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Abstract  17 

The internal stress of the human foot enables efficient parametric evaluation of structural and 18 

functional impairments associated with foot deformities, such as hallux valgus (HV). However, 19 

the status of the internal stress of such a deformed foot remains insufficiently addressed due to 20 

the difficulties and limitations of experimental approaches. This study, using finite element (FE) 21 

methodology, investigated the influence of severe HV deformity on the metatarsal stress and the 22 

metatarsophalangeal (MTP) joint loading during balanced standing. FE models of a normal foot 23 

and a severe HV were constructed and validated. Each FE model involves 28 bones and various 24 

cartilaginous structures, ligaments, and plantar fascia, as well as encapsulated soft tissue. All the 25 

materials except for the encapsulated soft tissue were considered isotropic and linearly elastic, 26 

while the encapsulated soft tissue was set as nonlinear hyperelastic. Hexahedral elements were 27 

assigned to the solid parts of bones, cartilage, and the encapsulated soft tissue. Link elements 28 

were assigned to ligaments and plantar fascia. A plate was created for simulating ground 29 

support. A vertical force of a half-body weight was applied on the bottom of the plate for 30 

simulating balanced standing loading. The superior surfaces of the encapsulated soft tissue, 31 

distal tibia, and distal fibula were fixed. Stress distribution in the metatarsals, contact pressure, 32 

and force at the MTP joints were comparatively analysed. Compared to the normal foot, the HV 33 

foot showed higher stress concentration in the metatarsals but lower magnitude of MTP joint 34 

loading. In addition, the region with high contact pressure at the first MTP joint shifted medially 35 

in the HV foot. Knowledge of this study indicates that patients with severe HV deformity are at 36 

higher risk of metatarsal injuries and functional impairment of the MTP joints while weight 37 

bearing. 38 

 39 

Keywords: Finite element, Severe hallux valgus, Metatarsal stress, Metatarsophalangeal 40 

loading 41 

 42 

1. Introduction 43 
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Hallux valgus (HV) is a common foot deformity characterized by progressive lateral deviation 44 

of the hallux with medial deviation of the first metatarsal. Indexes of hallux valgus angle (HVA) 45 

and intermetatarsal angle (IMA) are commonly used radiological measurements for assessing 46 

the degree of deformity, which is classified as mild (HVA: 15°–20°; IMA: 9°–11°), moderate 47 

(HVA: 20°–40°; IMA: 11°–16°), and severe (HVA: >40°; IMA: >16°) [1]. Increasing HV 48 

severity may cause significant health-related problems, such as metatarsalgia [2], balance 49 

deficits [3], and increase in risk of falling in older people [4].  50 

Because the metatarsal bones act as a unit in the forefoot area to provide a broad plantar surface 51 

for load bearing, the majority of research on biomechanical consequences of HV deformity have 52 

referred to the alternation of forefoot loading recorded by plantar pressure measurements. HV 53 

deformity has been reported as resulting in increased forefoot plantar pressure, with debate 54 

about which region the change occurs in. Some studies have suggested that the peak pressure 55 

increased significantly under the first and second metatarsals in HV feet compared with that in 56 

normal feet [5,6,7,8]. There is contrary evidence that HV deformity causes increased load on the 57 

lateral metatarsals [2, 9]. Koller et al. [10] assessed the plantar pressure of HV feet of different 58 

grades and found a positive correlation between HV grade and the peak pressure of the fifth 59 

metatarsal head. On the other hand, changes in the loading state of the inner foot are poorly 60 

explored. 61 

As a result of the intrinsic difficulties and limitations of conventional experimental methods, the 62 

internal loading of cartilaginous and bony structures cannot be measured directly. Finite element 63 

(FE) methodology is increasingly used to simulate the mechanical responses of biological 64 

systems via a numerical model simulating complicated boundary and loading conditions. The 65 

FE model is capable of predicting the internal stress in the foot complex and eventually 66 

interpreting potential risks associated with foot deformities. Through reducing the stiffness of 67 

ligaments, Wong et al. [11] developed a FE foot model of first ray hypermobility which 68 

presented higher resultant metatarsocuneiform joint force along with an abrupt change in 69 

medial-lateral direction. They interpreted failure of the joint to accommodate the change of joint 70 
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force as possible deviation of the first metatarsal from normal alignment, possibly causing 71 

metatarsus primus varus. Extrinsic factors, such as high-heeled shoes, have been reported to be 72 

responsible for the occurrence of foot disorder. Using FE method, Yu et al. [12] suggested that 73 

the increased von Mises stress over the lateral and dorsal regions of the first 74 

metatarsophalangeal (MTP) joint during prolonged high-heeled standing may induce the 75 

development of HV deformity. Wong et al. [13] assumed HV deformity to be a normal foot 76 

with hypermobility and manifested that the arthrodesis of the first metatarsocuneiform is a 77 

useful treatment for functional restoration of HV based on the increased compressive stress in 78 

the first metatarsal. Furthermore, a subject-specific FE model of HV foot was developed 79 

recently to compare the effects of different surgical fixation methods on HV treatment by 80 

predicting the peak von Mises stress and compression stress of the distal fragment of the first 81 

metatarsal [14]. 82 

Information on stress distribution of the internal structures is useful in enhancing the 83 

understanding of podiatric biomechanics and may contribute to surgical treatments. In this study, 84 

FE foot models of a normal subject and a severe hallux valgus (HV) patient were developed to 85 

evaluate the metatarsal stress and the MTP joint contact pressure under a balanced standing 86 

condition. It was hypothesized that metatarsal stress would increase while the MTP joint contact 87 

pressure would decrease in the severe HV foot. 88 

 89 

2. Material and methods 90 

2.1 Model construction 91 

This study has been approved by the Human Ethics Committee of Ningbo University 92 

(ARGH20170213). HVA and IMA for the HV foot were 48.07° and 16.17°, respectively; and 93 

those for the normal foot were 22.82° and 14.14°, respectively (Figure 1). The three-94 

dimensional models of the normal foot and the HV foot were reconstructed from computer 95 

tomography (CT) images of a 26-year old female (height: 165cm; weight: 51kg) and a 37-year 96 
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old female (height: 163cm; weight: 52kg) respectively. Both participants had no other 97 

musculoskeletal pathology, pain, or lower limb injury or surgery within the past 12 months.  98 

The coronal CT images were obtained with a space interval of 2 mm without weight-bearing 99 

from the left foot. The two-dimensional images were segmented using MIMICS 16.0 100 

(Materialise, Leuven, Belgium) to obtain the three-dimensional model of the bone tissue and the 101 

encapsulated soft tissue. The uneven surface of the geometries of the bony components and the 102 

soft tissue were smoothed using Geomagic Studio 2013 (Geomagic, Inc., Research Triangle 103 

Park, North Carolina, USA). Each surface component was then imported into Solidworks 2016 104 

(SolidWorks Corporation, Massachusetts, USA) individually to form a solid part. To model a 105 

cartilaginous structure, a solid volume was created between the adjacent surfaces of two bones, 106 

and the bones were then subtracted from the solid volume. All bones and cartilage were 107 

subtracted from the full volume of soft tissue to create the encapsulated soft tissue. The 108 

numerical foot model consisted of 28 bony segments, including tibia, fibula, talus, calcaneus, 109 

cuboid, navicular, three cuneiforms, five metatarsals, and 14 phalanges. Link elements that have 110 

tension-only capability were used to model ligaments. A total number of 76 ligaments and five 111 

plantar fascia were included and defined by connecting attaching points on corresponding bones 112 

with straight line structures. The attaching regions were determined by reference to an anatomy 113 

book [15] and the attaching points were approximately close to the geometrical centre of the 114 

attaching regions. The plantar fascia consisted of five separate rays connecting the insertions 115 

between the calcaneus and the proximal phalanges. The plantar ligaments and the spring 116 

ligament were represented by two separate rays, and small ligaments were represented by a 117 

single ray. HyperMesh 13.0 (Altair Engineering Inc., Hyperworks, America) was used for mesh 118 

generation. Each bony and cartilaginous component and the encapsulated soft tissue were 119 

partitioned into sub-volumes and then assigned hexahedral elements for each volume. The mesh 120 

size for both models was 4.5 mm for the encapsulated soft tissue, 3 mm for the bones, and 2.5 121 

mm for the cartilaginous structures. Mesh sensitivity tests were conducted on the whole foot 122 

model under conditions of balanced standing by gradually reducing the mesh sizes. An 123 
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acceptable mesh generation is determined as the deviation of resultant peak equivalent stress 124 

(PES) in the first metatarsal, and the calcaneus was within 5% when further reducing mesh sizes. 125 

For the normal foot model, the deviation of PES in the first metatarsal and the calcaneus were 126 

1.56% and 2.24%, respectively; and for the HV foot model, the deviation data were 2.38% and 127 

3.82%, respectively. The total number of elements for the normal foot model was 195,237 and 128 

that for the HV foot model was 180,885. The FE package ANSYS Workbench 17.0 (ANSYS, 129 

Inc., Canonsburg, USA) was used for subsequent analysis. This software provides automated 130 

contact detection for assemblies. Using algorithms based on surface proximity, it is able to 131 

create possible contact pairs. Surface-to-surface contact was used to simulate the interaction of 132 

the surfaces of the cartilaginous and bony structures. The contact between bone and 133 

cartilaginous surfaces was assumed as frictionless [16, 17]. All the bones and cartilage were 134 

bonded to the encapsulated soft tissue. 135 

All the materials except for the encapsulated soft tissue were considered isotropic and linearly 136 

elastic with properties obtained from previous literature [17, 18]. The two material constants of 137 

Young’s modulus E and Poisson’s ratio ν were assigned to represent the elasticity. The 138 

encapsulated soft tissue was set as nonlinear hyperelastic material which was defined as a 139 

Moonley-Rivlin model. The element types and material properties used are listed in Table 1 and 140 

Table 2 141 

 142 

2.2 Load and boundary conditions  143 

A balanced standing condition was considered for the FE analysis. The superior surfaces of the 144 

encapsulated soft tissue, distal tibia, and distal fibula were fixed (Figure 2). A plate was created 145 

assigned with an elastic property to model the ground support (Table 1). The plate was allowed 146 

to move freely only in the vertical direction. A vertical ground reaction force (GRF) of a half-147 

body weight (255 N for normal foot; 260 N for HV foot) was applied at the inferior surface of 148 

the plate. The interaction between the foot and the plate was simulated as contact surface with a 149 

coefficient of friction of 0.6 [12]. Five equivalent force vectors representing the Achilles tendon 150 
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force were applied on the posterior extreme of the calcaneus. The force of the Achilles tendon 151 

(128 N for normal foot; 130 N for HV foot) was estimated as 50% of the load applied on the 152 

foot while balanced standing [25]. 153 

 154 

2.3 Model validation 155 

The numerical model was validated by comparing plantar pressure obtained from computational 156 

simulation in FE software and experimental measurement by a Novel emed pressure platform 157 

(Novel, Munich, Germany) in a standing position. The measurement was performed on the 158 

same subject who had volunteered for the medical image scanning. Both subjects were asked to 159 

stand still on the pressure platform for five seconds. Data from the middle three seconds were 160 

selected and averaged. The validated models were then used for FE analysis on forefoot 161 

biomechanics.  162 

 163 

3. Result 164 

3.1. Model validation 165 

Figure 3 shows the comparison of predicted plantar pressure (b, d) with experimental results (a, 166 

c). Pressure distribution from the FE result was generally consistent with the experimental result. 167 

Also, a good match between peak pressure value and location were found for both models 168 

(Figure 3). For the normal foot model, the peak pressure from prediction and measurement was 169 

0.141 MPa and 0.135 MPa, respectively, and for the HV foot the values were 0.144 MPa and 170 

0.137 MPa, respectively. The second highest pressure was located under the first metatarsal 171 

head for both models. The predicted pressure of the normal foot model and HV foot model was 172 

0.089 MPa and 0.122 MPa, respectively, and the corresponding measured pressure was 0.093 173 

MPa and 0.127 MPa, respectively. This suggests that the models are valid for further simulation. 174 

 175 

3.2. Metatarsal von Mises stress  176 
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The von Mises stress in metatarsals generally increased due to HV deformity, as shown in 177 

Figure 4. For both the normal and HV foot, the third metatarsal experienced the highest von 178 

Mises stress concentration, followed by the second, fourth, and first metatarsals, and the lowest 179 

stress level existed at the fifth metatarsal. Compared to the normal foot, medial and lateral 180 

forefoot sustained a larger percentage of von Mises stress in the HV foot. The severe HV foot 181 

showed pronounced increases in von Mises stress at the fifth (55%), first (44%), and fourth 182 

(40%) metatarsals. For the third metatarsal, it was 4.12 MPa in the normal foot and increased to 183 

4.24 MPa due to HV deformity. However, the stress concentration at the second metatarsal 184 

decreased (less than 3%) in the severe HV foot. 185 

 186 

3.3. MTP joint contact pressure  187 

The severe HV foot showed lower MTP joint contact pressure, especially at the second to fifth 188 

MTP joints (Figure 5). Contact pressure at the first MTP of the severe HV foot (0.28 MPa) was 189 

slightly lower than that of the normal foot (0.3 MPa). Figure 6 illustrates the apparently 190 

different locations of high contact pressure (Unit: MPa) at the first MTP joint between the 191 

severe HV foot and the normal foot. For the normal foot, the maximum pressure is located at 192 

central bottom of the contact surface, while for the severe HV footit transfers medially so that it 193 

is located at medial bottom of the contact surface. 194 

 195 

3.4. MTP joint force 196 

The MTP joint force was defined as the reaction force imposed by the first metatarsal on the 197 

proximal/posterior surface of the cartilage between the first metatarsal and the proximal phalanx. 198 

The component MTP force was dominant in the anterior-posterior direction (4.58 N for the 199 

severe HV foot and 8.67 N for the normal foot), while it only accounted for 7.1% in the severe 200 

HV foot and 10% in the normal foot in medial-lateral and superior-inferior directions. The 201 

resultant MTP force of the severe HV foot was nearly 50% less than that of the normal foot 202 

(Figure 7). 203 
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 204 

4. Discussion 205 

The development of a comprehensive computational model of the human foot was suggested for 206 

research focusing on podiatric biomechanics, so as to overcome the intrinsic limitations of in 207 

vivo experiments for further understanding of foot problems [26]. This study explored the 208 

effects of severe hallux valgus on metatarsal stress and on metatarsophalangeal joint loading 209 

while balanced standing using the FE method. The development of patient-specific models is 210 

advocated for foot problems with distinct structural deformity [27, 28]. Knowledge of this study 211 

would provide information for medical treatment of HV and subject-specific footwear design.  212 

 213 

4.1. FE model of severe HV foot 214 

Three-dimensional FE models were validated by plantar pressure measurement. This method 215 

was commonly used in the validation of a FE foot model [18]. In general, the predicted plantar 216 

pressure distribution and peak pressure were comparable to the experimental measurements. 217 

The material properties of the bony, cartilaginous, ligamentous, and encapsulated-soft-tissue 218 

components were considered consistent between the normal foot and the deformed foot. Many 219 

studies have developed normal-foot FE models or a pathological model from the normal one to 220 

investigate internal foot biomechanical performance under various conditions [28]. In an 221 

attempt to promote the understanding of HV pathomechanics and to improve the effectiveness 222 

of treatments, a FE model of the first ray has been constructed for predicting mechanical 223 

consequences of mild HV deformity [29]. An entire foot model featured with skeletal deformity 224 

of severe HV was also developed and validated in this study to provide potentials for research 225 

purposes and clinical application. Previous FE models relied heavily on the tetrahedral elements 226 

for meshing bones, cartilage, and soft tissue on account of the effort attributed to developing a 227 

hexahedral mesh of irregular geometry. In theory, the hexahedral element, due to its nature of 228 

having relatively more degrees of freedom, is able to provide more accurate FE analysis [30, 31]. 229 

Although one study modelling the proximal femur showed that tetrahedral and hexahedral 230 
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elements presented nearly the same resultant peak von Mises stress, the CUP time was 231 

significantly less when using hexahedral elements, indicating a more efficient computational 232 

foundation of the hexahedral element mesh scheme. The bony and cartilaginous components 233 

and the encapsulated soft tissue were meshed as hexahedral elements in this study, which was 234 

proposed to be utilized for better comparison of FE predicted results by Yu et al. [12]. To 235 

improve the mesh quality and the percentage of hexahedral elements, the individual bony and 236 

cartilaginous components and the soft tissue were partitioned prior to mesh generation in 237 

HyperMesh 13.0. 238 

4.2. Metatarsal von Mises stress  239 

The five metatarsal bones have an important function with respect to weight bearing. Previous 240 

experimental results advocated medial or lateral shift of forefoot plantar pressure due to HV 241 

deformity. This study predicted obviously higher plantar pressure under the first metatarsal head 242 

in the HV foot model than in the normal foot model, which is consistent with the outcomes 243 

measured by Martínez-Nova et al. [8]. As to the inner stress, the von Mises stress is often 244 

considered as one predictor for stress failure of foot bone which has been widely used for 245 

evaluating the risk of long-term pathological changes. Cheung et al. [32] noted that the 246 

intensified stress at central metatarsals and dorsal calcaneocuboid joint junction may lead to 247 

midfoot pain. This study found higher peak von Mises stress in the metatarsals, except for the 248 

second one for the severe HV foot, indicating an increasing risk of stress or fatigue failure. As 249 

balanced standing is the most common and basic behaviour in daily life, it can be speculated 250 

that the increased metatarsal stress may cause metatarsalgia while sustaining weight bearing. 251 

The most obvious increasing of von Mises stress at the fifth metatarsal indicates that the fifth 252 

metatarsal is more susceptible to injury for patients with severe HV. The first metatarsal should 253 

be expected to avoid high stress during weight bearing in cases of first ray deformity, however, 254 

the predicted stress at the first metatarsal for the severe HV foot was 44% higher than that of the 255 

normal foot. This is very likely to be associated with medial arch collapse, which is often 256 

thought to supervene with hallux valgus [33]. The crossover second toe also commonly occurs 257 
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in the presence of hallux valgus as shown in Figure 1 (a) [34]. The abnormal alignment of 258 

second ray seems a possible factor leading to the slightly decreased stress of the second 259 

metatarsal. It is important to note that the crossover second toe is not a definite condition 260 

accompanied by hallux valgus, indicating that the crossing toes may hinder the generalization of 261 

the findings. 262 

 263 

4.3. MTP joint loading 264 

The contact pressure of MTP joints was lower in the severe HV foot, especially for the second 265 

to fifth MTPs. Similarly, the resultant joint force of the first MTP also showed lower magnitude 266 

than that of the normal foot. The decreased joint loading may imply the impairment of load 267 

bearing and transfer function of the first MTP joint in gait. In agreement with this speculation, 268 

Zhang et al. [29] found weakened windlass mechanism in the HV foot during initial push-off. 269 

As to the contact pressure of the first MTP joint, there is only a slight decrease for the severe 270 

HV foot, while regions with high pressure locate apparently differently between the HV foot 271 

and the normal foot. In contrast to the location of the peak contact pressure at central bottom on 272 

the cartilage for the normal foot, it shifts to medial bottom for the severe HV foot, which may 273 

aggravate the symptom of “painful bunion” which is one of the most common complaints 274 

among HV patients [35]. Moreover, the component joint force in the medial-lateral direction 275 

presented to be opposite between HV and normal foot. The severe HV foot shows lateral 276 

reaction force at the first MTP joint during balanced standing, suggesting that loading of body 277 

weight alone could predispose the patient to the risk of developing HV deformity.  278 

 279 

4.4. Limitations 280 

The FE models in this study were based on some simplifications and assumptions. First, the 281 

bone was considered as homogeneous, isotropic, and linear elastic material. There is research 282 

reporting that a difference in peak von Mises stress in the femur between isotropic and 283 

anisotropic assignment was less than 1.2% under the loading conditions of double-leg standing. 284 
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As a result, it is feasible to consider the bone material as isotropic linear elastics, since this 285 

study was conducted under standing load. Additionally, cortical and cancellous bone were not 286 

defined, while the bone property was regarded as a weighted average of cortical and trabecular 287 

elasticity. Despite lack of validation, the value of elastic modulus (7300 MPa) has been adopted 288 

as foot bone material in the majority of studies [36]. Second, the geometry of body representing 289 

cartilage was not obtained from actual cartilage structures, as it is difficult to distinguish these 290 

in CT images. Third, this study created a representative single-subject model of a severe HV 291 

foot (HVA: 22.82°; IMA: 14.14°). Foot structure, such as arch height and toe deformity, may 292 

vary among HV feet; therefore, the presented data should be considered as a first rough 293 

approximation. Lastly, this study considered the skeletal structural difference (i.e., the different 294 

angle in Figure 1) as the major cause of mechanical changes. It should be noted that HV is also 295 

associated with hypermobility of the first metatarsophalangeal joint, which can be simulated 296 

through reducing elastic modulus of forefoot ligaments [11], while the material properties of all 297 

corresponding components were assumed consistent between the patient-specific model and the 298 

normal model in this study. 299 

 300 

5. Conclusion  301 

Internal stress is significant for better understanding of foot biomechanics as well as pathology 302 

of foot problems related to deformities. This study developed FE models of a normal foot and a 303 

severe HV foot to predict the internal metatarsal stress and MTP joint loading during balanced 304 

standing. Generally, increased von Mises stress at metatarsals and decreased joint loading at 305 

MTP were observed in the HV foot in comparison to the normal foot. Specific to the first MTP 306 

joint, the regions with high contact pressure of the severe HV foot exhibited a medial shift. 307 

Findings in this study suggest that load bearing may predispose patients to higher risk of 308 

metatarsal injuries and the functional impairment of the metatarsophalangeal joints. Further 309 

improvement of the FE foot model, including cortical and trabecular bones and inhomogeneous 310 
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property assignment, will be conducted to obtain more accurate predictions for better 311 

comparison.  312 
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 408 

 409 

Fig. 1. Hallux valgus angle (HVA) and intermetatarsal angle (IMA) for hallux valgus foot 410 

model (a) and normal foot model (b). 411 

Fig. 2. The three-dimensional finite element model and the application of boundary and loading 412 

conditions. 413 
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Fig. 3. Comparison of the plantar pressure between experimental measurement (a, c) and 414 

computational prediction (b, d) in balanced standing position. 415 

Fig. 4. Comparison of the von-Mises stress at five metatarsals between normal foot and hallux 416 

valgus foot. 417 

Fig. 5. Comparison of contact pressure at metatarsophalangeal joints between normal foot and 418 

hallux valgus foot.  419 

Fig. 6. Posterior view of contact pressure at the first metatarsophalangeal joint of normal foot (a) 420 

and hallux valgus foot (b). The red rectangles indicate the first MTP joint and the red circles 421 

indicate the regions with high pressure (Unit: MPa).  422 

Fig. 7. Comparison of the resultant joint force at the first metatarsophalangeal between normal 423 

foot (FN) and hallux valgus foot (FS). X: Medial-Lateral direction (+: lateral; -: medial); Y: 424 

Anterior-Posterior direction (+: anterior; -: posterior); Z: Superior-Inferior direction (+: inferior; 425 

-: superior). 426 

  427 
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Table 1. Material properties and mesh element types for the foot model components. 428 

Component Element Type 
Young’s Modulus 

E (MPa) 
Poisson’s Ratio ν 

Cross-section 

Area (mm2) 

Bone[19, 20] Hexahedral solid 7300  0.3  - 

Cartilage[16, 

21] 
Hexahedral solid 1 0.4 - 

Ligaments[21, 

22] 
Tension-only spar 260  0.4  18.4 

Plantar 

Fascia[21, 23] 
Tension-only spar 350  0.4 58.6 

Plate[21] Hexahedral solid 17000 0.4 - 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 
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Table 2. The element type and coefficients of the hyperelastic material used for the encapsulated 444 

soft tissue. 445 

Element 

Type 

C10 C01 C20 C11 C02 D1 D2 

Hexahedral 

solid[24] 

0.08556 -0.05841 0.03900 -0.02319 0.00851 3.65273 0.00000 

 446 
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1. A severe hallux valgus FE models were constructed. 2. Pathological model 
predicted higher metatarsal stress and lower metatarsophalangeal pressure. 3. 
Severe hallux valgus is a potential risk of forefoot pain and functional impairment. 


