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Abstract—Ideally, Wireless Communication System (WCS) and
its various services are expected to operate effectively without
any restrictions be it in space, time or communication locations.
However, this is not absolutely possible in real-time, simply
because the WCS’s environmental space called Spectrum is
currently found to be limited, heavily congested and continuously
dynamic in nature. To address this problem, Cognitive Radio
(CR) system has been proposed as the innovative technology
solution. In this paper, Fuzzy Logic (FL) based approach has been
proposed, designed and implemented as an adaptive prediction
algorithm for the CR. The results obtained from the simulation
shows that the proposed prediction algorithm was found to be
faster with reduced computational complexity and offer quality
improvement to the WCSs in terms of its overall throughput
prediction accuracy.

Keywords- Fuzzy Logic System, Cognitive radio, Wireless
Communication System, Prediction, Spectrum state, Simula-
tion Modelling

I. INTRODUCTION

The massive expansion of Wireless Communication Sys-
tems (WCS) with its countless users, numerous services and
applications has put challenging demands and requirements for
WCS’s environmental space, called spectrum. The spectrum
is naturally limited and currently drifting the resource out of
capacity [1]. Furthermore, as the WCS’s environmental state
has currently been found to be heavily congested, Cognitive
Radio (CR) nodes are expected to keep up with the WCS’s
spectrum erratic and its unstable conditions as well as any
other discrepancies in WCSs. [2]. The problem of meeting
spectrum demands has not been easy, so-much that spectrum
cannot be physically controlled nor can its limited space be
extended.

Fundamentally, spectrum inadequacies in WCSs, such as
complexity, congestion, insufficiency and uncertainty have
been considered as challenges to CR systems [1] and
[2]. Parameter re-configuration and its adaptation with the
spectrum variation is another significant concern in CR sys-
tems. Although quite a number of research had already been
conducted on spectrum sensing, dynamic management and its
utilization at various level of WCSs operations, fewer works
have been recorded on the parameter reconfiguration of the
CR in respect to the WCSs improvement. Currently, the rate
of developments in WCS in terms of its users, unlimited

demand and other countless services have been found to be
on the rise. Specifically various CR parameters are relevant
in today’s WCSs, such as energy consumption, high data-
application, fast mobility and many others [3]. The need for
accurate prediction techniques in WCSs is now vital, as the
spectrum dynamic state continues to undergo huge deviations.
Some of these predictions mechanisms have previously been
proposed in various dimensions, such as multiple propagation
schemes, higher frequency bands, smart antenna systems [4].
Since WCSs states are naturally frequency dependent, time-
varying, and space selective, it is essential for CR to effectively
determine the sufficient spectrum utilization required to satisfy
these dependencies under any conditions by prediction [5].

The main objective of this paper is to design and build
an adaptive prediction engine for a CR system, which can be
used to predict future WCSs performances under any operating
spectrum conditions. The proposed algorithm serves as a
significant tool for addressing various causes of spectrum’s
inconsistencies and deficiencies using Fuzzy Logic (FL) based
prediction mechanism. As proposed, the FL based prediction
algorithm is expected to predict reasonable amount of overall
throughput by dynamically adjusting selected CR’s input pa-
rameters in order to use the spectrum state. Meeting-up such
anticipated conditions has generally been referring to as the
CR’s main objective function, which mostly accounts for its
user’s end-to-end requirements [1]–[3].

To enhance the WCS for better performances, different de-
sired objective functions can be adopted, such as: minimizing
the bit-error rate, maximizing the battery power saving, max-
imize spectral efficiency, maximizing the WCS’s throughput
etc. and many others [2], [3]. However, for this paper, the
desire for a good overall throughput has been considered as
the algorithm’s prediction objective function. The proposed
algorithm was designed, modelled and simulated using Matlab
simulation software and specifically through FL toolbox. This
include: (1) Construction of a FL’s Ruled Based System
(RBS). (2) Developing of a robust inference system closer
to that of the human ability of thinking and perception. (3)
Simulation of the present WCS’s situations with the proposed
prediction algorithm.

The rest of this paper is organized as follows. A literature



review is written in Section II. The CR system’s description
and design are presented in Section III. Section IV introduces
the simulation methodology and the stages through which the
proposed prediction engine was developed. Section V presents
a performance evaluation of the proposed algorithm. Finally,
conclusions derived based on the outcomes of the paper are
presented in Section VI.

II. LITERATURE REVIEW

In the context of embracing intelligence mechanism into
WCSs, a tractable information-based prediction technique was
proposed in [5] to evaluate the channel utilization. In their
research, the spectrum states for the communicating nodes
were effectively predicted without any prior knowledge of
the primary users. This was later used to measure how their
proposed model performed in terms of predicting WCS’s
qualities channel utilization and the amount of the overall
throughput available within the network. In [6] the prediction
was tackled by using an Artificial Neural Network (ANN)
approach. This was done by exploring the dynamic adaptation
between the radio input parameters which are classified as
the WCS’s network basic features. The Signal to Noise Ratio
(SNR) was used to represent the wireless communication
surrounding environment. Their study was based on the CR
input parameters characterization to evaluate the WCSs per-
formance in real-time. Through their study, they were able
to effectively monitor the unstable WCSs medium and at the
same time predict accurate output performances in terms of
delay, network reliability and the available overall throughput.

Hou et al. [7] established their prediction research into
WCSs based on the collection of historical information. In
their work, information was collected, such as the nodes
status, their communication speed, the number of free channels
available for nodes to operates to determine through a devel-
oped prediction system. The technique was able to predict
the overall throughput available for the nodes. According to
their predicting scheme, the sensing status for every varied
WCS’s spectrum states, both in frequency and time-based
sensing modes were adequately monitored. As a result, their
work was able to justify the introduction of intelligence as the
most benefiting enhancing function for this present WCSs. An
evolutionary algorithm based on Genetic Algorithms (GA) as
the biologically inspired prediction agent has been presented
in [8] and [9]. Their works addressed some identified CR
fundamental challenges, such as the problem of robustness
and reliability to spectrum dynamic management. However,
evolutionary algorithm implementation is costly, they are com-
putationally complex and exhibits slow convergence, which
limits their usage in real time applications.

The studies presented in [10] and [11] focussed on the FL
based prediction system, specifically for heterogeneous WCSs,
where nodes can be allowed to communicate seamlessly with-
out interruption to their communication services. Kammoun

and Tabbane in [10] were able to present their prediction
algorithm using FL predictive feature which was developed
as a vertical handover decision algorithm towards improving
WCS network performances. In their work, various network
conditions, such as supplied bandwidth, the communication
link between the nodes, the received signal strength and
delay were considered to carry-out their evaluation. By this
they were able to predict the amount packet loss, the end-
to-end delay and available overall throughput as the WCSs
improvement measuring factor. Extending the work of [10],
energy initialization was considered and added as another input
in [11]. The proposed study differs from these two aspects,
because basic communication features of CR systems were
considered as the input parameters in this paper. The proposed
algorithm input-output mapping prediction generalization will
be based on the CR basic features, such as data-rate, battery
powered utilization, node’s mobility within the network and
many others basic functions.

III. COGNITIVE RADIO SYSTEM

A brief description of CR including its basic intelligence
framework and various radio features used for the two input
parameters are discussed in this section. CR has been con-
veyed as an advanced technology with intelligence capability.
Primarily, CR comprises of two functional blocks, namely the
Software Defined Radio (SDR) and the intelligence engine,
also known as Cognitive Engine (CE). The focus of this paper
based on the proposed FLS based prediction controlling model
belong to the CE; as the unit (i.e.CE) is considered as the core-
engine to the CR and comprises of different three intelligent
engines namely, the reasoning engine, the knowledge-based
engine and the learning engine [8].

A. Cognitive Radio Input Parameters
CR systems comprises of two categorized input parameters,

namely the Environmental Parameter (EV-P) and Transmis-
sion parameter (TX-P) [12]. The EV-Ps are the WCSs
environmental space (i.e. the spectrum) information available
at specific state and are generally collected through the use
of sensors. The TX-Ps are the basic radio features, which are
mostly used to execute final decision and primarily controlled
by the SDR module of the radio. These two categorized
parameters are crucial elements used by the CR to optimize
its desired performances. The more they are (i.e. the input
parameters), the better the CR information generalization is,
faster and more knowledgeable the controller becomes. How-
ever, with many parameters, the intelligence implementation
becomes challenging and more complex; thereby requiring
more computational processing, higher memory capacity as
well as large space for data storage [6].

There is only one EV-P of interest used in this paper, which
is defined and named as Floor-Noise - (F−Noise) . This CR’s
feature accounts for every spectrum sensing related issues,



comprising of every unwanted signals generated as noises,
such as the conventional Signal-to-Noise-Ratio (SNR) as well
as others spectrum associated challenges. The selected TX-Ps
are extracted from the CRs node - SDR operating features,
which are data-rate, user density and transmitting power.
These selected variables for the two CR input parameters
are presented in Table I and Table II respectively. These
parameters are the assigned as input variables to the model.
They are expected to be reconfigured for the algorithm to
accomplish its desired objective function, which is the accurate
prediction for the available overall throughput.

TABLE I: The Environmental Parameters (EV-P)

Parameter Name Symbol Description
Floor Noise F−Noise All un-solicited generated noise

TABLE II: The Transmission Parameters - (TX-P)

Parameter Name Symbol Description
Data Rate Dr Data usage & transferring rate-Mbps
User Density Ud The number of CR nodes
Transmission Power TXpwr CR transmitting power level (Watts)

IV. PROPOSED PREDICTION ENGINE METHODOLOGY

By perception, CR systems are expected to sense its sur-
rounding communication space at the very beginning of its
operation and this includes awareness and sensitivity of its
environment. However, for the spectrum state to be effec-
tively and efficiently managed, the medium must be properly
sensed using appropriate sensing devices which are either
attached directly to the CR or otherwise. Though numerous
sensing devices are available, such as thermal, noise, speed,
geographical or location detectors and etc [13], however,
only noise and mobility sensors are considered in this work.
After the sensing had been thoroughly conducted, the sensed
values are determined and collected as the EV-Ps settings.
And instantly, the CR discharges its embedded intelligence
function to dynamically adapt all available TX-Ps values to
predict the WCSs capacity obtainable under such spectrum
state. Our proposed prediction engine was designed based
on the FLS Type-1 basic architecture. Figure 1 presents the
methodology used in developing the CR system simulation
as originally proposed by Mitolas [14]. Furthermore, other
required literature about FLS for detail study can be found in
[15].

1) Fuzzification: This is the stage where all corresponding
input parameters values are logically represented as fuzzy
variables. Two things happens at this stage. Firstly selected
input parameters are combined and transformed with rele-
vant linguistic terms. The second action is to fix suitable
membership functions (MFs) into these assigned [15]. MF
is expressed as the degree of membership and has its values
between 0 and 1. Trapezoidal, triangular, and Gaussian object-
based MFs are the most commonly used MFs. Figure 2

Fig. 1: The Proposed FLS Prediction Engine Framework

present different linguistic variables and their corresponding
MFs used for fuzzification. Figure 2 shows input fuzzy sets and
corresponding membership functions for all the selected input
parameters’ fuzzification process. Figure 2(a) has floor-noise
fuzzification with linguistic terms as ”Rural, Semi and Urban”.
Figure 2(b) depicts the data-rate fuzzification with linguistic
terms as ”Small, Medium and Heavy”. While Figure 2(c)
indicates the fuzzification input for the number of nodes or
users present within the WCS with linguistic terms as ”Few,
Moderate and Large”. Finally, transmitting power fuzzification
is shown in Figure 2(d), having its linguistic terms as ”Low,
Average and High”.

(a) Floor Noise Membership Func-
tion

(b) Data Rate Membership Func-
tion

(c) Users’ Density Membership
Function

(d) Transmission Membership
Function

Fig. 2: Input Fuzzy Sets Membership Functions

2) Inference Engine: The Rule Based System (RBS) is
very significant and considered as the engine room for the
algorithm; also this is the stage and where the adaptive intel-
ligence in the form of human reasoning are being developed
by means of inferencing the rules. The ”IF-THEN” rule base
corresponds mapping relationship between the input fuzzy sets
and output fuzzy sets. Where the ”IF” is acknowledged as the
antecedent and accounts for the way knowledge is being ex-
tracted from the expert. Meanwhile, ”THEN” is considered as
the consequent and produces the logical end-statement through



which the knowledge generalization are initiated. However, if
the RBS is properly developed, then adapting the selected CR
transmission parameter becomes possible and the generated
rules will be used to predict better overall throughput with
good percentage for such conditions.
For example, N th - number of rules can be represented as:

if . . . (FNoise = Ei)∧(Ud = Ui)∧(Dr = Di)∧(Txpwr = Ti)
(1)

then . . . . . . Tput = Γ(overall) (2)

Where:-

Ei = Floor noise MFs (for rural, semi & urban) (dB)
Ui = Users MFs (between 0 50 nodes)
Di = Data-rate MFs (0 - 11)Mbps
Ti = transmitting power MFS (0 100)% (Watts)
Γ(overall)= Overall Throughput available (0 - 100)%

To determine the true state for all the generated rules,
an expert based knowledge RBS was implemented using
the Shannon channel capacity scalability on WCSs resources
allocation. Theoretical expression of complex WCSs sensing
states with Shannon capacity under the impact of high signal
to noise ratio is formulated using Equation (3) [16].

S−capacity = β ∗ log(
P tx

Fnoise ∗ β
) (3)

Where:-

β = Bandwidth (Mb)
P tx = Transmitting Power (Watts)
Fnoise= noise density at the receiver = all noise (dB)

TABLE III: Sample of the Developed Rules

Rule Evn UD DR TX T(put)

1 Urban Large Small Low Below
2 Semi Moderate Medium Average Normal
3 Rural Few Heavy High Excellent
4 Rural Few Medium Moderate Normal
5 Rural - - Strong Excellent
6 Urban Large - Low Below
7 Rural - Heavy High Excellent
8 Semi Few Small Low Normal
9 Rural Moderate Heavy High Excellent
10 Urban Large - High Normal

Comprehensively, 81 active rules were generated by com-
bining our four preferred input parameters with respective
three MFs as defined and shown in Figure 2. Samples from
the generated rules are presented in Table III.

3) Defuzzification: The output evaluation process for the
basic FL system is known as the defuzzification [15]. After
the inference stage, this is the stage at which the algorithm’s
final predicted results is determined. Through this stage, all
obtained fuzzified output sets are converted back into crisp,
which are generally in real numbers. Different defuzzification
methods are available in FL systems development, Centroid of
Area (COA) has been the most commonly used technique and
has been adopted in this paper and the formula for this method
is mathematically formulated with Equation 4. To present the
algorithm improvement to the WCSs performance, based on
the COG expression; the results obtained from the inference
engine, with corresponding output MFs (µout) were later
scaled between zero percentage (0%) being the lowest and
one-hundred percent (100%) being the maximum predicted
performance resource available in such WCSs state.

CrispOutput =

∫
Γ(overall) ∗ µout(Γ(overall))

µout(Γ(overall))
.δΓ(overall)

(4)

A. Proposed Prediction Engine Validation

To evaluate the model’s prediction capability, several simu-
lation investigations were conducted on the few selected CRs
input parameters listed in Table II and their prediction at
various dynamic spectrum states or communication domains
with corresponding sensed valued of EV-Ps listed in Table I are
measured and compared. Based on the FL inference engine,
the defined FL-based rule based system (RBS) was used to
develop the predicting mechanism. Through this, available
overall throughput at such different communication domains
are determined to verify the WCS’s performance enhancement.

Fig. 3: The Algorithm Prediction Validation

The developed algorithm was validated by comparing the
algorithm predicted results with a simulation developed WCS



using Shannon channel capacity equation with the Additive
White Gaussian Noise (AWGN) as the WCSs unstable en-
vironmental state in real-time. Figure 3 shows the validation
performance as the results obtained between the developed
prediction algorithm and the implemented WCS simulation.
After the results has been compared, two error estimator
functions namely the linear correlation and the Root Mean
Squared Error (RMSE) were used to validate the developed
prediction model. With the developed FL based prediction
algorithm achieving about 96% accuracy in its prediction
output and the RMSE value was 0.016258. This indicates that
the developed algorithm predicted outputs are relatively closer
to the simulated ideal WCS and in this regard, presenting the
consistent relationship of the FL systems non-linear mapping
to manage the complex and unstable WCSs medium by
predicting the amount of the overall throughput available in
such WCSs state.

V. PERFORMANCE ANALYSIS AND DISCUSSIONS

After the proposed algorithm has been designed, various
predictions were carried out to determine the available overall
throughput under different WCS’s environmental conditions
and all the obtained results from each of these simulation
scenarios are discussed in this section. The performance eval-
uation of the proposed FL based prediction model was carried
out and analysed in this section. To carry-out the various
investigations, selected CR input parameter values were varied
in different simulations and results obtained were highlighted
and evaluated to determine the models performance in terms
of its prediction accuracy.

A. Prediction Evaluation

The purpose of this performance analysis is to evaluate
the developed FL based prediction generalization capabilities
under different CR input parameters classification. Since it is
expected from CR system to apply its intelligence functionali-
ties with various selected TX-Ps so that its respective users or
CR nodes on itself can enjoy constant communication quality.
To carry out this evaluation with the developed algorithm,
input values were manually selected and later simulated for
the WCSs under such conditions in which two different input
parameter re-configuration settings were investigated. In the
first perspective, all the selected TX-Ps values were assigned
with lowest values and considered as the Poorest Reconfig-
uration Mode (PRM), while for the second re-configuration
setting, all the selected TX-Ps were respectively assigned with
maximum values and referred to as the Best Reconfiguration
Mode (BRM). Under this two conditions, the developed pre-
diction engine generalization was later evaluated by using it
to determine the amount of overall throughput available under
the two simulation settings. With the notion, the number of
users, data rate and transmission power are respectively fixed
with 50 nodes, 5Mb and 30dB as maximum values, while the
minimum values assigned for each corresponding parameters

are 5dB for the transmission power, 0mbps data-rate and 5
node for the users.

Fig. 4: Transmitting power

Scenario 1 - Transmission Power .
Under different transmission power schemes, the proposed
algorithm prediction performance was examined and vali-
dates, such that the model was first subjected to the two
defined re-configuration conditions (i.e. the PRM and BRM.
However, under a dynamic value variation condition known
as the Dynamic Adjustable input parameter Reconfigurable
Mode (DARM), Figure 4 is able to presents improvement to
the models prediction capability, such that as the CRs node
dynamically increases the power transmission values a better
overall throughput was achieved. Hence, the possibility of
achieving greater resource for the WCS under the DARM
become enhanced, which later translate into better QoS en-
hancements.

Scenario 2 - Data-rate .
The model was further subjected to another input parameter
variation, specifically, the continuous demand for higher data-
rate in todays WCSs that is heavily developed on higher
data based communication services. Under this investigative
condition, the effect of data-rate input parameter and its impact
on our implemented algorithm for the CR intelligence adapta-
tion was evaluated and in this analysis, all the selected input
parameter values were fixed while the data-rate values were
dynamically varied. Under this data-rate variation condition,
the developed models prediction generalization capabilities
were equally used to predict the amount of overall throughput
available as the parameter values dynamically varied.

Figure 5 shows the obtained results demonstrating the
performance improvement of the developed model, such that
as the data rate increases, the predicted outputs were also
increases. This implies that if the rate at which information
or frames are being transferred within the WCS can be



Fig. 5: Data-rate

increased continuously - says from 1Mbps to 5Mbps; then
the number of frames that will get dropped as error will
automatically become reduced and in terms of the amount
of predicted overall throughput the resources available within
the WCS is similarly get increases. By this in large quantities
is the number of transmitted frames that will be delivered
successfully to the receiving nodes. From the two scenarios
in Figure 4 and Figure 5, it can been seen that data-rate
can be considered as a key radio feature compared to the
transmission power. The prediction performance obtained by
the model was better under data-rate dynamic adjustment than
when nodes transmission power were dynamically increased.
This was also evaluated under three different communication
domains, namely the rural, residential and urban centre.

Fig. 6: Users-Density VS Domain

Scenario 3 - User-Density .
The proposed model was also evaluated under three WCS
environmental states using the simulation of rural, residen-
tial and urban communication areas. To analysis the models
prediction capability under these scenarios, the model was
dynamically adjusted with a different number of nodes. The
results were summarized in Figure 6 and can be seen that

the prediction engine as proposed was able to predict higher
overall throughput for the rural communication domain above
the remaining two domains. Implying that, as the CR user
moved between the three defined domains, starting from the
urban region the average of about 47.52% of resources are
predicted to be available because the region spectrum state is
known to be heavily congested. However, as the users travelled
out of this domain into the semi-urban or residential domain
the predicted overall throughput as the available resources at
such state was 51.48%, this was found to be a little higher
in the predicted value because the domain is known to be
less noisy than the urban centre. Finally, as the users moved
into the rural area, a more enhanced prediction performance
was recorded as the region was able to produce a prediction
output of about 57.25% overall throughput. As the numbers of
CR nodes increases their impacts on the model can be seen in
Figure 6, while the simulation details used for the three WCSs
environmental domains are listed in Table IV.

TABLE IV: FLS-LE Intelligence Prediction

WCS - State Urban Rural Semi-Urban
Users 100 45 55
CR - Speed 15mph 25mph 25mph
Data Rate 6mbps 5mbps 5.5mbps
Transmit Power 3P P 1.5P

B. Prediction Efficiency

Prediction efficiency and its improvement on the WCSs was
another performance investigation carried out on our devel-
oped algorithm. This was performed by comparing the overall
prediction efficiency (η) using Equation 5, to compare the
algorithm predicted output differences in percentage between
the three defined re-configuration modes, i.e. the PRM, the
BRM and the algorithm Dynamic Adjustable Re-configuration
Mode (DARM). As presented and listed in Table IV, the
algorithm prediction was more efficient at the DARM, where
the input parameter values were dynamically assigned until the
best predicted output is obtained. With about 11.40% DARM
prediction efficiency better than the PRM and 5.34% improved
over the BRM.

η =
F ” −X”

F ”
∗ 100% (5)

Where: F ” is the DARM prediction output and X” is for any of
the two modes prediction output.

VI. CONCLUSION

We proposed a FL based prediction algorithm as a part
of CR intelligence engine for an effective management for
today’s WCS’s complex spectrum states. The performance
of the proposed scheme has been evaluated by means of
simulation and the predicted results obtained for different
communication conditions are compared and analysed. In



order to adapts dynamically to different WCS environmental
conditions and at the same time produces better resources
in terms of the amount of overall throughput at such con-
dition, the developed FL-based prediction algorithm selects
optimal TX-Ps. Which are based on the value variations of
number of nodes, data-rate and nodes transmission power,
taking into consideration the level of floor noise available
in each communication conditions. The results have shown
that the developed FL based prediction algorithm performs
better under the DARM than the other two modes which
are PRM and BRM, justifies that with good input-mapping
generalization from the model, suitable resources in terms of
overall throughput will be made available for WCSs users and
in overall enhances its performances. Knowledge about how
the developed model prediction performance analysis can be
extend to cover a more or highly complex WCS environmental
conditions, such as faster mobility and a good QoS for online
video streaming WCSs, when considering a delay sensitive
radio feature as the CR input parameter forms the future works
of this paper.
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