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Abstract

Health Monitoring apps for smartphones have the potential to improve quality of life
and decrease the cost of health services. However, they have failed to live up to expecta-
tion in the context of respiratory disease. This is in part due to poor objective measure-
ments of symptoms such as cough. Real-time cough detection using smartphones faces
two main challenges namely, the necessity of dealing with noisy input signals, and the
need of the algorithms to be computationally efficient, since a high battery consumption
would prevent patients from using them. This paper proposes a robust and efficient
smartphone-based cough detection system able to keep the phone battery consump-
tion below 25% (16% if only the detector is considered) during 24h use. The proposed
system efficiently calculates local image moments over audio spectrograms to feed an
optimized classifier for final cough detection. Our system achieves 88.94% sensitivity
and 98.64% specificity in noisy environments with a 5500× speed-up and 4× battery sav-
ing compared to the baseline implementation. Power consumption is also reduced by a
minimum factor of 6 compared to existing optimized systems in the literature.

Keywords: Event detection, cough detection, mobile health, moment theory,
optimization.

1. Introduction

Ever since the arrival of smartphones, many realized their potential as tools for de-
livery of healthcare services. Mobile health (m-Health) is an emerging field that advocates
the use of mobile devices for health applications, aiming to provide assistance to pa-
tients from underdeveloped regions, and harnessing this technology for more efficient
management of medical conditions [1]. Despite this potential, m-Health has failed to
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live up to expectation in the context of respiratory illnesses, in part because of poor
objective measures of symptoms, which could lead to early diagnosis or prevention [2].

Cough is the most common symptom in respiratory diseases, and an important clin-
ical sign. By listening to cough, an expert physician may extract extremely valuable
information for their treatment, both from quantitative (e.g. frequency or intensity) and
qualitative (e.g. dry or wet cough) assessment.

However, patient-filled reports on cough frequency and intensity have proven to be
grossly inaccurate, as chronic coughers become unaware of their coughs [3]; besides,
listening to a recording to locate coughs by manual methods is a long and tedious task
that raises privacy concerns. For this reason, there has been a call for automatic methods
to speed it up. The medical community published guidelines for such systems, empha-
sizing the need for them to be automatic, unobtrusive, compact, private, and allow for
full-day recordings [4].

It is in the context of remote monitoring as described above where m-health can play
an important role, especially for patients with reduced mobility or chronic respiratory
illnesses. An intelligent monitoring app would unobtrusively collect cough data by
analysing the audio signal recorded with the smartphone, and provide medical experts
with rich information on which to base their diagnosis. If this app runs seamlessly
without interfering the regular use of the smartphone, patients would be less conscious
of the medicalization of their lives.

An additional advantage of monitoring apps resides in their potential to decrease the
cost of national health services. In the case of lung diseases, this cost has been estimated
to be approximately 96.4 billion euros per year in the EU, plus another 283 billion euros
in opportunity costs [5]. One reason for these steep costs is that patients only resort to
physicians after their condition notably impairs their quality of life, requiring expensive
care, and resulting in productivity loss [6]. Monitoring of early signs makes preemptive
diagnosis possible, so physicians can prescribe simpler treatments while they are still
effective [3].

However, m-Health monitoring apps have many challenges to overcome before they
fulfill their potential. Namely, they need to process large streams of data in a timely fash-
ion to achieve real-time performance; they need to be reliable in noisy environments,
especially when audio signals constitute the information source; and they also need to
sustain full-day monitoring sessions. For cough detection, the system has to process the
input signal from the microphone, then extract a set of features that sets cough events
apart from other sounds (the feature vector), and after that use a pattern recognition engine
to classify those events as cough or non-cough events. This process is computationally
expensive and leads to high battery consumption. Thus, smartphone implementations
are usually basic and riddled with battery issues, with many systems off-loading to an
external server to complete the task [1, 3, 7].

Most of the automatic cough detection systems proposed so far [8, 9, 10, 11] achieve
acceptable sensitivity and specificity values in non-ambulatory, reduced noise environ-
ments. They usually rely on spectral features such as MFCC (Mel Frequency Cepstral
Coefficients) [12] or GTCC (GammaTone Cepstral Coefficients) [13] typically used for audio
event recognition. These feature sets provide a logarithmic characterization of the sig-
nal spectrum to emulate the response of the human hearing systems. Other methods
are conceived to identify cough events from a series of pre-selected audio events rather
than to detect coughs in real time. Murata et al. [14] employed six different smoothed
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time-domain envelopes to identify sound events as coughs depending on their similar-
ity to those templates. They achieved sensitivity and specificity values above 90% in a
quite environment. Shin et al. [15] fed spectral (energy cepstral coefficients, ECC) and
time features (signal envelope) into a hybrid model composed of an Artificial Neural
Network and a Hidden Markov Model (HMM) to classify pre-selected sound events
contaminated with pink noise with Signal to Noise Ratios (SNR) ranging from -10 to 30
dB.

The above mentioned systems are not optimized to perform in challenging noisy
scenarios. Actually, portable cough detectors such as [16] have been shown to perform
poorly in ambulatory environments. Our recent work [17] proposed a methodology to
apply local invariant image moments to audio signal spectrograms for robust cough
detection in such environments. We also demonstrated in [18] that local Hu Moments
[19] outperformed conventional feature sets for cough detection even when the Signal-
to-Noise-Ratio (SNR) was so low (-6 dB) that the amount of present noise hindered the
signal of interest. Sensitivity and specificity values for those systems were respectively
86% and 99%.

There have also been some attempts to perform cough detection using smartphone
apps. Some of them, such as CoughSense [3], or the cough detector implemented in
ResApp [20, 21, 22] are not intended for continuous monitoring in noisy environments.
Instead, the user would need to run the app and cough to it on a controlled measuring
environment. In terms of computations, the former records the sound in a smartphone
that the user wears around the neck, uploading the extracted features to a cloud server
that performs cough detection. This dependence on a cloud server limits the app in
places with no internet connection, plus any kind of offline processing requires storing
all data on the device, which takes too much space to be practical for low-end smart-
phones.

On the other hand, systems like ADAM, that run on smartphones, report fast short-
ening of battery life [7]. This constitutes an issue since users will be reluctant to install
and use it. One common method to reduce battery consumption is to implement a basic
power threshold, a lightweight detector that discards those windows that do not contain
audio events, so the use of the costly feature extraction and pattern recognition engines
is minimized. One system implementing such filters is the SymDetector app, managing
to extend the battery life to 20 hours [23]. However, to warrant seamless functional-
ity with low battery drainage in regular use, the system also needs to be implemented
in an efficient manner. Our work in [24] proposed an efficient implementation of the
pattern recognition module proposed in [18] so that detection could also be performed
in real time and battery consumption reduced. This paper focuses on the feature ex-
traction part, which for local invariant image moments applied to cough detection, can
significantly be optimized.

This paper proposes an optimized smartphone-based cough detection system able
to keep the phone battery consumption below 25% (16% if only the detector is consid-
ered) during 24h use. The proposed system efficiently calculates local image moments
over audio spectrograms to feed an optimized classifier for final cough detection. The
contribution of the paper resides in the proposed optimizations for moment calculation,
which enable fast and battery-friendly cough detection providing full functionality for
long periods of activity even on low-end devices.
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2. Materials

Our database consists of 78 ambulatory recordings from 13 patients of ages 45-72
with different respiratory conditions (Chronic Obstructive Pulmonary Disease –COPD–
, bronchiectasis and asthma), acquired at the Outpatient Chest Clinic of the Royal Infir-
mary of Edinburgh (UK), adding up to 1,560 minutes of audio. The study was carried
out in accordance with the Declaration of Helsinki and was approved by the NHS Loth-
ian Research Ethics Committee (REC number: 15/SS/0234). Subjects provided their
informed consent before the recordings. Patients were required to speak or read aloud,
and their coughs would get recorded as they spontaneously arose. They were also asked
to produce other sound events such as laughing, swallowing, throat clearing, or heavy
breathing. The recording took place in three segments of parts, each one emulating a
different real-life scenario. 2 × 20 minutes files were recorded in each part.

• Part I: Clear recordings in a low-noise environment. The patient is sitting and
is requested to speak or read aloud. From time to time, we asked the patient to
produce other foreground events such as throat clearing, swallowing (by drinking
a glass of water), blowing nose, sneezing, breathless breathing or laugh.

• Part II: The second part emulated a noisy environment with a external source of
contamination, i.e., the noisy background sounds are not produced by the patient.
To do so, we repeated the same experiment as in part one with either a television
set or radio player on. Besides, the door was left open so that noisy sounds from
the corridor of the hospital were recorded as well. These interferences included
trolleys, phones ringing, babble noise, typing noise, etc.

• Part III: Finally, the third part was designed to represent noisy environments
where the own patients become also a source of contamination because of their
movements and other activities. In this case, the patient could move freely around
the room while we asked her to perform some activities like turning on/off the
radio, opening/closing the window, opening/closing a drawer, moving a chair,
washing hands, lying on the bed and standing up immediately, typing, putting on
the coat and taking it off immediately, picking up something from the floor, etc.
As in part two, the door was left open. Equally, while the patient was perform-
ing these activities, we requested her to produce other foreground events as in the
first and second parts.

Signals were recorded at 44.1 kHz in .wav format, with 16 bits per sample. Patients
placed the smartphone into their pocket or handbag for all three parts and were asked
to carry it during the whole protocol. The percentage of cough samples across the entire
dataset was 1.66%.

In order to obtain accurate annotations for the recordings, the technical research
team manually annotated the audio recordings using Praat [25], a scientific software
tool for analysing phonetic sounds and annotate them. The annotated recordings were
subsequently reviewed by two members of the clinical team, a general practitioner, and
a respiratory consultant. When ambiguous sounds required discussion among the re-
searchers, if a conclusion could not be made, the whole event was labelled as unknown
and excluded from further analysis.
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3. Methods

3.1. Image moments
In image processing and computer vision, Image moments are weighted averages

(moments) of the intensities of a given image’s pixels or a function of such moments.
They are useful to characterize objects after segmentation and are usually chosen so that
they have a defined physical interpretation, capturing simple image properties such as
areas, centroid, or total mass. The (i, j)-th order image moment is defined as

Mi j =
∑

x

∑
y

xiy jg(x, y) (1)

Equation (1) shows the function that computes the (i, j)-th order moment for a dis-
crete image, where g(x, y) represents the intensity value of the pixel at the (x, y) coordi-
nate. The zeroth-order moment, M00, represents the total mass (or power) of the image,
whereas M20 and M02 describe the moments of inertia with respect to the coordinate
axes [26]. Different image objects have different moment values, meaning that they can
be used as basic descriptors.

One shortcoming of Cartesian (also called raw or Geometric) moments is that simple
transformations of the image –such as translation, scaling, or rotation– result in different
moment values; pattern recognition engines based on those will not treat transformed
images as the same object. This led to the development of Image moment invariants,
moment functions that are impervious to simple transformations:

• Translation invariance is obtained by setting the centroid of the image as the ori-
gin of coordinates; these are called Central moments and the discrete function is

µi j =
∑

x

∑
y

(x − x̄)i(y − ȳ) jg(x, y) (2)

where x̄ = M10
M00

and ȳ = M01
M00

denote, for each axis, the points at where the image
centroid is located.

• Scale invariants can be constructed by dividing the central moments by a properly
scaled central moment, usually µ00 [26]. The moments computed according to the
following expression are both invariant to translation and to proportional scaling:

ηi j =
µi j

µ
1+ i+ j

2
00

(3)

• Rotation invariance was introduced by Hu, who presented a set of six moments
that were invariant to translation, scale, and rotation [27], and demonstrated that
his image moments could be effectively used in pattern recognition problems,
even when noise was present in the image. He presented also a seventh one that
was invariant to skew, which he used to detect mirror images. These moments
are:
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I1 = η20 + η02

I2 = (η20 − η02)2 + 4η2
11

I3 = (η30 − 3η12)2 + (3η21 − η03)2

I4 = (η30 + η12)2 + (η21 + η03)2

I5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
. . .

+(3η21 − η03)(η21 + η03)
[
3(η30 + η12)2 − (η21 + η03)2

]
I6 = (η20 − η02)

[
(η30 + η12)2 − (η21 + η03)2

]
. . .

+4η11(η30 + η12)(η21 + η03)
I7 = (3η21 − η03)(η30 + η12)

[
(η30 + η12)2 − 3(η21 + η03)2

]
. . .

−(η30 − 3η12)(η21 + η03)
[
3(η30 + η12)2 − (η21 + η03)2

]
The first Hu Moment is equivalent to the moment of Inertia around the image’s cen-

troid, with rotation invariance being achieved by the rest.

3.2. Image moments for audio event recognition
Sun et al. were the first to propose the use of Image Moments as features for speech

emotion recognition [19]. The rationale behind this was that the first Hu Moment In-
variant appropriately characterizes energy distributions, and that the invariance of Hu
Moments would make detection more robust to changes between speakers.

As Hu Moments are defined for 2D spaces, this re-purpose requires converting the
audio signal to a 2D matrix. This is achieved using a time-frequency representation of
the signal, in which one axis denotes time, and the other one frequency.

The audio signal is decomposed in M short segments with some overlap; each one
assigned a row in the time axis. Then, these segments are converted to the frequency
domain by means of the Fourier Transform, and passed through a series of N Mel filters
to quantize the spectrum into N sub-bands, of which the Log Energy is computed to
emulate the response of the human hearing system. This results in an N × M matrix of
energy values at each time-frequency position.

Finally, this matrix is divided into square W × W blocks to calculate their Local Hu
Moments coefficients, which characterize the time-frequency components of the audio
events at local regions of the spectrogram. These coefficients form the feature vector that
will be used in classification.

Our work in [17, 18, 28] adopted this approach to perform robust detection of cough
events in noisy environments. However, moment computation is still a bottleneck in
terms of efficiency, and this motivates our proposal to improve performance so they can
be seamlessly implemented in mobile platforms.

3.3. Overall system overview
The pipeline of the basic system is composed of three modules, as shown in Fig. 1.

The audio signal is downsampled at 8.82 kHz, which has shown appropriate for cough
detection [29]. The samples are then grouped in 50 ms windows (441 samples) with 25ms
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shift. The reason for doing this is that we are going to transform our non-stationary
data locally to the frequency domain. By using overlapped chunks, smooth transitions
that resemble time variations are generated. For each window, the input is smoothed

Figure 1: Overview of the proposed cough detector.

using a 441-length Kaiser window (β = 3.5) before using a 4096-point FFT (Fast Fourier
Transform) to get the time-spectral representation, where the Power Spectral Density is
calculated according to the Wiener-Khinchin-Einstein theorem [30]. Finally, the one-
sided PSD[ f ] is calculated and stored for 1 ≤ f < 2049 using the symmetry properties
of the FFT. This PSD[ f ] is calculated as

PSD[ f ] =


PSD[ f ] f = 1
2 · PSD[ f ] 1 < f ≤ 2048
PSD[ f ] f = 2049

(4)

Next, this output is passed through 75 Mel Filter banks (see Fig. 2) to divide it in 75
energy sub-bands. Values are kept in a circular energy matrix E whose size is 75 × 5,
which stores the logarithm of the spectral energies of the last 5 windows. Each new row
m of matrix E is computed as

Em(n) = log

 fmax∑
f= fmin

PSD[ f ] · Meln[ f ]

 , 1 ≤ n < 75 (5)

where the f values correspond to 2049 discrete frequencies in the range [ fmin, fmax], with
fmin = 0 and fmax = 2 kHz; Meln[ f ] is the n-th filter bank in the Mel scale, which is defined
as

Meln[ f ] =


2( f−Cn−1)

(Cn+1−Cn−1)(Cn−Cn−1) Cn−1 ≤ f < Cn
2(Cn+1− f )

(Cn+1−Cn−1)(Cnn+1−Cn) Cn ≤ f < Cn+1

0 f < Cn−1, f ≥ Cn+1

(6)
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Figure 2: Illustration of the construction of the energy matrix.

where Cn, 0 ≤ n < 75, stands for the central frequencies for each filter in the filter bank,
uniformly spaced in the Mel Scale. The following expressions can be used to convert
from natural frequencies to Mel scale and vice versa:

f [Mel] = 2595 · log10(1 + f [Hz]/700) (7)

f [Hz] = 700
(
10

f [Mel]
2595 − 1

)
(8)

The energy matrix E is next segmented into 5 × 5 data blocks, from which we calculate
the first invariant Hu Moment, resulting in a vector of 15 local Hu Moment invariants.
The Discrete Cosine Transform (DCT-II) is then computed and coefficients 2nd–14th are
kept to constitute the feature vector [18]. This feature vector gets passed as an input to
an optimized k-NN classifier to detect cough events in real time [24].

3.4. Optimizations
3.4.1. Optimization of energy matrix calculation

Computing a new row of the energy matrix E requires passing the PSD array con-
taining 2,049 elements through 75 Mel Filters given by Eq. (5), resulting in a sum of
153,675 multiplications. However, as most values in the Mel filters –calculated using Eq.
(6)– are zero, we can speed-up this step by only iterating through the non-zero elements
of the filters. By doing so, we only have to sum 1,754 multiplications corresponding to
the band of the PSD overlapping with the non-zero range of the Mel-Filters.

3.4.2. Removal of unwanted invariances
Whereas invariance to translation, scaling, and rotation is desirable for 2D image

detection, we deem it unnecessary and even detrimental for audio event detection. In
the case of face recognition, finding a match at one end of a segmented image is as
good as finding it at the other end of the spatial axis. However, in a spectrogram, an
event producing a pattern near the origin of the frequency axis is different from the
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one producing the same pattern at another frequency. So, if we use moments that are
translation-invariant in that axis, they will erroneously assign the same value to differ-
ent objects. To avoid this, Eq. (2) is simplified so as to remove x̄ alignment by setting
the order in the frequency axis to zero, since x denotes the frequency axis in our matrix:

µ′i =
∑

x

∑
y

(y − ȳ)ig(x, y) (9)

Besides, while it is common for images to appear scaled or rotated, the equivalent spec-
tral transformations in a time-frequency matrix do not occur naturally [31] (see Figure
3). As such, these invariances rarely matter, and can be removed to improve efficiency.
The only invariances of interest are translation invariance in the time axis, and invariance to
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Figure 3: Illustration of spectrogram rotation.

contrast, which is reported to provide invariance against noise in gray-level images [32].
Contrast invariance can be achieved simply by normalizing each central moment by

µ00 [26, 32]. Since µ00 = µ
′
0, our proposed invariant becomes

I =
µ′2
µ′0

(10)

3.4.3. Incremental computing of invariants
The 25ms shift between windows means that there is a 50% overlap of data between

one window and the next. We apply incremental computing to calculate the invariants
of new windows with values obtained from the previous ones, halving the amount of
work required to complete the task.

The moment function is transformed by means of the Pascal triangle [33] in order to
separate its variables, so that they can be incrementally computed between windows.
The function to compute the i-th local moment for 1 ≤ i ≤ 15 is given by

Ii =
Mi2 −

M2
i1

Mi0

Mi0
(11)

where Mik =
∑

x
∑

y ykBi(x, y) and Bi(x, y) represents the i-th 5 × 5 block of the energy
matrix E, with y = 1 being the oldest row timewise, and y = 5 the most recent one. Next,
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the new values of the variables are incrementally computed using their previous values
as a base. Updating Mi0 is a matter of subtracting the sum of the oldest row, and adding
the sum of the newest one –see Eq. (12). The remaining variables (given Mi0new , 0,
which would be an empty matrix) are calculated as

Mi0new = Mi0old −
∑

x

Biold (x, 1) +
∑

x

Bi(x, 5) (12)

Mi1new = Mi1old − Mi0old + 5
∑

x

Bi(x, 5) (13)

Mi2new = Mi2old − 2Mi1old + Mi0old + 25
∑

x

Bi(x, 5) (14)

Iinew =
Mi2new −

M2
i1new

Mi0new

Mi0new

(15)

For the sake of completeness, we also present the formulas for incremental computing
of µ20 for the i-th block, which would be analogous to Eq. (11) but replacing Mik by Nik:

Nik =
∑

x

∑
y

xkBi(x, k) (16)

Niknew = Nikold +
∑

x

xkBi(x, 5) −
∑

x

xkBiold (x, 1) (17)

Incremental computing is subject to floating-point rounding errors that accumulate and
propagate between windows; this issue is solved by zeroing all partial factors when
an empty matrix is detected. Checking for zeroness in IEEE 754 floating numbers is
nontrivial, as operations inherently round to the closest representable value, which is
itself a function of the values and the mantissa of both operands [34]. This means that
simply checking if the value is 0.0 will fail in most scenarios, and the algorithm should
rather check if the value falls inside of an interval 0.0 ± ε.

Due to floating mantissa and error propagation issues, the value ε to use depends
on the range of values of the operands, the operations to perform, and the pu (precision
unit) of the machine [35]. In our current setup, we estimated empirically that ε = 1e−11.

3.4.4. Mask uninteresting windows
We implement two adjustable thresholds, one based on dB energy levels, and the

other on the Zero-Crossing rate, which is the number of times the signal changes sign
inside the window:

ZCR =
∑N

i=2 |sign(si) − sign(si−1)|
N

(18)

Windows that fall below any of the thresholds get marked as silent and zeroed, omitting
the PSD calculation.

If the system detects 5 silent windows in a row, it will no longer call the feature ex-
tractor or the classifier until the next non-silent window arrives, as the energy matrix E
is all zeros. This prevents the system from doing useless work. As coughs are particu-
larly energetic and rare events, if thresholds are set properly, the majority of windows
will be skipped without missing any cough events, saving a considerable amount of
battery.
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3.4.5. Exploitation of translation-invariance in time
Hu Moments were meant to be used in images with masks that set pixel values

around objects to zero; without those masks, invariance properties do not manifest. The
process of zeroing all values in the energy matrix E that are not part of a sound event
is called segmentation. Segmentation is performed when the aforementioned filters zero
the windows falling below the chosen thresholds. This way, masks are effectively cre-
ated around the objects.

Proposed local moments are translation-invariant in the time axis; this means that
they return the same values when applied to the same segmented object shifted in time.
In this case, its computing can be avoided again, as they will not change; likewise,
calling the classifier in this case is redundant, as the predicted class will be the same one
as the unshifted object.

An object is shifted in time when the oldest row in the circular energy matrix is all
zeros, and the new window that arrives is silent, as well. For the shortest type of events,
this simple optimization removes 80% of computations.

The only updates required are Mi2 = Mi2−2Mi1+Mi0, and Mi1 = Mi1−Mi0, to indicate
a shift in time. Substituting variables, it is easy to verify that Iinew = Iiold .

3.5. Complexity analysis
Figure 4 shows the flowchart of the proposed optimized algorithm compared to the

baseline implementation. For each stage of both algorithms, results of a complexity
analysis are presented in terms of the different parameters involved to classify a win-
dow as cough or non-cough: window size (Wsize = 441), # of FFT points (NFFT = 4096), #
of Mel filters (k = 75), # of local filter blocks (b = 15), size of each block (bsize = 5), size of
the feature vector vsize = 13, and size of the database NDB. The following improvements
can be highlighted for individual stages:

• Exploiting window overlap halves the number of operations needed to check
power or zero-crossing thresholds. O(Wsize)→ O(Wsize/2)1.

• Similarly, PSD symmetry enables O(NFFT )→ O(NFFT /2).

• The complexity of the Mel Bank step has been reduced from initial O(k · NFFT )
to O(round(NFFT /2)) thanks to the optimization of the energy matrix calculation
described in section 3.4.1.

• The use of simplified moments (see section 3.4.2) and incremental computing (see
3.4.3) leads to an improvement from O(b · b2

size) to O(b · bsize) in the calculation of
local Hu moments.

Table 1 compares the overall complexity that the baseline implementation requires to
classify one window with the one that our optimized algorithm features in three dif-
ferent scenarios: 1) the window power and zero-crossing are above thresholds and
no time-invariance is detected (full processing); 2) thresholds are exceeded, and time-
invariance can be exploited as in section 3.4.5;and 3) window power or zero-crossings

1Even though in big O notation, O(N) and O(c · N) with constant c are equivalent, we are showing constant
improvements explicitly to highlight the achieved speed-ups.
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Figure 4: Flowchart for baseline and optimized algorithm where results from the complexity analysis for each
stage are presented. Specific optimizations have been highlighted in colours.

are below their respective thresholds and non-cough is directly returned after detecting
the empty energy matrix with no further processing (masks are applied as described in
section 3.4.4).

Algorithm and scenario Complexity
Baseline O(Wsize) + O(k · NFFT ) + O(b · b2

size) + O(v2
size) + O(log(NDB))

Optimized (full processing) O(Wsize) + O(NFFT ) + O(b · bsize) + O(v2
size) + O(log(NDB))

Optimized (exploiting time-invariance) O(Wsize) + O(NFFT ) + O(b)
Optimized (empty energy matrix) O(Wsize) + O(NFFT )

Table 1: Overall complexity analysis for the optimized algorithm in three different scenarios compared to
baseline implementation. Optimizations are color-coded as in Figure 4.
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4. Experiments

4.1. Experimental setup
We ran three tests on the data set. The first test evaluates the impact on performance

of the proposed Invariant, given by Eq. (10). As metrics, we use accuracy, which is the
ratio of correctly classified windows, plus sensitivity and specificity, which are respec-
tively the ratio of detected coughs divided by the total number of cough windows in
the testing set, and the ratio of non-cough windows correctly marked as such, divided
by the total number of non-cough windows.

Each part of the protocol has been tested separately. Moments for each window
are first generated in order to preserve time information, and then database is split in
two groups respectively containing 60% of the data for training, and 40% for testing.
The ratios of cough and non-cough windows were kept the same between groups. For
validation, five repeated random splits were performed, using the same random seed
for the two tested moments. For the tests, each dimension of the feature vector is nor-
malized, and the vector is passed to a 3-NN classifier to predict the class. Afterwards,
results are averaged.

For the second test, we pass the system a representative sound file of 11 seconds (440
windows), and compare the efficiency of the different optimizations in characterizing
the signals. Efficiency is measured in terms of speed-up, which is the relative reduc-
tion in processing time, when compared to the base implementation. Optimizations
were gradually implemented in the order they are described in this paper, so each one
includes all the others.

For optimization IV (masking uninteresting windows), we set a conservative 50 dB
level threshold for every window, which silences ambient sound but not human voice
[36]. ZCR value is set to 90/441, which in testing silenced most speech but not the cough
events, as they are naturally turbulent regardless of their volume [37].

As optimizations IV and V (exploiting translation invariance in time) not only im-
prove the feature vector calculation, but also allow skipping the classification step in
some cases, we deemed relevant to also include performance figures for the system as a
whole.

Finally, for the third test, the app was run on the phone for 24 hours, not running
any other app or using it for other purposes, and then measured how much battery was
depleted at the end.

The smartphone used for the tests is a Sony Xperia Z2, running Android 5.1.1. Com-
puted times obtained in this study correspond to the average of five independent ex-
periments.

4.2. Results
Table 2 presents average classification results in terms of sensitivity (SEN), specificity

(SPE), accuracy (ACC), and positive predictive value (PPV), comparing the proposed
implementation with the original moments as implemented in [17]. Metrics have been
computed as follows:

SEN = T P/(T P + FN)
SPE = (T N)/(T N + FP)
ACC = CP · S EN + NCP · S PE
PPV = (T P)/(T P + FP)

(19)
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where TP (True Positives) refers to the number of cough windows predicted as such by
the system, TN (True Negatives) is the number of non-cough windows that are correctly
identified, and FP (False Positives) and FN (False Negatives) are the number of errors
the system makes when a window is identified as a cough and non-cough respectively.
CP is the percentage of cough windows in the recorded part of the protocol, and NCP
is the percentage of non-cough windows. In our protocol, CP figures were 1.89% (1st
part), 1.47% (2nd part) and 1.64% (3rd part).

Original moments [17] Proposed moments Proposed moments (postproc.)
SEN SPE ACC PPV SEN SPE ACC PPV SEN SPE ACC PPV

Part (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
1st. 88.73 98.70 98.52 56.77 90.76 98.77 98.62 58.72 88.91 99.87 99.65 92.09
2nd. 86.73 98.83 98.65 52.54 89.38 98.92 98.78 55.22 84.90 99.89 99.67 92.09
3rd. 85.86 98.56 98.36 49.92 88.94 98.64 98.49 52.38 86.40 99.87 99.81 92.53

Table 2: Average classification results on patients signals. Performance figures are given in terms of Sensitivity
(SEN), Specificity (SPE), Accuracy (ACC), and Positive Predictive Value (PPV).

Results show that the proposed moments, are not only simpler and faster to com-
pute, but also improve all performance metrics in all noise environments, confirming
our hypothesis that translation invariance in the frequency axis is not a desirable prop-
erty for sound event recognition. Even though our system overcomes the one in [17] for
all the measured figures, and despite the high SEN and SPE values, the PPV values for
both compared systems are significantly low. The reason for this is that low occurence
of cough events hinders the real number of FP, which turns into a high SPE value due
to the high number of recorded samples. When measuring the PPV value, it turns out
that there is still a high number of false positives, which is comparable to the correctly
detected coughs, thus leading to values close to 50%. A high number of false positives
constitutes a major problem in a system such as this. To overcome this issue, our system
implementes a simple postprocessing step that ignores isolated cough-windows signif-
icantly reducing the FP values, and thus improving both SPE and PPV only at a little
expense in SEN. Results for the final system including this postprocessing step are also
presented in Table 2 and show the improvement in PPV, achieving values over 92%.

Table 3 shows computation times and speed-ups compared to the basic system
achieved with the proposed moments. Optimizing the calculation of energy matri-
ces by ignoring zero values from the Mel filters output achieves a 12.17× speed-up,
which improves to 12.25× by removing frequency invariance. Incorporating incremen-
tal computing achieves 12.76× speed-up. This is further improved by the two subse-
quent optimizations namely, masking uninteresting windows using power and zero-
crossing thresholds (5477.78× speed-up) and exploiting time-invariance (final speed-up:
5970.15×).

Table 4 is the counterpart of Table 3 considering the overall computation time, which
includes not only feature extraction, but also classification. Similar improvements can
be observed by adding the different optimization elements. However, in this case,
the achieved improvement by exploiting time invariance, leads to a more significant
gain (from 3084.35× to 5512.81×) compared to only feature extraction (from 5477.78×
5970.15×). The average time required to classify a window is approximately 3.1µs.
Given that a new window is generated every 25ms, these results guarantee real-time
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Time (ms) Avg/window (ms) Speed-up Implementation
7551.86 17.1633 1× Base
620.65 1.4106 12.17× +Opt. Energy Matrix
616.33 1.4007 12.25× +Simplified Moments
591.73 1.3448 12.76× +Incremental Computing

1.38 0.0031 5477.78× +Filtering silent
1.26 0.0028 5970.15× +Exploit Invariance

Table 3: Computation time (ms per processed window) and speed-up (compared to baseline implementation)
for the feature extraction part of the system.

performance even on low-end smartphones.

Time (ms) Avg/window (ms) Speed-up Implementation
7627.37 17.33493 1× Base
690.54 1.5694 11.05× +Opt. Energy Matrix
688.44 1.5646 11.08× +Simplified Moments
660.89 1.5020 11.54× +Incremental Computing

2.47 0.0056 3084.35× +Filtering silent
1.38 0.0031 5512.81× +Exploit Invariance

Table 4: Computation time (ms per processed window) and speed-up (compared to baseline implementation)
for the whole cough detection system.

Table 5 shows a comparison in terms of battery consumption of our proposed im-
plementation vs. the baseline implementation of the system. The optimizations in pro-
cessing time translate to 4× higher battery life.

System Implementation Battery Consumption Battery Efficiency
Baseline 96% 1×

Optimized 24% 4×

Table 5: Battery performance after 24 hours for proposed implementation and baseline.

Finally, a comparison with the energy consumption reported for other cough detec-
tors in the literature (SymDetector [23] and CoughSense [3]) is presented in Table 6. Our
consumption values are presented for two different functional modes. In the first one,
the user GUI is only updated when a cough is detected. As for the second, the display
is updated for every analyzed window. Consumption figures are reported as energy
spent by each system on detecting a cough event, which corresponds to the worst case
complexity scenario for our system. In addition, power consumed in average func-
tional mode, which includes both cough and non-cough events, is presented for all the
systems. A significant improvement from our proposal can be observed in both cases.
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System Average Energy
Consumption per cough

event (mJ)

Power Consumption in
functional mode (mW)

Our system (display up-
date only at cough detec-
tion)

250.4 95.2 (59.0)

Our system (display up-
date at 40 fps) 460.4 108.8 (67.4)

SymDetector [23] 1250.0 399.0
CoughSense [3] 1930.0 536.1

Table 6: Average energy consumption per cough event and estimated power consumption of the proposed
implementation compared to SymDetector [23] and CoughSense [3]. The power consumed by our app as
reported by the Android profiler is shown in brackets (only 62% of the overall consumption was due to the
cough detector).

5. Discussion

5.1. Complexity analysis and efficiency improvement
The complexity analysis summarized in Figure 4 and Table 1 shows that even in

the worst case scenario, the proposed optimizations avoid complexity dependence with
k, the number of filters in the Mel bank. In addition, moment calculation is simpli-
fied in terms of complexity from O(b · b2

size) to O(b · bsize). In more favourable scenarios,
where either window power or zero-crossings are below thresholds or time invariance
is detected, moment calculation and classification can be skipped, and complexity is
significantly reduced. This is especially relevant for the k-NN classification step, since
the term O(log(NDB)) can have a dramatic impact for large databases where the nearest
neighbour is sought. This has a significant effect in the achieved speed-ups. By observ-
ing the last two rows in tables 3 and 4, the average required computation time to classify
a window decreases two orders of magnitude.

5.2. Comparative analysis on energy consumption
The comparative analysis with SymDetector [23] and CoughSense [3] (see Table 6)

shows that our proposal consumes ≈ 5 times less energy than the former in the worst
case scenario (full window processing for cough detection) whereas the latter is over-
come by a factor of ≈ 8. In terms of power consumption in normal functioning mode,
where all optimizations are eventually applied, SymDetector consumes ≈ 6.77 more
power than our optimal implementation. As for CoughSense, our system consumes ≈ 9
times less power during normal activity.

The SymDetector app also employed power thresholding to save energy. As reported
in [23], the system managed to work at full functionality for 20 hours on a Samsung
Galaxy S3 with a 3.8V, 2100mAh battery. Our implementation on a Sony Xperia Z2 with
a 3.4V 3200mAh battery consumed only 24% of the battery life in 24 hours. This was
reduced to 21% if the display was updated only when a cough was detected instead
of every analyzed window at 40 frames per second. In both cases, the app was only
responsible for 62% of that consumption. Our method guarantees that a phone running
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the app can sustain 24h of continuous operation as requested by the medical commu-
nity, and have more than enough battery left for the normal operation of the phone.
Even for the baseline implementation (see Table 5), the system would be able to run for
24 hours. The optimized proposal would allow 4 times this duration. With the reported
figures, SymDetector would not guarantee 24 hours of full functionality (6.77× higher
consumption than our optimized version, (6.77/4)× higher than the baseline version
which allows 24 hours on the Xperia Z2), nor would do CoughSense (9×).

5.3. Detection performance
Considering detection performance, the achieved SEN, SPE, ACC, and PPV values

(see Table 2) overcome those achieved with the baseline implementation which was
shown in [17] to outperform the most commonly used feature sets for cough detection
in noisy environments. Especially, for PPV, values, our final proposal including pre-
processing achieved values over 92.03% only at a little expense of SEN, which fell 1.8%
below the one for the baseline only in the 2nd part of the protocol, while outperforming
it for the rest of measures.

Other systems in the literature tested in noisy environments yielded poorer results.
For instance, the accuracy of the method proposed in [15] was above 85% for high SNR
values (>5dB). However, it significantly dropped for lower values below (78% for 0
dB, 67% for -5 dB, 57.5% for -10 dB). Sensitivity-wise, our proposal also outperforms
SymDetector [23] for cough detection in similar experimental conditions (85.9%), which
overcame both the Leicester Cough Monitor [8] and CoughSense [3] over the same
database. The same is true for PPV values, where SymDetector only achieved 87.3%.
The specificity and sensitivity values reported for CoughSense in [3] were higher (≈ 90%
and ≈ 99%, respectively). However, results for both SymDetector and CoughSense are
provided on classification of audio events after a pre-filtering process in which cough
events can be missed. Actually, the pre-filtering stage in SymDetector misses 4% of
cough events [23], so the final reported figures should be adjusted to incorporate this.
Other systems in the literature reporting higher performance figures such as [14] are
also intended for pre-detected event classification. Our results are provided for online
detection from the raw signal instead.

5.4. Limitations of the study and future work
The evaluation of the present study has been carried out on a limited population

where 13 participants with three different respiratory conditions were recorded for ap-
proximately 1 day overall. The protocol included three parts where low, moderate and
high (closer to reality) noise levels were emulated. The size of the subject group and
the environment may not be deemed sufficiently representative of real environments
and patient population. However, we demonstrated in our previous work [17] that the
employed detection system succeeds to perform on a wide variety of real noise environ-
ments with low SNR levels. This paper focuses on how this system can be optimized
to achieve detection with low battery consumption to enable continuous real-time time
monitoring. Further validation of the detection system with longer recordings on a
larger population is part of the future work and falls beyond the scope of this paper.

An additional limitation could be found on the dependence of the overall efficiency
with the size of the database NDB employed in the k-NN classifier. This becomes patent
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from the dramatic improvements achieved when the classifier can be skipped. Op-
timization of the classifier has been addressed in our previous work [24] in order to
enable real-time processing even in the worst case scenario. With the optimizations
proposed in this paper, we achieve 12× speed-up, which allow real-time computation
with significant battery savings even in those cases.

Our future work moves in two parallel directions. First, as stated above, we are
currently working towards further validation of the detection system by running dif-
ferent studies involving more patients and longer acquisition protocols during real life
activities. Secondly, an additional future line will explore on-line improvements of the
system by enabling real-time updates of the database to achieve adaptive learning from
detected samples.

6. Conclusions

We have proposed a robust and efficient cough detection system able to run on a
smartphone with high sensitivity and specificity and low battery consumption. The
system relies on an efficient implementation of local Hu moments that exploits signal
properties to improve accuracy and energy efficiency. It is worth mentioning that some
properties of the computed moments such as invariance to rotation, scaling and trans-
lation, have proven not to be advantageous for the problem at hand. The proposed
implementation takes advantage of this fact and removes these invariances to more ac-
curate detection with less calculations.

The proposed optimizations result in a system that is over five thousand times faster
and consumes four times less battery than the baseline. Compared to other systems in
the literature, the implemented system is 5 times more efficient in a worst case scenario
and almost 7 times in an average one. The improved system is able to run in real-time
during periods of four days of continuous use whereas other systems struggle to work
for 24 hours without completely draining the battery.

Acknowledgments

Funding: This work was supported by the Digital Health & Care Institute Scot-
land as part of the Factory Research Project SmartCough/MacMasters. The authors
would like to acknowledge support from University of the West of Scotland for par-
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