mycotoxin production and was used as biomarkers,
which is valuable information for the researcher to improve plant resistance and stress tolerance of
host plants against fungal contamination [166].

Table 6. Proteomics studies for aflatoxin, ochratoxin and patulin.

Mycotoxin Fungal Strains Study Analysis Techniques Outcome Ref.

Aflatoxin B1

Aspergillus flavus

Proteomic analysis reveals an
aflatoxin-triggered immune

response in cotyledons of
Arachis hypogaea infected with

Aspergillus flavus.

2-D gel electrophoresis and
MALDI-TOF/TOF
mass spectrometer.

Three grades of the immune
response in A. hypogaea during

infection with toxigenic
A. flavus were identified.

PAMP-triggered immunity,
effector-triggered immunity

and metabolite-triggered
immunity.

[162]

Aspergillus flavus

Comparative leaf proteomics of
drought-tolerant

and-susceptible peanut in
response to water stress.

2-D gel electrophoresis and
MALDI-TOF/TOF
mass spectrometer.

42 unique proteins showed
interactions in the
tolerant cultivar.

[167]

Aspergillus flavus

Insight into the global
regulation of laeA in Aspergillus

flavus based on
proteomic profiling

Protein extraction, trypsin
digestion, TMT-labelling

and HPLC fractionation and
LC-MS/MS

laeA gene affects cell
morphology and contributes

to the production of
aflatoxin production.

[168]

Aspergillus flavus

Proteome analysis of A. flavus
isolate-specific responses to

oxidative stress in relationship to
aflatoxin production capability.

Protein digestion and
iTRAQ * labelling

1173 proteins were identified,
and 220 were

differentially expressed.
[163]

Ochratoxin A

Aspergillus
carbonarius

Proteome analysis of the fungus
Aspergillus carbonarius under

ochratoxin A
producing conditions.

2-D gel electrophoresis and
MALDI-TOF/TOF
mass spectrometer.

Nine differential proteins
were identified by

MALDI-MS/MS and
MASCOT. Identified proteins
were involved in regulation,

amino acid metabolism,
oxidative stress and

sporulation. A protein with
126.5 fold higher abundance in

high OTA-producing strain
showed homology with CipC.

[155]

Arabidopsis thaliana

iTRAQ mitoproteome Analysis
reveals mechanisms of

programmed cell death in
Arabidopsis thaliana induced by

ochratoxin A

iTRAQ * Analysis

The study investigated the
toxicity mechanism of OTA on

the host plant; their results
indicated that OTA induced
PCD in A. thaliana. 42 and
43 proteins were identified

within 8 and 24 h. those
proteins were mainly involved

in perturbation of the
mitochondrial electron

transport chain, interfering
with ATP synthesis and

inducing PCD

[169]
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Table 6. Cont.

Mycotoxin Fungal Strains Study Analysis Techniques Outcome Ref.

Patulin Penicillium
expansum

Identification of differentially
expressed genes involved in

spore germination of Penicillium
expansum by comparative

transcriptome and
proteome approaches.

RNA-seq (RNA sequencing)
and iTRAQ * (isobaric tags

for relative and absolute
quantitation) approaches.

A total of 3026 differentially
expressed genes, 77

differentially expressed
predicted transcription factors

and 489 differentially
expressed proteins identified.
Posttranscriptional regulation

and modification serve
essential roles in the

management of
fungal germination.

[164]

MALDI—matrix-assisted laser desorption/ionization, TOF/TOF—time-of-flight, TMT—Tandem Mass Tag,
iTRAQ—isobaric tags for relative and absolute quantitation.

6. The Current Status of Omics Studies and Future Opportunities

Despite our limited understanding of mycotoxin production, the omics approach is a vital
tool in the mycotoxin field. Mycotoxin analysis has moved over ten years from targeted analysis
of individual mycotoxin to untargeted metabolomics which provides insight to detect unknown
metabolites. Omics tools have contributed to our understanding of mycotoxin issues especially in
identifying mycotoxigenic species, information that was not accessible until recently. Additionally, it
allows the identification of targeted and untargeted mycotoxins before, during, and after harvesting,
highlighting possible plant-fungal interactions. Additionally, critical information is revealed on the
impact of climate change on the prevalence of mycotoxin issues in society.

However, many aspects of the omics experiment are still under active development and integration
of omics studies will ultimately provide accurate information about the biomarkers that relate to
early-stage mycotoxin production. This task is a global challenge as it requires large scale multi
omics experiments investigating the mycotoxin issue considering both biotic and abiotic factor.
The development of databases internationally linked to mycotoxigenic fungi and mycotoxins would
allow global integration of experimental approaches and allow comparative genomic and metabolomics
studies to enable the accurate identification of mycotoxigenic strains. It would support the elucidation
of components of genomes that are responsible for variation in mycotoxin production. Additionally,
it would enable the identification and characterisation of plant and fungal factors that can impact
mycotoxin contamination. Recognition of this important aspect has been highlighted by the research,
education and economics information system (United States Department of Agriculture, USDA), which
has started a project using genomic and metabolomics approaches for the detection and control of
mycotoxins on corn [160]. The project is funded until 2020 and aims to develop a strategy to control
mycotoxin contamination by using omics tools. It also aims to develop a DNA database to assist the
scientist in identifying pathogenic strains. Similarly, EU’s Horizon 2020 programme has funded the
MyToolBox project (www.mytoolbox.eu) for four-years (2016–2020). The project aims to develop new
methods by using omics tool to predict potential fungal contamination of cereals at an early growth
stage as well as to reduce aflatoxin contamination in EU maize through resistant plant cultivars.

The future omics studies need to provide phenotypic data considering factors such as experimental
design, time, and dose responses. Integration of omics techniques must focus on investigating
the pathogen-plant crosstalk, investigating the toxicity of mycotoxins on the host plant to propose
mechanisms of the cell responses, which will direct efforts to mitigate the mycotoxin issue.

By combining omics technologies, functional genomics, transcriptomics, proteomics, and
metabolomics along with bioinformatics is needed to provide extensive information about the biotic
and abiotic factors that contribute to the global mycotoxin issue. With genomics, the comprehensive
understanding based on the gene and molecular level will assist in the search to develop novel
strategies to control mycotoxin contamination by identifying targets for inhibiting fungal growth or
toxin production. Proteomics and transcriptomic information can contribute to developing online
screening methods which will help farmers to predict fungal contamination in the early stages of

www.mytoolbox.eu
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development. Additionally, omics technologies contribute to our understanding about pathogen fungal
crosstalk that could accelerate the development of plant breeding through gene insertion technologies
for enhancing host plant resistance, preventing or reducing mycotoxin contamination in pre- and
post-harvest crops.
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