

UWS Academic Portal

Catalog-driven services in a 5G SDN/NFV self-managed environment

Henriques, Nuno; Sargento, Susana; Neves, Pedro; Gil Perez, Manuel; Martinez Perez,
Gregorio; Bernini, Giacomo; Wang, Qi; Alcaraz Calero, Jose Maria; Koutsopoulos,
Konstantinos
Published in:
2018 IEEE Symposium on Computers and Communications (ISCC)

DOI:
10.1109/ISCC.2018.8538659

Published: 25/06/2018

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Henriques, N., Sargento, S., Neves, P., Gil Perez, M., Martinez Perez, G., Bernini, G., Wang, Q., Alcaraz Calero,
J. M., & Koutsopoulos, K. (2018). Catalog-driven services in a 5G SDN/NFV self-managed environment. In 2018
IEEE Symposium on Computers and Communications (ISCC) [8538659] (IEEE Conference Proceedings). IEEE.
https://doi.org/10.1109/ISCC.2018.8538659

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 12 Jul 2022

https://doi.org/10.1109/ISCC.2018.8538659
https://uws.pure.elsevier.com/en/publications/9c61acf2-0062-4a62-9a33-92abb39df511
https://doi.org/10.1109/ISCC.2018.8538659

Henriques, N., Sargento, S., Neves, P., Gil Perez, M., Martinez Perez, G., Bernini, G., Wang, Q.,
Alcaraz Calero, J. M., & Koutsopoulos, K. (2018). Catalog-driven services in a 5G SDN/NFV self-
managed environment. In 2018 IEEE Symposium on Computers and Communications
(ISCC) [8538659] (IEEE Conference Proceedings). IEEE. https://doi.org/10.1109/ISCC.2018.8538659

 “© © 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.”

https://doi.org/10.1109/ISCC.2018.8538659

Catalog-Driven Services in a 5G SDN/NFV
Self-Managed Environment

Nuno Henriques1, 2, 3,∗, Susana Sargento1, 2,∗, Pedro Neves2, 3, Manuel Gil Pérez4, Gregorio Martı́nez Pérez4,
Giacomo Bernini5, Qi Wang6, Jose M. Alcaraz-Calero6 and Konstantinos Koutsopoulos7

1Department of Electronics, Telecommunications and Informatics, University of Aveiro - Aveiro, Portugal
2Instituto de Telecomunicações - Aveiro, Portugal

3Altice Labs - Aveiro, Portugal
4Departamento de Ingenierı́a de la Información y las Comunicaciones, University of Murcia - Murcia, Spain

5Nextworks - Pisa, Italy
6School of Engineering & Computing, University of the West of Scotland - Paisley, United Kingdom

7Creative Systems Engineering - Athens, Greece

Abstract—With the Fifth-Generation (5G) mobile networks set
to arrive within the next years, this new generation will transform
the industry with a profound impact on its customers as well as
on the existing technologies and network architectures. Software-
Defined Networking (SDN) and Network Functions Virtualization
(NFV) will play key roles for the network operators as they
prepare the migration to 5G, allowing them to quickly scale their
networks. This paper presents a research work undertaken on
this new paradigm of virtualized and programmable networks,
aiming to address Self-Organizing Networks (SON) scenarios
in a NFV/SDN context, focusing on detection and prediction
of potential network and service anomalies. Towards this end,
the performance management system performs aggregation, cor-
relation and analysis of data gathered from the virtualized
and programmable network elements. In particular, customized
catalog-driven tools are developed, and the results show that
they are able to successfully address these requirements. Current
performance management platforms in production are designed
for non-virtualized (non-NFV) and non-programmable (non-
SDN) networks, and the knowledge gathered from this research
brings some new understanding on how management platforms
must evolve in order to be prepared for the upcoming next-
generation mobile networks.

Keywords—5G, SON, SDN, NFV, Virtualization, Monitoring,
Aggregation, Catalog-Driven

I. INTRODUCTION

The Fifth-Generation (5G) mobile networks will bring
a new era in which connectivity will become significantly
enhanced and increasingly flexible and network performance
will be tailored to the needs of the user. The standardization
of 5G is still underway, although as we move closer to 2020,
the vision of 5G is becoming clearer. 5G is expected to
feature exceptionally fast speeds and extremely low latency,
and allow various use cases such as demanding mission-critical
applications and massive device-to-device communications for
the Internet-of-Things (IoT). The performance management
platforms in production usually support a large set of tools
to conduct performance measurements on the network and
services, and process and analyze information collected from
non-virtualized (non-NFV) and non-programmable (non-SDN)

∗Corresponding authors, Email: {nuno.henriques, susana}@av.it.pt

resources. The static nature of these non-virtualized and non-
programmable resources allows the configuration processes of
the information models to be enforced manually. However,
in the 5G NFV/SDN context, the agility required for the on-
boarding and deployment of new functions increases consid-
erably, with the support of automatic configuration processes
for the information models of the network functions and vir-
tualized services becoming necessary. The EU 5G-PPP project
SELFNET targets to achieve automatic and autonomous net-
work management for 5G networks, and a catalog-driven
architecture is proposed for network monitoring and analytics
purposes. In catalog-driven architectures, the information mod-
els of the virtualized network functions are typically stored on
a central catalog of the network operator. After on-boarded
on the catalog, publish/subscribe mechanisms are used to
propagate the information models to the components of the ar-
chitecture that requires them. The SELFNET project provides
the necessary research platform and environment to develop a
proof-of-concept solution to meet these requirements, allowing
operators to understand how their performance management
platforms must evolve in order to be prepared for the upcoming
5G mobile networks. Moreover, these system advancements in
a 5G scenario also requires aggregation, correlation and anal-
ysis of data gathered from these virtualized and programmable
network elements. The data themselves can be processed
either in batch (non-real-time processing) or streaming (real-
time processing) to create indicators that will be used to
generate Health-of-Network (HoN) symptoms to be processed
by Machine Learning (ML) algorithms, endowing the network
with the necessary intelligence to automatically react upon
imminent threats and failures. In this wider context, the scope
of this paper is focused on two specific components or services
of the SELFNET 5G network management architecture that
has been developed from scratch and integrated within its
logical structure throughout the research work: 1) Monitoring
Catalog: a catalog devised to comprise the information on
the sensors available for deployment on the platform (its
integration with the orchestration layer is out of the scope of
this work though), as well as the batch/streaming aggregation
and thresholding rules that need to be enforced on the aggre-
gation layer (within the scope of this work); 2) Aggregation
Configuration Manager: the component responsible for the

Monitor &
Analysis
Sublayer

Autonomic Management
Sublayer

Inventory
Services

Orchestration
Sublayer

Autonomic Actions
Health of Network

Symptoms

Catalog
Notifications

Catalog
Notifications

Catalog
Notifications

Inventory
Notifications

Inventory
Notifications

S
E
LF
N
E
T
M
an
ag
em
en
t
D
om
ai
n

SELFNET Managed Domain ActuatorsSensors

Sensing Actuation

Inventory
Notifications

Catalogue
Services

Fig. 1. SELFNET’s Architecture (high-level)

enforcement of the aggregation and thresholding rules on the
aggregation layer.

II. ARCHITECTURE OVERVIEW

SELFNET’s high-level architecture is represented in Fig. 1,
showing the Monitor & Analyzer, Autonomic and Orchestra-
tion sub-layers, as well as the transversal Catalog and Inventory
services. The main objective of the Monitor & Analyzer sub-
layer is to collect, aggregate and analyze information provided
by sensors in a heterogeneous network environment com-
posed by NFV, SDN and legacy network functions. Prediction
algorithms are involved to analyze and identify Health of
Network (HoN) symptoms to proactively indicate potential
problems, and the Autonomic sub-layer, which is the core
of the SELFNET Autonomous management logic, uses these
HoN symptoms to diagnose the most probable cause(s) and
decides on the most appropriate tactic(s) and action(s) to proac-
tively prevent the end-to-end services from being affected.
The Orchestration sub-layer is responsible to enforce all the
actions defined by the Autonomic sub-layer, by orchestrating
all the available heterogeneous network functions (e.g. SDN-
Apps, VNF, PNFs) implementing sensing and actuation logics,
supporting both deployment and (re)configuration. Finally, the
Catalog and Inventory services are responsible for maintaining
and expose all the information related to the on-boarding and
instantiation of resources that are common to the sub-layers
(e.g.: rules of aggregation of metrics, deployed sensors, NFVs
and so on). The Monitor & Analyzer sub-layer is further
divided in three frameworks. The Monitoring Framework,
responsible for collecting, persisting and forwarding the data
gathered by the sensors, the Aggregation Framework which
aggregates and/or correlates data and provides the results to the
last remaining framework, the Analyzer, which is responsible
for providing HoN symptoms. Nevertheless, the Aggregation
Framework may also, in some cases, forward aggregated
data directly to the Autonomic Framework, so the latter can
perform its autonomic functionalities based either on the HoN
symptoms and/or the aggregated data.

A. Aggregation Framework

The Aggregation Framework is in turn sub-divided in two
sub-frameworks, as shown in Fig. 2. The Batch Aggregation
Framework (BAF) which is responsible for the non-realtime
data processing and the Complex Event Processing Framework

Aggregation & Correlation

Monitoring

Batch Aggregation

Sensors

Sensors

Data Sources

Sensor # 1

Data
Source

Sensor # 2

Data
Source

Sensor # 3

Data
Source

Sensor # 4

Data
Source

Sensor # 1 Sensor #2 Sensor # 3 Sensor # 4

Message Bus

Raw Data

Loader

Raw DB

Metrics DB

Complex Event Processing

Aggregation

Configuration
Manager

Sensor # N

Data
Source

Sensor # N

Aggregation

Engine

Metrics Data

Loader

Persister
Threshold

Engine

Notification

Engine

Raw Counters

Raw Data

Normalized

Raw Data

Raw Counters& Events

Raw Events

Catalogue

Services

Inventory

Services

Onboarding

Notifications

Instantiation

Notifications

Message Bus M
e
s
s
a
g
e
B
u
s

CEP

ManagerMessage Bus

Autonomic ManagementAnalyzer Health of Network Symptoms

Aggregated Data

(Metrics& Events)

Aggregated Metrics

Aggregated Data

(Metrics& Events)

CEP Topology

Thresholding

Bolt

Filtering

Bolt

Aggregation

Bolt

Enrichment

Bolt

Publisher

Bolt

Kafka Spout

Router Bolt

Aggregated Events

Fig. 2. SELFNET’s Aggregation Framework (low-level view)

(CEPF) which addresses the realtime processing. Both these
sub-frameworks rely on the data provided by the Monitoring
Framework, which is responsible for collecting raw data from
heterogeneous sensors and normalizing the collected data to
a common and uniform monitoring information model. This
allows the data gathered by the multiple and heterogeneous
sensors to be handled seamlessly. The collected and normalized
data are persisted on the Raw DB to be processed at a
later stage by the BAF and forwarded also directly to the
Aggregation Framework for real-time processing by the CEPF.
Collected and normalized data can be grouped into two main
categories: raw counters, which are produced periodically by
the sensors (e.g. total packet count, communication frequency)
and raw events which are produced only when a specific occur-
rence takes place (e.g. virtual machine instantiated, hardware
failure). The BAF mainly aggregates, compresses and persists
data retrieved from the Raw DB, for trend and prediction
analysis by external components (the Analyzer framework or
the Autonomic sub-layer), but it also analyzes the produced
aggregated metrics to determine if any of defined thresholds
is crossed, also providing alarm notifications to the external
components. The CEPF processes raw data (counters and/or
events) and it is producing aggregation events similar to the
aggregated metrics provided by the BAF but in real-time.
However, in the CEPF case, the aggregation events might be
triggered by a threshold crossed by a metric calculated in
real-time or by a threshold crossed by alarms and/or events
correlated in real-time; they can also be aggregation events
reporting metrics being calculated in real-time. Although the
nature of the CEP flow is for real-time data processing, the
output is always persisted on the Metrics DB to enable further
analysis from autonomic components leveraging on machine
learning techniques and algorithms. In order to instruct both
the BAF and the CEPF on which aggregated metrics/events
and thresholds should be set, the Aggregation Configuration
Manager (ACM), which belongs to the Aggregation Frame-
work, and the Monitoring Catalog (MC), which resides within
the Catalog Services, as seen in Fig. 2, were designed and
developed. The Monitoring Catalog is responsible for the
on-boarding of aggregation and threshold rules that will be
enforced on the BAF and CEPF components, as well as for

Fig. 3. SELFNET’s Monitoring Catalog Architecture

the information on all types of sensors that are available: what
kind of sensing data they provide and how the rules can make
use of them to produce aggregated metrics (real-time or not).
The enforcement of the rules on-boarded on the Monitoring
Catalog is done by the Aggregation Configuration Manager.
Whenever a change occurs on the catalog, the Aggregation
Configuration Manager is notified about that through a mes-
sage bus. In Fig. 2 it is possible to see that the ACM reaches
out three specific components of the Aggregation framework:
the Aggregation Engine (AE), the Threshold Engine (TE) and
the CEP Manager. All the real-time aggregation rules will be
enforced on the CEP Manager, the non real-time ones on the
Aggregation Engine and, of course, the threshold rules will be
enforced on the Threshold Engine.

III. IMPLEMENTATION

This section discusses how the Aggregation Configuration
Manager and the Monitoring Catalog were implemented as
well as their respective architectures.

A. Monitoring Catalog

The Monitoring Catalog (MC) is the unique entry point
within the SELFNET architecture allowing external compo-
nents (e.g. Autonomic sub-layer) to create, read, update and
delete aggregation and threshold rules that are enforced on the
Aggregation Framework. Its internal architecture is represented
in Fig. 3, but in its most basic sense, it is comprised by a
database where the catalog itself is stored, a RESTful API to
interact with the service and a notification module to notify
external services about the modifications or updates of the
catalog.

The Monitoring Catalog API is designed following the
OpenAPI Specification (OAS) [1], formerly Swagger, which
is a specification for machine-readable interface files for de-
scribing, producing, consuming, and visualizing RESTful Web
services created by a consortium of industry experts with an

Fig. 4. Graph of the Monitoring Catalog API’s Endpoints

open governance structure under the Linux Foundation, the
OpenAPI Initiative (OAI) [2]. Flask [3] is used as the Web
Framework, as well the Connexion Framework [4], which
works on top of Flask. The latter handles the HTTP requests
based on the OAS, allowing the API specification to be
written first (API first approach). Later on, the framework will
handle the mappings of the endpoints to the routing functions,
guaranteeing that it will work as specified, even before any
code is written. The Web Framework serves both the RESTful
API of the MC as well an interactive Web UI that contains rich
documentation of the API endpoints, providing the developers
the complete information they need to develop and integrate
their services. The complete set of endpoints supported by
the API is represented by the graph shown in Fig. 4, and
all the data submitted to and retrieved from the API is in
JSON format. The catalog has two major areas: monitoring
and thresholding. The thresholding section is organized by
thresholding groups which may contain one or more threshold
rules. Likewise, the monitoring section has aggregation rules
groups which may contain one or more aggregation rules.
Furthermore it also contains a sub-section that holds the
information about the types of sensors that exist on the network
as well the resource and data types they support, which is
extremely important for the statistical formulas and filters that
are used both on the aggregation and thresholding rules.

Neo4j [5] is used as the database to store the Monitoring
Catalog. It is a Graph Database that is able to represent the
catalog. In fact, the catalog can be considered the database
itself, as the catalog is stored in the database without version-
ing, i.e. there is only a single version of the catalog present
in the database. The graph database models the data in the
form of a graph, as it is evident, and it compares to the
traditional relational databases as represented in TABLE I.
With that in mind, it will be easier to understand the catalog

TABLE I
RDBM VS GRAPH DB

RBDMS Graph Database

Tables Graphs
Rows Nodes

Columns and data Properties and their values
Constraints Relationships

Joins Traversal

Fig. 5. SELFNET’s Monitoring Catalog Graph DB

example represented in Fig. 5 as stored in the database. The
blue node represents the root of the catalog, and the green
ones the monitoring and the thresholding areas mentioned
before. Attached to the thresholding node it can be seen a
single thresholds group also containing a single threshold rule.
The monitoring node contains a rules group node with three
aggregation rules (purple nodes) and five aggregated metrics
dimensions (yellow nodes). It also contains three sensor node
with their respective resource and data type nodes (yellow
and red nodes respectively). As stated in TABLE I, all the
properties and their respective values are associated with the
nodes, e.g. the name of a sensor or the period of an aggregation
rule.

The Monitoring Catalog also contains a notification module
that creates an abstraction layer to handle the notifications that
need to be published on the message bus whenever changes are
made to the catalog. This mechanism is necessary to make the
Aggregation Configuration Manager aware of these changes,
so it can enforce them on the Aggregation Framework.

B. Aggregation Configuration Manager

The Aggregation Configuration Manager is the compo-
nent responsible for enforcing the on-boarded rules on the
Monitoring Catalog throughout the Aggregation framework.
Specifically, the batch aggregation rules are enforced on the
Aggregation Engine, the stream (realtime) aggregation rules
are enforced on the CEP Engine, and the threshold rules are
enforced on the Threshold Engine.

The ACM internal architecture is represented in figure
Fig. 6, and it follows a master/slave or master/worker model
where Apache Zookeeper [6] is used to coordinate the services
of the Aggregation Configuration Manager. The tasks are
assigned by the Master Service to the Client Services and
the tasks in this context are directly associated to the oper-
ations that were made on the Monitoring Catalog (CREATE,
UPDATE or DELETE).

MongoDB [7] was used as a database, with three distinct
collections of documents, one for each client service, i.e one
collection for the Aggregation Engine client, another collection

Store catalog data
and addtional data
about the operations

Service
Coordination

<<Zookeeper>>

Read catalog data and
and store applied rules

AE Client
Service

Aggregation Configuration Manager

Aggregation
Engine

Message Bus
<<Kafka>>

CEP
Engine

Threshold
Engine

Threshold
Engine
Client
Service

Monitoring
Catalog

Alarm Definitions(Thresholds)
(create, update or delete)

Aggregation RulesBatch
(create, update or delete)

Stream Aggregation Rules
(create, update or delete)

Database

<<Mongo>>

Publish notifications
about the

catalog changes

CEP
Client
Service

Send operations
to clients

Watch for new operations
and delete them when done

ACM
Master
Service

Watch for new
notifications

Fetch new or modified
catalog entries

Conf
FIle

Conf
FIle

Conf
FIle

Conf
FIleAdmin CLI

Fig. 6. SELFNET’s Aggregation Configuration Manager Architecture

for the CEP Engine client and another one for the Threshold
Engine client.

The Master Service is responsible for watching any in-
coming notifications sent by the Monitoring Catalog, and
instructing the Client Services to apply the changes made on
the catalog to their respective end clients or services. During
its start up, the Master Service reads from its configuration
file all the information required for it to interact with the four
services it communicates with directly: Zookeeper, MongoDB,
Kafka and of course the Monitoring Catalog.

Although there are three distinct types of Client Services,
they all follow the same steps to handle their tasks. Their
difference lies in the way they transpose the rules from the
Monitoring Catalog to their respective end client components.

The Threshold Engine Client Service translates the thresh-
old rules from the catalog to a structure that can be interpreted
by the Threshold Engine’s API, and likewise the AE Client
Service and the CEP Client Service will translate the aggrega-
tion rules from the catalog to structures that can be interpreted
by the Aggregation Engine’s API and the CEP Engine’s API
respectively.

Just like it happens in the Master Service case, during
their start up the Client Services read from their configuration
files all the information required for them to interact with the
three services they communicate with directly, Zookeeper and
the MongoDB which are common to all three of them, and
the Threshold Engine, Aggregation Engine and CEP Engine
depending on the Client Service.

IV. CASE STUDY

The Catalog-Driven solution presented in the previous
sections has been experimentally validated in a lab environ-
ment. This experimental validation aimed at deploying the
SELFNET’s Self-Protection Use Case (SP-UC), and assess the
solution presented in this paper against a scenario with real
mobile network traffic generated by mobile users. The main
goal of the SP-UC is to detect bots shaping a botnet (also
known as zombies) that successfully managed to infiltrate the
network by infecting some hosts, and take action to sever their
communications to the botnet’s Command & Control (C&C)
in order to neutralize them. The overall process is divided into
three loops with several steps (Fig. 7 depicts the first two).

Internet

VIRTUAL
BBURRH

VIRTUAL
EPC

FMA

Data Flows

FMAVIRTUAL
FLOWT

Monitor&
Analyzer
Sublayer

Autonomic
Management
Sublayer

Orchestration
Sublayer

Zombie Equipment

L2:SNORT
Zombie
alerts

L2:Zombies identified L2:ActivateClone Zombies

L2: Deploy virtual
zombies

Command & Control
Server

Virtual zombies

Diverted zombie traffic

VIRTUAL
SNORT

L1:Potential zombie
detected

L1:ActivateDPI

L1:FMA
Flow

counters

L1:Deploy FlowT
and configure
traffic mirroring

L1:Deploy
SNORT

L2:Configure
traffic divertion

1

2 3

Counters
and
Events

Symptoms Actions Requests

Actions Enforcements

4

Mirrored zombie and command control traffic

Fig. 7. First (blue dashed) and second (red straight) loops of the Self-
Protection use case

A. SP-UC Loop 1

Preliminary identification of suspect communication pat-
terns that may indicate that a host or group of hosts may be
infected with malicious software of a botnet (Fig. 8), becoming
zombies. To achieve this, the following steps are taken: 1) two
batch aggregation rules are (manually) on-boarded on the MC
which will be enforced in the AE by the ACM; 2) a threshold
rule, which will be applied over these two batch aggregation
rules, must be also (manually) on-boarded on the MC to be
enforced on TE, which when crossed, will produce alarms
and consequent notifications for the Autonomic Framework;
3) the Autonomic Framework produces a symptom based on
the alarm notification and aggregated metrics, and instruct the
Orchestration Framework to deploy a VNF with Deep Packet
Inspection (DPI) functions and mirror the suspicious traffic
to it; 4) in parallel with the previous step, the Orchestration
Framework is also instructed to deploy a DPI VNF to identify
possible zombies of the botnet.

B. SP-UC Loop 2

Confirmation (or dismissal) of the suspect communication
patterns and diversion of the botnet’s traffic. To achieve this,
the following steps are taken: 1) at this phase of the process
the DPI VNF is already collecting information and generating
alerts, if any, that need to be aggregated in realtime and, for
this purpose, a stream aggregation rule is (dynamically) on-
boarded on the MC that will be enforced on the CEPF by the

Fig. 8. SP-UC Loop 1 - Suspicious Attack Symptoms: resulting from the
manually on-boarded batch aggregation and threshold rules, avg. pkt. count
(blue), communication freq. (yellow), threshold (red stripe)

Fig. 9. SP-UC Loop 3 - Botnet Attack Symptoms: dynamically on-boarded
batch aggregation and threshold rules (red/blue - botnet communications,
yellow - false positives)

Fig. 10. SP-UC Loop 3 - Botnet Attack Symptoms: botnet communications
(red/blue) dropped, false positives (yellow) not affected

ACM; 2) the stream aggregated metrics produced by the CEPF
will confirm (or dismiss) if the communications indeed fall into
the botnet pattern and will start generating alerts for the Au-
tonomic Framework; 3) the Autonomic Framework produces
a new symptom and instructs the Orchestration Framework to
deploy a HoneyNet VNF to isolate the communications from
the zombies to the botnet C&C, by diverting the traffic to
the HoneyNet; 4) at the same time the Autonomic Framework
initiates a learning phase using a Machine Learning (ML)
process with neural networks, with the goal of filtering out
false positives and acting more quickly upon new zombies that
may appear afterwards, which when over will (dynamically)
on-board a new batch aggregation rule and a new threshold
rule on the MC, starting then the 3rd loop.

C. SP-UC Loop 3

Severing the botnet’s communications to neutralize it
(Fig. 9 and Fig. 10). To achieve this, the following steps are
taken: 1) once the new batch aggregation rule and the new
threshold rule are in place, the following communications from
new zombies will generate new alarms for the Autonomic
framework (different from the previous alarms of Loop 1);
2) upon receiving these new alarms, the Autonomic framework
will generate a new symptom and instruct the Orchestra-
tion framework to simply drop the related communications,
severing or disrupting any communication attempts from the
botnet’s C&C to its zombies, i.e. the botnet is from this
moment onwards effectively neutralized.

V. LOAD TESTS

In order to determine the performance of the developed
services (the MC and ACM), a series of load tests were
devised and performed, either by using freely available tools
or by developing custom ones. The Monitoring Catalog has
a RESTful API and therefore the load tests were done by
checking and stressing its web services using simple client

TABLE II
MONITORING CATALOG - LOAD TEST RESULTS

Service Avg. Time / Operation Elapsed Time

Overall (avg. of CRUD operations) 14.00ms 1m 08s

Number of Operations : 5000, Avg. Operations / sec: 71

TABLE III
ACM MASTER SERVICE - LOAD TEST RESULTS

Service Avg. Time / Operation Elapsed Time

Monitoring Catalog 4.91ms 0m 36s
MongoDB 0.44ms 0m 04s
Zookeeper 3.86ms 0m 22s
Overall 9.86ms 1m 10s

Number of Operations : 5000, Avg. Operations / sec: 75

TABLE IV
ACM THRESHOLD ENGINE CLIENT - LOAD TEST RESULTS

Service Avg. Time / Operation Elapsed Time

Thresh. Engine 86.49ms 3m 08s
MongoDB 1.87ms 0m 18s
Zookeeper 2.79ms 0m 13s
Overall 93.91ms 3m 39s

Number of Operations : 2500, Avg. Operations / sec: 11

TABLE V
ACM AGGREGATION ENGINE CLIENT - LOAD TEST RESULTS

Service Avg. Time / Operation Elapsed Time

Agg. Engine 77.58ms 2m 57s
MongoDB 2.52ms 0m 16s
Zookeeper 4.95ms 0m 14s
Overall 91.57ms 3m 27s

Number of Operations : 2500, Avg. Operations / sec: 12

invocations on HTTP verbs (GET, POST, PUT, DELETE) and
the overall results of the tests are presented in TABLE II.
As to the Aggregation Configuration Manager, a series of
timestamp variables were carefully placed within its source
code to collect information about the times spent in specific
operations, providing statistics when activated and through
load tests stimulating this component by ”hammering” the
service with notifications through the message bus to simulate
the operations done in the Monitoring Catalog. The results ob-
tained for the ACM’s Master Service and the ACM’s Threshold
Engine and Aggregation Engine client services are presented
in TABLE III, TABLE IV and TABLE V (no results are shown
for the ACM’s CEP client service as the integration is currently
underway).

VI. CONCLUSIONS

This paper presents a catalog-driven network management
system for 5G networks. Starting with the Monitoring Catalog,
its main goal was to address the catalog-driven needs of the
5G network management architecture defined in the SELFNET
project. It effectively addressed the information content and
structure that needed to be enforced on the Aggregation Frame-
work. It employed both the batch/streaming aggregation rules
to be enforced on the AE/CEP and the thresholding rules to be
enforced on the TE. As to performance, the MC proved to have
very good results, above the expectations and requirements of

the project, as it was not foreseeable to have a performance
demand close to the obtained average time of the operations as
well as the number of requests per second for this particular
service. The ACM provided a bridging service between the
MC and the Aggregation Framework, effectively ”translating”
the rules on-boarded on the former and enforcing them on the
latter. The results of the load tests performed on the ACM’s
Master Service show that it is able to cope with the maximum
rate imposed by the Monitoring Catalog (75 op/sec against
71 op/sec). However, when it comes to the ACM’s Client
Services, the operations on the coordination service and the
database have little impact on the overall performance of these
components. It is clearly shown that the operations performed
on their end-services, the TE and the AE, contributed to most
of the processing time, which shows that the ACM’s Client
Services are the components of the ACM that can cripple the
overall performance of this service. The reason behind this is
the fact that both the TE and AE are currently operating 24/7
on the testbed under heavy load, which affects the results of
the load tests. Even so, it is expected that these components
to be under heavy load on a regular basis and the truth is that
the ACM’s performance may be compromised or limited by
the very own performance of the end services it is connected
to. Nevertheless, the average number of operations per second
obtained for the ACM’s Client Services is enough to cope with
the project requirements. In summary, the two components
that were the focus of this paper generally fulfilled their
purposes and the requirements of the SELFNET project, and
they can cope with the demanded throughput, despite their
limitations. There is room for improvement, although they are
prototypes to assert the validation of the proposed and designed
architecture of the project, and hence they are not required to
have stellar performances.

ACKNOWLEDGEMENTS

This work was funded by the European Commission Hori-
zon 2020 5G-PPP Programme under grant agreement number
H2020-ICT-2014-2/671672, SELFNET (Self-Organized Net-
work Management in Virtualized and Software Defined Net-
works) [8] and by FCT/MEC through national funds and when
applicable co-funded by FEDER PT2020 partnership agree-
ment under the projects UID/EEA/50008/2013. The authors
wish to thank all the SELFNET partners for their support in
this work.

REFERENCES

[1] OpenAPI Initiative. OpenAPI Specification Website. [Online]. Available:
https://github.com/OAI/OpenAPI-Specification

[2] ——. OpenAPI Initiative Website. [Online]. Available:
https://www.openapis.org/

[3] A. Ronacher. Flask Website. [Online]. Available: http://flask.pocoo.org/
[4] Zalando SE. Connexion Website. [Online]. Available:

https://jobs.zalando.com/tech/blog/meet-connexion-our-rest-framework-
for-python/?gh src=4n3gxh1

[5] Neo4j, Inc. Neo4j Website. [Online]. Available: https://neo4j.com/
[6] Apache Foundation. Apache Zookeeper Website. [Online]. Available:

https://zookeeper.apache.org/
[7] MongoDB, Inc. MongoDB Website. [Online]. Available:

https://www.mongodb.com/
[8] 5G-PPP. SELFNET - Framework for Self-Organized Network

Management in Virtualized and Software Defined Networks. [Online].
Available: https://selfnet-5g.eu

