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Abstract: 

This study examined differences in physical activity (PA) estimates provided from 

raw and counts processing methods. One hundred and sixty-five children (87 girls) 

wore a hip-mounted ActiGraph GT3X+ accelerometer for 7 days. Data were 

available for 129 participants. Time in moderate PA (MPA), vigorous PA (VPA) and 

moderate-vigorous PA (MVPA) were calculated using R-package GGIR and 

ActiLife. Participants meeting the wear time criteria for both processing methods 

were included in the analysis. Time spent in MPA (-21.4 min.d-1, 95%CI -21 to -20) 

and VPA (-36 min.d-1, 95%CI -40 to -33) from count data were higher (P<0.001) 

than raw data. Time spent in MVPA between the two processing methods revealed 

significant differences (All P<0.001). Bland-Altman plots suggest that the mean bias 

for time spent in MPA, VPA and MVPA were large when comparing raw and count 

methods. Equivalence tests showed that estimates from raw and count processing 

methods across all activity intensities lacked equivalence. Lack of equivalence and 

poor agreement between raw and count processing methods suggest the two 

approaches to estimate PA are not comparable. Further work to facilitate the 

comparison of findings between studies that process and report raw and count 

physical activity data may be necessary. 

 

Keywords: ActiGraph, GGIR, GT3X+, Physical Activity, Youth, Accelerometers. 
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Introduction 

 

The most widely used objective measure of youth physical activity (PA) patterns is 

through the use of accelerometers (Cain, Sallis, Conway, Van Dyck, & Calhoon, 

2013). Historically, accelerometers have been worn at the hip to capture 

accelerations of whole body movements. This raw acceleration data is subsequently 

converted into proprietary counts which are then used to estimate time spent in 

activity intensities based on published thresholds or cut-points (Cain et al., 2013). An 

important technological advancement in accelerometery has been the ability to 

access the triaxial raw acceleration data prior to being processed, filtered and scaled 

from devices such as the ActiGraph GT3X+ (Pensacola, FL, USA), GENEActiv 

(ActivInsights Ltd., Cambridge, UK) and Axivity (Axivity Ltd, Newcastle, UK).  

This move towards raw data processing affords greater transparency and consistency 

to post-data processing methodologies and greater measurement opportunities but 

may come at a cost (Rowlands et al., 2016). 

 

There is a wealth of accelerometer data that has been collected and analysed over the 

years using the counts based approach (Cooper et al., 2015; Katzmarzyk et al., 

2015). As of 2018, more than 37,000 young people aged 3 to 18 years across studies 

from Europe, the US, Brazil and Australia have provided PA data from hip-worn 

ActiGraphs in the International Children's Accelerometry Database (ICAD) (Cooper 

et al., 2015). More recently the International Study of Childhood Obesity, Lifestyle 

and the Environment (ISCOLE) collected PA data on 6000 children aged 9-11 years 

across five diverse geographic regions of the globe using hip-worn ActiGraphs 

(Katzmarzyk et al., 2015). As the field of accelerometery moves towards the use of 

raw data processing techniques, studies that examine the comparability of PA 

outcomes derived from raw and count processing methods are needed.  

 

The ActiGraph accelerometers are commonly used by researchers owing to the large 

body of evidence supporting its use (Cain et al., 2013). To the best of our knowledge 

however, only one study has examined the comparability of activity outputs from 

hip-mounted ActiGraph GT3X+ raw and count processing methods in children 

(Fairclough et al., 2016). Here the authors examined differences in PA estimates 

derived from Euclidean Norm Minus One (ENMO) and count data using the cut-
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points proposed by Evenson et al. (Evenson, Catellier, Gill, Ondrak, & McMurray, 

2008). Findings revealed that estimates of time spent in moderate PA (MPA) from 

ENMO was greater than when processing the count data. Conversely, time spent in 

vigorous PA (VPA) was seen to be lower when using ENMO compared to count 

data. There has been some consensus in recent years for the use of the Evenson et al. 

cut-points based on the convincing evidence of their validity in children (Trost, 

Loprinzi, Moore, & Pfeiffer, 2011). Yet, different generations of ActiGraph devices 

are known to provide contrasting estimates of PA in a free-living environment 

(Grydeland, Hansen, Ried-Larsen, Kolle, & Anderssen, 2014; Ried-Larsen et al., 

2012). This suggests that cut-points developed using an older generation of the 

ActiGraph accelerometer may not be used for data collected with more recent 

devices such as the GT3X+. Since the Evenson cut-points were developed using the 

ActiGraph 7164 uniaxial accelerometer and the Trost validation study was 

undertaken using the ActiGraph GM1 accelerometer (Evenson et al., 2008; Trost et 

al., 2011), it is unclear whether the magnitude of differences reported by Fairclough 

et al. would differ if cut-points developed for use with the GT3X+ accelerometer 

were used.  

 

Advances in accelerometer technology saw the release of the GT3X+ model in 2010 

which has an increased capacity for data storage and the ability to measure 

accelerations across three axes, unlike the previous GM1 device. Since the GT3X+ 

can measure accelerations in three individual plains of motion (i.e. vertical, antero-

posterior and medio-lateral), which can be examined either individually or together 

(vector magnitude (VM)), in theory, they should provide a more accurate assessment 

of PA when compared to a single axis that is capable of measuring acceleration only 

in the vertical direction. Indeed, some studies have reported improved energy 

expenditure estimates based on VM counts when compared to vertical counts alone 

(Eston, Rowlands, & Ingledew, 1998; Rowlands, Thomas, Eston, & Topping, 2004), 

although it should be acknowledged there is evidence which refutes these findings 

(Kavouras, Sarras, Tsekouras, & Sidossis, 2008).  

 

In order to capitalise on the these new features within triaxial accelerometers, 

researchers have developed VM cut-points for use with the GT3X+ accelerometer 

(Hänggi, Phillips, & Rowlands, 2013; Romanzini, Petroski, Ohara, Dourado, & 
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Reichert, 2014). In these laboratory studies, oxygen uptake on a breath-by-breath 

basis is measured using a portable metabolic system as participants perform a series 

of predefined activities that provide a range of energy expenditure responses (Trost 

et al., 2011). This data is then transformed into age-specific metabolic equivalents 

which is matched with the acceleration data to define an acceleration count range 

which constitutes sedentary, light, moderate and vigorous intensity activities.  

 

With the availability of several cut-points to process accelerometer counts data, the 

choice of which cut-points to use can have a significant impact upon activity 

estimates and study comparability (Logan, Duncan, Harris, Hinckson, & Schofield, 

2016; Pate et al., 2006). Yet, no study has assessed the comparability of outputs from 

raw and counts based processing methods using cut-points specifically developed for 

the triaxial ActiGraph GT3X+ (Hänggi et al., 2013; Romanzini et al., 2014; Santos-

Lozano et al., 2013). Given the increased availability of triaxial accelerometers and 

available VM cut-points in children and adolescents, it is important to establish the 

comparability of VM counts output to that of other processing methods. Thereafter, 

findings could be used to determine whether it is necessary to develop a data 

reduction procedure, as proposed to harmonize estimates of MVPA derived from 

wrist- and hip-worn accelerometers (Brazendale et al., 2018), to enhance the 

comparability of estimates between different processing methods. Therefore, the 

purpose of this study is to compare activity estimates derived from raw and counts 

based processing methods from a hip-mounted GT3X+ accelerometer.  

  

Methods 

Participants included 165 children (87 girls) aged 10.4 ± 0.9 years from three schools 

in South Lanarkshire, Scotland. Three schools were provided with 70 information 

and consent forms (n=210) to be distributed to children from years 5-7. Written 

consent and assent was provided before children participated in the study. Ethical 

approval was provided through the University of the West of Scotland’s ethical 

committee with data collection taking place between September and December 2016.  
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Anthropometrics 

Stature was measured barefoot to the nearest 0.1cm using a portable stadiometer 

(Seca Stadiometer, Seca Ltd, Birmingham, UK). Mass was measured barefoot with 

light clothing to the nearest 0.1kg on electronic scales (Seca Digital Scales, Seca Ltd, 

Birmingham, UK). From measured stature and mass, BMI-z scores were calculated 

for each participant relative to the UK 1990 BMI population reference data using 

software provided by the Child Growth Foundation (Cole, Freeman, & Preece, 1995; 

Pan & Cole, 2010).  

Assessment of activity 

Free-living activity was captured using the ActiGraph GT3X+ positioned above the 

right hip on a belt worn around the waist. Prior to distribution, the accelerometer was 

synchronised with Greenwich Mean time, initialized to capture data at 80Hz and 

programmed to commence data collection at 6:00am on the day following 

participants receiving the devices. As the aim of this study was not to examine light 

intensity physical activity or sedentary behaviour, the low frequency extension was 

not enabled. Participants were instructed to wear the accelerometer at all times (i.e. 

24 hours) for seven days, apart from water-based activities such as swimming or 

bathing. The requirement to wear the hip-worn accelerometer for 24 hours is in line 

with previous studies who reported an average wear time of 22.6 h.d-1 from hip-worn 

ActiGraph GT3X+ accelerometers and a waking wear time of 14.7 h.d-1 (Tudor-

Locke et al., 2015). Since poor compliance and subsequent selection bias and 

misclassification is often cited as a limitation of hip-worn accelerometer studies 

(Troiano, McClain, Brychta, & Chen, 2014), we used the 24 hour wear time protocol 

to encourage compliance. To ensure the correct placement of the device, participants 

were fitted with the accelerometer prior to leaving the testing session. 

Data management 

Upon the return of the device, data were uploaded using ActiLife v6.13.3 

(Actigraph, Pensacola, FL, USA) and saved in raw format as GT3X+ files. The 

GT3X+ files were used to generate 1 s epoch csv files containing x, y and z vectors 

to facilitate raw data processing and to AGD format to facilitate the analysis of count 
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data. The 1 s epoch csv files were then processed in R (http://cran.r-project.org) 

using the GGIR package (version 1.5-10) which allows raw accelerations 

(gravitational acceleration) to be processed and analysed (Van Hees et al., 2014).  

The GGIR package autocalibrates the raw triaxial accelerometer signals which 

subsequently converts the raw triaxial accelerometer data into one omnidirectional 

measure of acceleration, termed the signal vector magnitude (SVM). Further details 

of the autocalibration method has been described elsewhere (Van Hees et al., 2014). 

SVM was calculated from raw accelerations from the three axes minus 1 g, which 

represents the value of gravity (i.e., SVM = √(𝑥2 + 𝑦2 + 𝑧2)-1), with negative 

values rounded to zero. This metric has been referred to as the ENMO previously 

(Fairclough et al., 2016; Van Hees et al., 2014). Raw data were further reduced by 

calculating the average SVM values per 1 s epoch expressed in mg over each of the 

monitored days. Thereafter, raw data wear times were estimated on the basis of the 

standard deviation and value range of each axis, calculated for 60 min windows with 

15-min moving increments as described in detail elsewhere (van Hees et al., 2013). 

The default setting for nonwear was used whereby invalid data were imputed by the 

average at similar time points on different days of the week. Raw files were removed 

from the analysis if post calibration error (deviation from 1 g during no movement) 

was greater than 0.02 g, as previously reported (Rowlands, Cliff, et al., 2016; 

Rowlands, Yates, Davies, Khunti, & Edwardson, 2016). For the GT3X+ count data, 

nonwear time periods were captured using the algorithms of Choi et al. and removed 

from the analysis to remain consistent with previous studies (Choi, Liu, Matthews, & 

Buchowski, 2011; Fairclough et al., 2016). Finally, sleep time (11:00pm to 6:00am) 

was removed to facilitate comparisons between the raw and count processing 

methods.   

Data processing 

To the best of our knowledge only one study has provided cut-points for ENMO to 

classify MVPA from hip-worn accelerometers (Hildebrand, Van Hees, Hansen, & 

Ekelund, 2014). Therefore, raw acceleration data were analysed using the device 

specific prediction equations provided by Hildebrand et al. to generate intensity 

specific milli-g cut-points based on the ENMO metric to classify minutes of MPA, 

VPA and MVPA (Hildebrand et al., 2014). These cut-points were: 142.6 - 464.5 mg 

http://cran.r-project.org)/


9 
 

(MPA) and ≥464.6 mg (VPA). For the analysis of VM count based activity, we are 

aware of only three studies which have provided cut-points to classify MVPA from 

hip-worn accelerometers in youths (Hänggi et al., 2013; Romanzini et al., 2014; 

Santos-Lozano et al., 2013). Therefore, minutes of MPA, VPA and MVPA were 

calculated according to the cut-points provided by Romanzini et al. (Romanzini et 

al., 2014). These cut-points were: 757 - 1111 counts per 15 s (MPA) and ≥1112 

counts per 15 s (VPA). Only minutes of MVPA were calculated according to the cut-

points (≥56 counts per s) provided by Hänggi et al. since the authors did not provide 

VPA cut-points (Hänggi et al., 2013). Since the use of 60-second epochs may 

obscure short bursts of VPA and underestimate the activity profiles of children 

(Sanders, Cliff, & Lonsdale, 2014), we decided not to include the cut-points 

proposed by Santos-Lozano et al. (Santos-Lozano et al., 2013) within this study. 

Finally, as the cut-points provided by Hänggi et al. and Romanzini et al were 

developed using short epochs (1s and 15-secs), the GT3X+ files were downloaded as 

1s and 15s epoch AGD files for the analysis of count data which was cleaned and 

scored using ActiLife v6.13.3.  

To ensure as fair a comparison as possible between outputs, only participants that 

met the wear-time criteria for each method were included in the subsequent analysis. 

The wear-time criteria for participants was ≥ 10hours/day on at least one or more 

days as this is more likely to reflect the true PA and sedentary behaviour patterns of 

participants over the course of a day (Migueles et al., 2017). Any days with fewer 

than 10hours/day of wear time were removed from the analysis. In keeping with 

previous studies, participants with at least one day or more wear time were included 

as the purpose of this study was not to establish estimates of habitual PA, but rather 

compare outputs between raw and count based approaches (Rowlands et al., 2014). 

Nonetheless, we have reported the number of participants who met the minimal 

requirements of 60 minutes of MVPA per day as a guide and to assist with study 

comparisons.  

Analysis 

Descriptive characteristics were calculated for all output variables. To assess the 

comparability between the minutes accumulated at each intensity, several 

correlations and repeated measures ANOVA’s were undertaken. Correlations were 
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undertaken for mean minutes accumulated at each intensity whereas ANOVA’s were 

undertaken for daily minutes accumulated at each activity intensity. Initial analysis 

suggested that sex and age had no effect upon the agreement between minutes 

accumulated at each intensity, so both variables were removed from the analysis. 

Post-hoc analyses were undertaken using pairwise comparisons. Bland-Altman 

procedures (Altman & Bland, 1983) were used to assess agreement and systematic 

bias at the individual level between time estimates in each activity derived from raw 

and counts based approaches. Finally, the equivalence of time estimates between 

devices for time spent in each activity were examined at the group level using the 

95% paired equivalence test. To reject the null-hypothesis, the 90% confidence 

interval (CI) for the mean derived from either raw or counts based approaches had to 

fall within an equivalence region defined as ±10% of the chosen reference method. 

In the absence of an empirically derived range for the equivalence zone, our decision 

to select ±10% of the mean as the proposed equivalence zone follows that of others 

(Boddy et al., 2018; Rowlands et al., 2017). The use of equivalence testing is 

increasing within PA related research when researchers are interested in knowing 

whether outcomes are statistically equivalent at the group level, rather than whether 

they are statistically different (Boddy et al., 2018; Dixon et al., 2018; Rowlands et 

al., 2017). To address the aims of this study, it was useful to know whether outcomes 

were statistically equivalent and processing methods provided similar estimates. 

Statistical significance was set at P < 0.05. Data are presented as mean ± SD unless 

otherwise stated. 

Results 

Although 165 children agreed to participate, there were 4 device malfunctions which 

resulted in no data being captured for these children. Thirty-five children (15 girls), 

who were significantly older (P<0.05) than included participants, failed to meet the 

wear time criteria in both ActiLife v6.13.3 and in GGIR and were subsequently 

removed from the analysis. No participant met the wear time criteria of one method 

and not the other. No data files were excluded based on calibration error when 

analysing the raw data, which resulted in a final sample of 129 children (71 girls; age 

9.1 ± 0.9 years; stature 145.1 ± 8.6 cm; mass 40.1 ± 11.3 kg; BMI-z score 1.1 ± 1.0). 

Time spent in each activity intensity across processing methods are displayed in 
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Table 1. Analysis of time spent in each activity from raw and count data using the 

Romanzini et al. and Hildebrand et al. cut-points revealed that MPA (r=0.63), VPA 

(r=0.66) and MVPA (r=0.75) were moderately to strongly correlated (P<0.001). 

Analysis of time spent in MVPA between the raw and count data using the Hänggi et 

al. cut-points were strongly correlated (r=0.77, P<0.001). Finally, comparisons 

between the count data revealed that time spent in MVPA were strongly correlated 

(r=0.91, P<0.001).  

Figure 1 displays the comparisons between time spent in activity intensities from the 

different processing methods. Time spent in MPA (-21.4 min.d-1, 95%CI -21 to -20 

min.d-1) and VPA (-36 min.d-1, 95%CI -40 to -33 min.d-1) was significantly less 

(both P<0.001) using the Hildebrand et al. cut-points compared to the Romanzini et 

al. cut-points. Comparisons of time spent in MVPA between the raw and count 

processing methods revealed significant differences (All P<0.001). Less time in 

MVPA (-57.3 min.d-1, 95%CI -62 to -53 min.d-1) was observed using the Hildebrand 

et al. cut-points compared to the Romanzini et al. cut-points. Similarly, less time in 

MVPA (-65.6 min.d-1, 95%CI -70 to -62 min.d-1) was observed using the Hildebrand 

et al. cut-points  compared to the Hänggi et al. cut-points. Less time in MVPA was 

also observed when using the Romanzini et al. cut-points compared to the Hänggi et 

al. cut-points (-8.3 min.d-1, 95%CI -12 to -5 min.d-1). Finally, the recommended 60 

min.d-1 of MVPA was achieved by 86%, 95% and 8% of participants using the 

Romanzini et al., Hänggi et al. and Hildebrand et al. the cut-points. 

 

Bland-Altman plots displayed in Figure 2A-E illustrate the degree of difference in 

time spent in MPA, VPA and MVPA between the processing methods. The mean 

bias for time spent in MPA and VPA were large as was the time spent in MVPA 

when comparing the raw and count processing methods (Figure 2 C-D). At the 

individual level, limits of agreement (LoA) were wide for time spent in MPA and 

VPA (Figure 2 A-B). The mean bias for time spent in MVPA when compared using 

count-based approaches was small (Figure 2E). At the individual level, the LoA 

were large which appeared to decrease with participants increasing level of PA 

engagement. Results of the equivalence testing can be found in Figure 3. Time spent 

in each activity intensity from the processing methods with 90% CIs can be found in 

Table 1. None of the 90% CIs for the Hildebrand et al. estimates of time spent in 
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MPA, VPA or MVPA fell within the zone of equivalence for the Romanzini et al. 

estimates. Nor did the 90%CIs of the Hänggi et al. estimates for time spent in MVPA 

when compared to the zone of equivalence for the Hildebrand et al. estimates. These 

finding suggest there were no statistically significant equivalence between the cut-

points compared. Re-running the equivalence analyses with the alternate cut-points 

selected as the reference method did not change these interpretations. As the 90%CIs 

for the Hänggi et al. estimates for time spent in MVPA extend beyond the 

equivalence zone for the Romanzini et al. estimates, the different cut-points don't 

provide equivalent estimates on average. 

 

Discussion 

 

This study assessed the comparability of activity estimates from hip-mounted 

ActiGraph GT3X+ accelerometers using raw and count processing methods. Our 

findings suggest there are large differences in time spent in MPA, VPA and MVPA 

when comparing raw and count processing methods. Furthermore, our findings show 

that activity estimates lacked equivalence and demonstrated poor agreement when 

compared across processing methods. The lack of agreement in these methods for 

estimating PA in youth suggest that conclusions concerning youth activity patterns 

are influenced by the type of data being processed. 

 

With the recent advancements made in accelerometer technology and the emergence 

of triaxial accelerometers, there have been calls for the use of triaxial cut-points to be 

used in future studies when providing estimates of youth activity (Kim et al., 2017; 

Logan et al., 2016). Research has shown that measuring accelerations over three 

axes, rather than one, can be more sensitive to movements and lead to higher 

estimates of activity (Logan et al., 2016; Santos-Lozano et al., 2013). For instance, 

Logan et al., reported 51.5%, 49.4%, 48.3%, 47.7% and 47.2% differences for total 

mean counts per day between VM and the vertical axis output for 1, 5, 15, 30 and 60 

s epoch lengths, respectively (Logan et al., 2016). The authors also noted significant 

differences in time spent in MVPA between vertical axis  and VM (Hänggi et al., 

2013; Romanzini et al., 2014) cut-points which suggests that certain movements and 

accelerations could be missed by one axis but captured by the VM. 
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Moreover, previous studies comparing hip-worn GT3X VM estimates with that of 

criterion measures suggest they perform better than methods which rely upon the 

vertical axis (Crouter, Horton, & Bassett, 2013; Kim et al., 2016). Recent findings 

also suggest that associations between MVPA, estimated from ENMO, successful 

ageing (Menai et al., 2017) and adiposity markers (Sabia et al., 2015) is more 

pronounced when compared to questionnaires. Although these studies employed a 

wrist-worn accelerometer in their design, their findings do provide confidence to 

researchers of the performance of ENMO to identify well-established relationships. 

It is disappointing therefore to find such differences in activity estimates between the 

two VM methods (counts approach) and that of the GGIR method (raw approach) 

which limit the pooling of data from studies using these different accelerometer 

processing methods.  

 

To the best of our knowledge, only one study has compared activity estimates from 

hip-mounted ActiGraph GT3X+ raw and counts data (Fairclough et al., 2016). Here 

the authors noted that time spent in MPA calculated from ENMO was 42.0 ± 1.6 

min.d-1 compared to 35.1 ± 1.0 min.d-1 from counts data, a significant difference of 

16.5%. The authors also reported that time spent in VPA significantly differed by 

79.5% between count (37.1 ± 1.9 min.d-1) and raw (7.6 ± 0.5 min.d-1) processing 

methods. In a similar study by Rowlands and colleagues (Rowlands et al., 2014), the 

authors compared ActiGraph GT3X+ count data with that of the GENEActiv raw 

data when both devices were worn at the hip. Findings were largely similar to that of 

Fairclough et al. where time spent in MPA from raw data was greater than count data 

(56.7 ± 18.0 vs. 32.3 ± 9.2 min.d-1), but lower for VPA (11.1 ± 7.0 vs. 30.0 ± 12.2 

min.d-1). Contrary to these findings, we found that time spent in MPA from raw data 

were lower than count data in this study (27.8 ± 11.1 vs. 49.2 ± 12.8 min.d-1), as was 

time spent in VPA (6.6 ± 4.0 vs. 42.8 ± 21.8 min.d-1). These combined differences 

reflect the overall MVPA differences when using the Romanzini et al. cut-points, 

with raw MVPA estimates being lower than when using the count data (35.0 ± 14.4 

vs. 91.8 ± 31.2 min.d-1). Similar differences were also evident when comparing the 

Hildebrand et al. cut-points to the Hänggi et al. cut-points to estimate time in MVPA 

(35.0 ± 14.4 vs. 100.1 ± 27.5 min.d-1).  
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We observed significant differences in time spent in MVPA between the Hildebrand 

et al. cut-points and that of the counts cut-points (Figure 1) unlike Fairclough et al.  

Using the counts processing methods, we found that time spent in MVPA was 91.8 ± 

31.2 min.d-1 using the Romanzini et al. cut-points and 100.1 ± 27.5 min.d-1 using 

the Hänggi et al. cut-points. This is in contrast to the time spent in MVPA (72.1 ± 

2.6 min.d-1) reported by Fairclough et al. when using the vertical axis cut-points 

proposed by Evenson et al. We also found that time spent in MVPA from the raw 

data was lower than those reported by Fairclough et al. (34.5 ± 14.4 vs.  49.6 ± 2.0 

min.d-1). Given these differences it is unsurprising we observed significant 

differences in time spent in MVPA between the raw and counts processing methods. 

In addition to the processing methods, the different populations and protocols used to 

generate cut-points is also a likely explanation for the differences in outcomes. For 

instance, Evenson et al. used children aged 5 to 8 years whereas Hänggi et al. and 

Romanzini et al. used children aged 10 to 15 years. Moreover, the type and number 

of physical activities undertaken in these studies were not consistent and were 

performed in durations of 7 mins (Evenson et al., 2008), 3 mins (Hänggi et al., 2013) 

and 5 mins (Romanzini et al., 2014). 

 

As time spent in MVPA is often used to quantify the number of youth meeting 

current PA recommendations (Department of Health, 2011; US Department of 

Health and Human Services, 2008; World Health Organization, 2010), it is important 

that those in public health positions are aware that different processing approaches to 

accelerometer data may yield contrasting conclusions when commenting upon youth 

behaviour. To highlight this, in a recent study examining youth PA levels from wrist 

accelerometery, Kim et al. (Kim et al., 2017) found in a sample of 408 youths that 

0% of participants achieved ≥ 60 min.d-1 of MVPA when using the GGIR method to 

process raw acceleration data. When they examined activity levels using counts 

based approaches, the proportion of participants achieving ≥ 60 min.d-1 of MVPA 

were substantially higher when using the Crouter (range, 43.5 – 69.9%) (Crouter et 

al., 2013) and Chandler (range, 6.2 – 23.2%) (Chandler, Brazendale, Beets, & 

Mealing, 2016) cut-points. The authors also noted that the proportion of youth 

achieving ≥ 60 min.d-1 of MVPA  were substantially higher when using VM rather 

than vertical axis cut-points.  Although the accelerometers were placed on the wrist 

(Kim et al., 2017), the discrepancies in outcomes when processing accelerometer 
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data using raw and counts based approaches are in line with the findings reported 

here. For instance, 86%, 95% and 8% of participants achieved the recommended 60 

min.d-1 of MVPA when using the cut-points provided by Romanzini et al, Hänggi et 

al. and Hildebrand et al. whereas Fairclough et al. found that 20 (20%) and 56 (68%) 

participants with valid raw and counts data achieved the recommended 60 min.d-1 of 

MVPA.    

 

The lack of equivalence and poor agreement between activity estimates when 

comparing raw and counts based approaches suggest that outcomes derived from 

such methods are not comparable. A recent study highlighted the poor classification 

performance of the Hildebrand cut-points for correctly classifying MVPA, primarily 

due to the low recognition of MPA (Trost, Rice, & Pfeiffer, 2017). Given the low 

MVPA values observed in this study and elsewhere (Fairclough et al., 2016; Kim et 

al., 2017), further calibration work may be necessary to accurately classify MPA 

from non-processed accelerometer data using the GGIR package. For instance, the 

auto-calibration procedure within GGIR relies upon the detection of non-movement 

periods but this method has only been validated in adults across several days (Van 

Hees et al., 2014), not in children (Hildebrand, Hansen, van Hees, & Ekelund, 2017). 

Moreover, the auto-calibration method was not used in the laboratory study by 

Hildebrand et al. (Hildebrand et al., 2014) that proposed the ENMO thresholds. As 

the auto-calibration method can significantly impact the ENMO values in the lower 

acceleration range (Hildebrand et al., 2017; Van Hees et al., 2014), future validation 

studies may wish to develop new ENMO thresholds that use the auto-calibration 

method.  

 

Attempts have been made to develop conversion equations, known as the Rosetta 

Stone, to convert estimates of MVPA from widely used cut-points for hip-worn 

ActiGraph accelerometers into a standardized estimate of MVPA (Brazendale et al., 

2016). More recently, a series of Rosetta Stone conversion equations have also been 

developed to compare estimates of MVPA derived from raw accelerations measured 

at the wrist and from ActiGraph counts measured at the hip (Brazendale et al., 2018). 

Applying these Rosetta Stone equations can reduce the differences in estimates of 

MVPA across studies, but at present they are only available for use with uniaxial hip 

cut-points. As the authors contend, additional Rosetta Stone conversion equations 
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are needed to compare MVPA estimates from hip-worn ActiGraph VM cut-points 

which may help researchers compare findings between studies using different 

processing methods and to pool data.  

 

To the best of our knowledge, this is the first study to document PA estimates from 

hip-mounted ActiGraph GT3X+ raw and VM count data. As the use of VM cut-

points are likely to increase as researchers continue to utilize triaxial accelerometers, 

we hope our findings draw attention to the limitations of inferring conclusions 

related to youth activity behaviour between studies using different processing 

methods. Limitations of this study include the relatively small sample used in this 

study from one location within Scotland which limits the generalisability of our 

findings. The lack of criterion measure to estimate time in MPA, VPA and MVPA 

from VM cut-points can also be considered a limitation. Crucially, estimates of time 

spent in PA intensities derived from raw accelerations were processed and analysed 

using open-source procedures which can be used in future studies. This is a strength 

of this study and allows future studies to compare time spent in MPA, VPA and 

MVPA with the estimates reported here.  

 

Recent studies have begun to evaluate the classification accuracy of raw and counts 

based processing methods for classifying SB and PA across standardized activity 

trials performed in a laboratory (Ellingson et al., 2017; Trost et al., 2017). The 

results from these studies suggest that recently published cut-points for processed 

and non-processed accelerometer data in both youth and adults demonstrate poor 

classification accuracy when compared to criterion measures. Whilst there is some 

agreement within the literature that the Evenson et al. vertical axis cut-points 

demonstrate convincing evidence of validity in children (Trost et al., 2011), a similar 

consensus surrounding VM cut-points or raw processing methods is still lacking. 

Future work should consider developing a series of Rosetta Stone conversion 

equations to compare estimates of MVPA derived from raw accelerations and 

ActiGraph VM counts measured at the hip.  

 

Conclusion 

In summary, time spent in activity intensities are not comparable between raw and 

VM count based data processing methods. The lack of equivalence and poor 
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agreement between raw and VM count processing methods suggest that the two 

approaches are not comparable. Further calibration work, correction factors and 

conversion equations may be necessary to facilitate the comparison of findings 

between studies that process and report raw and VM count activity data. 
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Table 1. Time spent in activity intensities across three processing methods. 

 

 

Data are presented as mean (90% confidence intervals). Abbreviations: MPA = 

moderate physical activity; VPA = vigorous physical activity; MVPA = moderate to 

vigorous physical activity. * Cut-points are only available for MVPA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Romanzini et al. Hänggi et al.* Hildebrand et al. 

MPA (min.d-1) 49.17 (44 to 54)  27.82 (25 to 31) 

VPA (min.d-1) 42.81 (39 to 47)  6.67 (6 to 7) 

MVPA (min.d-1) 91.85 (83 to 101) 100.12 (90 to 110) 34.54 (31 to 38) 
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Figure 1. Comparison of three different processing techniques for time recorded in moderate (MPA), vigorous (VPA) 

and moderate-vigorous (MVPA) physical activity. Data are presented as mean (95%CI).  
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A                 B  

C D                                                                                                                    

E  

Figure 2: Bland-Altman plots displaying agreement between raw and count data 

analysis for MPA (A), VPA (B) and MVPA (C-E). Horizontal lines represent mean 

bias and 95% limits of agreement 
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Figure 3. Equivalence between accelerometer data processing methods. Zone of equivalence (dashed lines) and 90% confidence intervals (solid lines) for the reference 

method*. Abbreviations: MPA = moderate physical activity; VPA = vigorous physical activity; MVPA = moderate-vigorous physical activity. *The first method in each 

pairing was used as the reference method and are displayed above. 
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