

UWS Academic Portal

Efficient k-NN implementation for real-time detection of cough events in smartphones

Hoyos Barceló, Carlos; Monge-Álvarez, Jesús; Shakir, Muhammad Zeeshan; Alcaraz Calero,
Jose M.; Casaseca, Juan Pablo
Published in:
IEEE Journal of Biomedical and Health Informatics

DOI:
10.1109/JBHI.2017.2768162

Published: 02/11/2017

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Hoyos Barceló, C., Monge-Álvarez, J., Shakir, M. Z., Alcaraz Calero, J. M., & Casaseca, J. P. (2017). Efficient k-
NN implementation for real-time detection of cough events in smartphones. IEEE Journal of Biomedical and
Health Informatics, 1-10. https://doi.org/10.1109/JBHI.2017.2768162

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

https://doi.org/10.1109/JBHI.2017.2768162
https://uws.pure.elsevier.com/en/publications/7ce44676-01b9-46ac-b22b-496d838892e0

JBHI-00511-2017.R1 1

Abstract— The potential of telemedicine in respiratory health

care has not been completely unveiled in part due to the
inexistence of reliable objective measurements of symptoms such
as cough. Currently available cough detectors are uncomfortable
and expensive at a time when generic smartphones can perform
this task. However, two major challenges preclude
smartphone-based cough detectors from effective deployment
namely, the need to deal with noisy environments and
computational cost. This paper focuses on the latter, since
complex machine learning algorithms are too slow for real-time
use and kill the battery in a few hours unless specific actions are
taken. In this paper, we present a robust and efficient
implementation of a smartphone-based cough detector. The
audio signal acquired from the device’s microphone is processed
by computing local Hu moments as a robust feature set in the
presence of background noise. We previously demonstrated that
pairing Hu moments and a standard k-NN classifier achieved
accurate cough detection at the expense of computation time. To
speed-up k-NN search, many tree structures have been proposed.
Our cough detector uses an improved vp-tree with optimized
construction methods and a distance function that results in
faster searches. We achieve 18x speed-up over classic vp-trees,
and 560x over standard implementations of k-NN in
state-of-the-art machine learning libraries, with classification
accuracies over 93%, enabling real-time performance on low-end
smartphones.

Index Terms— Cough detection, Mhealth, Efficient
Implementation, k-Nearest Neighbors, Vantage Point Trees.

Manuscript received 28/07/17; revised 27/09/17; accepted 22/10/17. Date of
publication ZZZZ; date of current version 26/10/17. This work was supported
by the Digital Health & Care Institute Scotland as part of the Factory
Research Project SmartCough/MacMasters. The authors would like to
acknowledge support from University of the West of Scotland for partially
funding C. Hoyos-Barceló and J. Monge-Álvarez studentships. UWS
acknowledges the financial support of NHS Research Scotland (NRS) through
Edinburgh Clinical Research Facility. Acknowledgement is extended to
Cancer Research UK for grant C59355/A22878.

*Asterisk indicates corresponding author
C. Hoyos-Barceló, J. Monge-Álvarez, M. Z. Shakir, J.M. Alcaraz-Calero

and P. Casaseca-de-la-Higuera* are with the Centre for Artificial Intelligence,
Visual Communications and Networking (AVCN) School of Engineering and
Computing, University of the West of Scotland, Paisley Campus, Paisley, PA1
2BE, United Kingdom. P. Casaseca-de-la-Higuera is also with the Laboratory
of Image Processing (LPI), ETSI Telecomunicación, Universidad de
Valladolid. 47011, Valladolid, Spain (email: pablo.casaseca@uws.ac.uk,
casaseca@lpi.tel.uva.es).

I. INTRODUCTION

COUGH constitutes the most recognizable symptom in
respiratory disease and is associated with more than one
hundred pathological conditions [1]. The economic burden of
lung diseases has been estimated to be in the order of €96.4
billion per annum in the EU; plus another €283 billion in
opportunity costs due to premature mortality [2]. Chronic
Obstructive Pulmonary Disease (COPD) and asthma are the
most prevalent, with a cost of €6,147–7,443 per patient per
year [2]. Effective and objective tracking of symptoms such as
unexpected increases in cough frequency would allow
physicians to take preventive measures before a critical point
is reached [3], thus avoiding hospitalization and significantly
lowering the treatment costs.

The most common conditions involving chronic cough in
non-smokers are asthma, gastro-esophageal reflux, and rhinitis
[4]. Cough monitors can potentially aid physicians in their
diagnostics, as different illnesses have different coughing
patterns [5]. For instance, patients with bronchitis cough more
than others [6], pneumonia tends to produce short and
low-intensity coughs [7], and asthmatics may produce
nocturnal coughs [8] [5]. Cough assessment methods rely on
subjective questionnaires where data reported by the patient
often has little connection with reality [9] [10]. Leconte et al.
demonstrated that cough frequency correlated with perceived
Quality of Life [11]. However, manually counting cough
events is a tedious and error-prone task, prompting the need of
automatic cough counters.

Automatic cough detection is an established field of
research with a number of systems achieving high sensitivity
and specificity [12] [13]. Most systems in the literature rely on
pattern recognition engines based on features extracted from
cough sounds and other biomedical signals (chest movements,
electrocardiograms, etc.), with the latter acting as support for
the microphone signal [14]. However, the vast majority of
those systems can be considered as expensive and
uncomfortable (i.e., non-wearable during daily activity) [9]
solutions at a time when telehealth has moved towards generic
readily available sensors. The recent advances in smart
phone technology allow their use as intelligent cough
monitoring systems as these are devices that patients can carry
with themselves, and are able to capture sound and run
general-purpose programs.

Efficient k-NN Implementation for Real-Time
Detection of Cough Events in Smartphones

Carlos Hoyos-Barceló, Jesús Monge-Álvarez, Student Member, IEEE, Muhammad Zeeshan Shakir,
Senior Member, IEEE, Jose-María Alcaraz-Calero, Senior Member, IEEE, Pablo

Casaseca-de-la-Higuera*, Member, IEEE,

JBHI-00511-2017.R1 2

A major challenge when using a smartphone as a cough
detector, resides in the need of dealing with noisy
environments when processing the audio signal [15]. Most of
the current systems identify the cough sounds using Mel
Frequency Cepstral Coefficients (MFCC) obtained from the
spectral analysis of the signal. However, this feature set fails
to accurately detect cough sounds in noisy scenarios to an
extent that currently available smartphone-based systems
deactivate cough detection when the Signal to Noise Ratio
(SNR) is perceived to be low [16].

Another significant challenge is battery consumption [15],
since complex machine learning algorithms are prone to kill
the smartphone battery in a few hours, whereas the user would
prefer the app running seamlessly with no effect on the normal
phone functionality. With no visible impact on daily activity,
patients would be less conscious of the medicalization of their
lives. The work in [9] solved this problem by using the phone
only for data acquisition and off-loading the processing to an
external server. Even in these conditions, the use of the phone
connectivity and storage modules can constitute a significant
burden in terms of consumption. An ideal cough monitor
should withstand at least 24 hours of operation, but current
classification systems are very computationally expensive,
with several studies reporting battery issues [9] [17]. A call
was made to develop more energy-efficient pattern recognition
engines for mobile platforms [18].

Our preliminary work in [19] proposed using local Hu
moments in the time-frequency domain as a robust feature set
to carry out cough detection in noisy environments.
Hu-Moments have been extensively used in image processing
for object recognition [20], and were recently extended for
speech emotion recognition [21]. By using them together with
a k-NN (nearest neighbours, with k=1) classifier, we achieved
sensitivity and specificity values of 94.17% and 92.16%
respectively for SNR=15dB. This showed the synergy of local
Hu-Moments with a widely used classifier in audio
processing.

The advantage of k-NN over other classifiers is that it does
not require a costly training phase, allowing the use of
adaptive learning from the patient’s input. Adaptive learning
has shown superior performance over trained-once classifiers,
with over 30% better recall rates [22] [23]. It also naturally
solves the problem of sensor variability between phone
devices. However, the main disadvantage is that queries are
slow, as for every classification it must compute the distance

of the new sample to all instances in the data set. In
benchmarks, instance-based classifiers such as k-NN scored
last in terms of speed and battery use [24]. Furthermore,
accuracy in these classifiers is dependent of the size of the
training set. So to get good detection rates, the database has to
be large, thus making classification slower. Space and
memory limitations become relevant as the entire database
must be stored in the device and loaded into memory.

This paper presents a robust and efficient implementation of
a smartphone-based cough detector. The audio signal acquired
from the device’s microphone is processed by computing local
Hu moments as a robust feature set in the presence of
background noise. These features feed an optimized k-NN
classifier for final cough detection. A study on the effect of
different optimizations of the k-NN algorithm is presented to
propose a novel optimized version of the classifier. The
proposed classifier speeds-up the nearest neighbor search
using Vantage Point Trees where vantage points are selected
over reduced datasets to optimize their construction. In
addition, a simplified distance function is employed to
speed-up calculations. Our results show that the proposed
cough detector outperforms optimized implementations in
state-of-the-art standard machine learning libraries while
achieving high classification accuracy, thus enabling real-time
performance on low-end smartphones.

II. OVERVIEW OF THE SYSTEM
An overview of the proposed system is sketched in
. The audio signal from the device’s microphone is sampled at
8.82 kHz, a frequency shown appropriate for cough event
detection [25]. After that, 50 ms windows with 25 ms shift are
extracted for classification using a Kaiser window with

3.5β = . As a starting point, the power spectral density (PSD)
for each window is extracted and normalized. Initial speed-up
is performed at this stage by using optimized FFT algorithms
and taking advantage of the 25 ms window overlap to perform
only 50% of the required computations. A feature extraction
block carries out the computation of local Hu moments as
detailed in the Appendix to subsequently feed the pattern
classification module where the efficient versions of the k-NN
algorithm have been implemented.

Fig. 1. Overview of the proposed cough detector

Signal	

Preprocessing

Feature	

Extraction

Pattern	

Classification

Local	
 Hu	
 moments Optimized	
 k-­‐NN Windowing	
 +	
 PSD	

calculation

JBHI-00511-2017.R1 3

.

III. K-NN OPTIMIZATION

K-NN classifiers store a set of instances with pre-assigned

classes, known as the training set, and classify new instances
by assigning them the most common class among the k closest
relatives in that set. To determine closeness, k-NN converts
feature vectors to points in a multidimensional metric space;
then, it measures the distance between points according to a
distance function [26]. Fig. 2 illustrates classification using
k-NN. The logic behind this classifier is that less similar
instances are less likely to belong to the same class. In
two-class classification problems, k is usually set to an odd
number to prevent ties. If the classes in the training set are
unbalanced, a large k skews the results towards the majority
class, whereas low values of k are less stable against outliers.
As a result, the optimum k is usually set experimentally.

Fig. 2. Illustration of the classification process with k-NN, and how changing
k impacts classification. In the example, a point located at X would be
classified as B if k=3, or as A if k=5.

A. Metric trees
Basic (naïve) k-NN search has O(n) cost because all points

in the training set are compared against the query, even if they
are far apart in the metric space. Metric trees [27] are tree-like
data structures that logically split the metric space in
sub-regions, with each child node containing about half the
points of its parent. This partitioning allows to perform binary
search on the tree, which brings down the cost of queries to
O(log n). The following subsections describe three popular
structures namely, KD-trees, Ball-trees, and (Vantage Point)
VP-trees.
1) KD-trees
KD-trees partition the geometric space using hyperplanes as
shown in Fig. 3. Non-leaf nodes have two child nodes, and
define hyperplanes that split the metric space alongside one
dimension. Points below a certain threshold value go to the
left child, and the rest go to the right child. The thresholds can
be chosen in several ways. For our experiments, we
implemented the Median of Widest Dimension construction
method described by Kibriya [28]. Branching stops whenever
a child node contains equal or fewer points than a threshold
referred to as bucket size. Lower values of this parameter
result in more nodes and smaller regions. The performance of
KD-Trees degrades as the dimensions increase, becoming
slower than linear search [28].

Fig. 3. Illustration of a kd-tree created by partitioning the metric space with
hyperplanes.

Fig. 4. Search is limited to those regions that overlap with the ball centered at
the query point with radius equal to the distance to the current best k-NN.

Queries in KD-Trees start with a depth-first search to the
leaf node that would contain the query point (see Fig. 4). Then,
it calculates the distance to all the points within this node. The
distance to the best k-Nearest Neighbor found so far will be
used as the radius of a hyperball centered at the query point. If
the hyperball is within the margins of the region, the algorithm
stops; otherwise, the algorithm goes back up one level in the
tree and checks for overlaps between the ball and the other
child nodes, visiting them and updating the ball radius as
better neighbors are found. The backtracking ends once the
root node has been explored.

2) Ball-trees

Fig. 5. Illustration of a ball-tree created by clustering points inside minimal
hyper-balls

As illustrated in Fig. 5, ball-trees partition the space through
the use of minimal hyper-balls that completely contain all of
their children, while overlapping the least with other sibling
spheres. Unlike KD-Trees that are based on coordinate values,
ball-trees define regions in terms of relative distance to the

JBHI-00511-2017.R1 4

centroids of child nodes. Queries exploit the reverse triangle
inequality property of metric spaces to skip the evaluation of
nodes that cannot contain points closer than the current best
candidate. Ball-trees are hard to construct optimally, and also
become less efficient than linear search for high dimensions
[28]. For our experiments, we implement the top-down
Ball-tree construction method proposed by Omohundro [29].
Searches first visit the hyper-balls whose centroid is closest to
the query point, and also those that overlap with the ball
centered at the query, with radius equal to the distance to the
best k-NN found so far.

3) VP-trees
Yianilos et al. [30] proposed Vantage Point trees (vp-tree), a
structure similar to ball-trees, except that the center of the
hyper-ball is always a point in the node, termed the vantage
point. To split the space, the radius µ of this hyperball is set to
a value that encompasses half of the points of the parent node,
leaving the rest outside (see Fig. 6). The left child will contain
all the inner points, whereas the right outer child will contain
the rest.

Fig. 6. A non-leaf node in a vp-tree is defined by a vantage point and a radius
µ that splits the points in 2 disjoint sets.

Search commences by comparing the distance of the query
point to the vantage points of non-leaf nodes, starting from the
root node. If the distance is lower than µ, the inner child is
explored, otherwise the outer child. Once a leaf-node is
reached, it measures the distance of the query to all the points
contained in it, storing the distance dk to the current best
k-NN. This value will define the radius of a hyperball with the
query point at its centre. If the hyperball does not intersect
other regions, the search ends; otherwise, we go up the tree
and check for regions that overlap with the ball, updating the
values as better candidates are found, until the root node is
evaluated. To check if there is an overlap, we measure the
distance τ of the query to each parent vantage point, with
overlaps occurring if 𝑑! ≥ 𝜏 − 𝜇 (see Fig. 7).

Fig. 7. In this example, the query does not overlap with the hyperball of the
vantage point, so points inside that ball can be safely ignored.

B. Distance functions
Distance functions are used to calculate the relative

closeness between two instances or points in the metric space.
They can have impact both in classification accuracy and
efficiency, especially for the latter, when complex
computations are involved in the calculations. The most
commonly used metric is Euclidean distance (L2-norm of the
difference vector), which computes the distance between
points p = (p1, p2,..., pn) and q = (q1, q2,..., qn) ∈ ℝn, according
to:

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑝, 𝑞 = (𝑞! − 𝑝!)!!
!!! (1)

As the square root is an expensive operation, we considered
two other distance functions that are simpler to compute,
paying a small accuracy penalty in exchange for faster
classification times. Manhattan distance (2), for example, is
the sum of the absolute differences for each coordinate
(L1-norm of the difference vector).

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑝, 𝑞 = 𝑞! − 𝑝!!
!!! (2)

We also consider the squared L2-norm of the difference
vector, which is denoted as Euclidean2 in (3). In this case, we
avoid the calculation of the square root for efficiency. This
function is a pseudo-metric, as it does not always satisfy the
triangle inequality on which many metric trees are based. It is
thus worth noting that using it can lead to accuracy loss when
building Ball-trees or VP-trees.

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛! 𝑝, 𝑞 = (𝑞! − 𝑝!)!!
!!! (3)

C. Database pruning
One common way to improve search times in

instance-based classifiers is to reduce the size of the database.
Hart’s algorithm, also known as Condensed Nearest
Neighbour, is an algorithm for data reduction that aims to
remove redundant instances of the database [31]. In our
experiments, we evaluated the different implementations using
a pruned training set constructed with Hart’s algorithm. The
size of the pruned database was 17.5% of the original one.
Even though this can lead to significant savings in
computation time, the impact on the classification accuracy
can be major.

D. Feature normalization
Direct distance calculation from non-normalized feature

vectors can result in one dimension dominating over the
others. For example, if a feature f1 ranges from [0,100] and f2
ranges [0,1], f1 will have more impact in the returned distance
even if f2 is a better discriminator. To avoid this, a common
practice in machine learning is to normalize all values in the
training set so every dimension has a [0,1] range, scaling the
feature vector of the query points accordingly for proper
comparison.

JBHI-00511-2017.R1 5

IV. EXPERIMENTS

A. Experimental setup
We implemented different versions of the k-NN classifier.

The baseline one used linear search (no optimization) and was
used as a reference for comparison with the optimized version,
and as first testbed to assess the impact of different distance
metrics, normalized/non-normalized feature sets, and pruning
of the database using Hart’s “Condensed NN” algorithm [31].
Due to the lower performance in cough detection for k>1 [19],
we based our experiments in 1-NN. The optimized versions
respectively used VP-Trees, KD-Trees and Ball-Trees
structures for fast search. All the trees perform partial sort to
find the k-NN. Once a decision on the structure was made, we
evaluated different tree construction strategies and the impact
of parameters such as the bucket size in the search.

As performance metrics, we used sensitivity and
specificity, respectively computed as the ratios Detected cough
windows/Total cough windows, and Identified non-cough
windows/Total non-cough windows. Overall accuracy was also
computed as the pooled average of those values weighted with
the respective cough/non-cough frequencies. In terms of
efficiency, we used the processing time and calculated the
relative speed-up compared with a standard base
implementation. For this standard implementation, we chose
the widely used Machine Learning library Weka. A freely
available version of the library for the Android platform can
be found in [32]. Weka’s naïve (non-optimized) algorithm
reads the training set and normalizes it. Then, for each query,
it computes the distances from all points in the database to the
query point, sorts the list, and returns the k closest neighbours
to the query. Weka also features optimized versions of k-NN
using KD-Trees and Ball-Trees. We used these versions for
comparison purposes.
 The smartphone used for the tests is a Sony Xperia Z2,
running on Android 5.1.1. The computed times obtained in
this study correspond to an average of five measures taken for
each option.

B. Cough database
The cough database used in evaluation consists of a library

of sounds recorded at 44.1 kHz with a precision of 16 bit, then
down-sampled to 8820Hz and grouped in windows of 441
samples (50ms) with 50% overlap. The database contains
patient and voluntary cough events and other relevant audio
events such as speech, laugh, throat clearing, etc. The events
were contaminated with background noise from various
sources, such as environmental noise from roadworks, street
with vehicles passing by, a crowd, etc. The sounds in the
database have a total duration of 1245s. The database was split
into three sets: training (60%), validation (10%), and testing
(30%). The training set has a total of 30139 windows, whereas
the test set has 15069. We kept the same ratio of cough/no
cough windows for all these sets, at 18.57%, and we included
samples with SNR values between -15 and 0 dB. To deal with
the unbalance between classes, we performed importance
sampling using the Distinct-Borderline2 Synthetic Minority
Oversampling technique (DB2SMOTE) and a cost matrix as
in [19]. Only the feature vector and label for each window are

stored in the device. The whole database is contained in a
9.8MB file stored in an efficient binary format.

C. Results and discussion
1) Impact of distance metric, normalization, and size of the
database in baseline model

Fig. 8 shows a scatter diagram of the computation time vs.
overall accuracy for our linear search (non-optimized) k-NN
implementation. The relevant parameters for this analysis are
been coded as follows:

1) Normalized/Unscaled features (color coded);
2) Different distance metrics (shape coded);
3) Full/Pruned (17.5%) database (transparency coded).

Fig. 8. Computation time vs. overall accuracy for non-optimized k-NN
classifier with: 1) Normalized/Unscaled features (color coded); 2) Different
distance metrics (shape coded); 3) Full/Pruned (17.5%) database (transparent).

We can conclude on the following from the figure:

• The Euclidean2 distance function achieves the same
results as Euclidean in terms of accuracy, with lower
computation times. Manhattan distance did not provide
speed advantages over Euclidean2, while being itself
less accurate. Thus, for further analysis, we will keep
the comparison between Euclidean and Euclidean2,
setting Manhattan aside for the sake of simplicity.

• Normalization has a positive impact on the accuracy of
the classifier for non-pruned databases. This can be
used later on to improve accuracy of the finally
selected optimized classifier.

• We also observed that the use of Hart’s algorithm
reduces	
 the accuracy of the classifiers below acceptable
levels, even though the computational savings are also
significant. This is especially relevant in terms of
sensitivity, as can be seen in Fig. 9, where the scatter
plot shows sensitivity vs. specificity.

JBHI-00511-2017.R1 6

Fig. 9. Sensitivity vs. Specificity for linear search k-NN classifier with: 1)
Normalized/Unscaled features (color coded); 2) Different distance metrics
(shape coded); 3) Full/Pruned (17.5%) database (transparency coded).

2) Efficiency improvement from metric trees

Fig. 10 presents a scatter diagram of the computation time vs.
overall accuracy for different optimizations (color coded) of
the k-NN algorithm using metric trees. The standard Weka
library implementations are presented for the sake of
comparison. We have used transparency coding in the figure
to specify which implementation (Weka or ours) was used.

Weka’s algorithm performs some steps that are unnecessary in
1-NN search, like sorting the array of distances. As this
operation has a substantial O(n·log(n)) cost, we also include
our own 1-NN linear-search algorithm for a more apt
comparison. The distance metrics are specified in the figure
using shape coding as before.

Fig. 10. Computation time vs. overall accuracy for different k-NN
implementations using metric trees. Baseline non-optimized linear versions
are also presented for comparison. Parameters are encoded as follows. 1) Type
of structure, metric trees (KD, VP and Ball), and non-optimized version (color
coded); 2) Distance metric (shape coded); 3) Implementation, ours or standard
library Weka (transparency coded).

The following conclusions can be extracted from the figure:
• Our linear-search 1-NN classifier is one order of

magnitude faster than Weka’s implementation, remarking
the advantages of skipping the sort step in the 1-NN case.

• VP-Trees are the fastest structure, and present an
unforeseen synergy with Euclidean2 distance. The
resulting classifier is one order of magnitude faster than
the one using Euclidean, and three orders of magnitude
faster than the Weka’s base implementation.

• The other structures, particularly ball-trees, yield
unacceptable computation times, even higher than linear
search. A possible explanation for this is the “curse of
dimensionality”, which results in poor performance for
KD-trees and Ball-trees for dimensions larger than 10
[33].

• We did not expect Euclidean2 to be a good distance
function for VP-trees, as it violates the triangle inequality
on which this structure is based, so we sought an
explanation. Ting Liu et al. reported that metric trees
typically find a very good nearest neighbor candidate in
the first moves, then spend up to 95% of the time
verifying that they got it right [34]. From this, we infer
that Euclidean2 results in less overlaps with surrounding
regions, speeding up the queries.

We rank the classifiers in terms of speed-up, which is
computed as the time required by Weka to classify all
instances, divided by the time it takes the other classifiers to
do the same.

• The default naïve k-NN algorithm available in the Weka
library normalizes the dataset and takes an average
769,728ms to classify the 15069 test samples with
95.16% accuracy. At roughly 51ms per sample, the
performance is unacceptably slow for real-time use, as
new windows are generated every 25ms, and the system
must also acquire the audio signal, calculate spectral
features and compute the Hu Moments.

• Our linear-search 1-NN takes 82663ms when using
Euclidean2, which is 9.31x faster than Weka.

The following experiment shows the impact of carrying out
feature normalization in the preferred VP-tree structure. Table
I shows computation time and overall accuracy for the
VP-Trees implementations using both Euclidean and
Euclidean2 distances. The performance obtained with Weka
implementation using both the full database and a pruned one
is also presented for the sake of comparison. Table II
summarizes the speedups achieved when using our VP-Trees
implementations compared to Weka. We can extract the
following conclusions from the tables:

• Using non-normalized versions of the feature set
significantly improves efficiency at a low accuracy cost.

• The speedup obtained from VP-Trees using Euclidean2
distance is very significant (425x and 559x for normalized
and unscaled features respectively) while keeping high
classification performance. The speed-up over classic
VP-Trees using Euclidean distance is 18.12x for
normalized features and 13.23x for unscaled.

• Even in comparison with a pruned database, the speedup
is highly valuable (71x and 94x for normalized and
unscaled features respectively), especially considering
that Weka’s classification performance drains in this case.

JBHI-00511-2017.R1 7

TABLE I
COMPUTATION TIME VS. OVERALL ACCURACY VP-TREES IMPLEMENTATIONS

COMPARED TO WEKA (FULL AND PRUNED DATABASE).

Accuracy (%) Time (ms) Implementation Distance Normalized

95.16 769728 Weka (full DB) Euclidean Yes

95.16 762757 Weka (full DB) Euclidean2 Yes

87.69 129239 Weka (pruned DB) Euclidean Yes

87.60 124239 Weka (pruned DB) Euclidean2 Yes

95.16 32818 VP- Trees Euclidean Yes

94.04 1811 VP- Trees Euclidean2 Yes

93.24 1377 VP- Trees Euclidean2 No

94.46 18226 VP- Trees Euclidean No

TABLE II
SPEEDUP OF VP-TREES IMPLEMENTATIONS COMPARED TO WEKA WITH FULL

AND PRUNED DATABASE

Distance Normalization
Speedup

Accuracy
(%) Full

Database
Pruned
Database

Euclidean Normalized 23.45 3.94 95.16%

Euclidean Unscaled 42.23 7.09 94.46%

Euclidean2 Normalized 425.03 71.36 94.04%

Euclidean2 Unscaled 558.99 93.86 93.24%

According to the results presented so far, we select the
VP-Tree structure together with Euclidean2 distance as our
baseline optimized implementation for the k-NN algorithm.
The following experiments explore further optimizations of
this structure for the final proposal.

D. Optimizing VP-Tree construction for Euclidean2 distance
1) Selection of vantage points

The efficiency of k-NN search in VP-Trees depends on the
number of regions that overlap with the query’s hyperball.
When creating VP-Trees, how the vantage points are picked
up has a significant impact on the odds of overlap. Most
implementations pick the vantage points at random to keep the
cost of building the tree O(n·log(n)), but Yanilos et al.
described a method for picking vantage points that minimizes
overlaps [30]. They found that vantage points that maximized
the second moment of their distances from all the other points,
which are notably located in the corners of the space (see Fig.
11), resulted in faster searches [30].

Fig. 11. Two VP-Trees on the same set of points. The left one assigns vantage
points at random while the right one picks points at the corners of space.

Building an optimal vp-tree according to Yanilos’s criteria
has a prohibitive O(n2·logn) cost, so we implement instead an
approximation; for nodes with over 1000 points, we only
evaluate 10% of candidate vantage points against 25% of the
remaining points in the node. As tree creation has a random
component, this naturally results in random performance of
the classifier. To ensure deterministic behavior between
sessions of the app, we store the generated tree in a
binary-efficient file and load it at start-up. We found out that
searches on trees loaded from memory were up to 60% faster
than on newly-constructed trees, which we attribute to better
cache locality.

2) Effect of bucket size

The bucket size chosen at VP-Tree construction controls the
size and number of regions in which the space is subdivided.
Higher values make searching each region slower, but since it
also reduces the number of overlapped regions, there is a
range that results in faster queries.

A larger bucket size improves accuracy. Wrong results
when using Euclidean2 are caused by the algorithm not
visiting the region that contains the true k-NN, and larger
bucket sizes increase the odds that the nearest neighbour will
be found on the first leaf nodes visited.

We tested bucket sizes ranging from 1 to 500 points. Fig.12.

shows the accuracy obtained using both tree construction
methods. For reference, we also include the obtained accuracy
using Euclidean distance as an upper bound, and for the lower
bound we used the so-called “Defeatist” search, which stops
after exploring the first leaf node [34]. The following
conclusions can be extracted from the figure.

• Even though VP-trees created using Yanilos’s criteria were
notably faster, trees using this construction method did not
pair well with Euclidean2 distance, reducing accuracy and
sensitivity by a significant amount. We therefore chose the
random method as it performed better and was fast enough
for our real-time needs. However, the use of Yanilos’
construction method can be an option for slower devices.

• For random method, accuracy increases proportionally to
bucket size until the value of 20 is reached, then stops
improving. This bucket size was thus finally selected, as it
was also fast enough for real-time computation.

JBHI-00511-2017.R1 8

Fig.12 Overall Accuracy vs. bucket size for different Vantage point pick-up
strategies in VP-Trees construction. Exact k-NN and defeatist strategy are also
presented as upper and lower bounds for comparison.

3) Multiple VP-trees
A final optimization to improve accuracy at a expense of

higher computation times would rely on the use of multiple
VP-trees to finally pick the one providing the closest nearest
neighbor. Fig. 13 shows the visual projection in 2D space of
VP-Trees constructed with different bucket sizes. Spots that
violate the triangle inequality when using Euclidean2 distance
are marked in yellow. There are two points of note here:
• For bucket sizes above 20, yellow points become confined

to the boundaries of the sub-regions. Errors are exclusively
dependent on tree structure.

• By picking vantage points at random, the final result is that
two VP-Trees will have totally different boundaries despite
containing the same points. In other words, it is unlikely
that errors appear in the same place for both trees. So,
using multiple trees and selecting the one with the closest
nearest neighbour will yield higher accuracies.

Fig. 13 VP-Trees with bucket sizes 2, 8, 30, and 50 (clockwise, starting from
top-left). Points in yellow mark points in space in which Euclidean2 distance
returns the wrong k-NN.

We test k-NN search on several Random VP-trees using
Euclidean2, updating the k-NN if a later vp-tree finds a better
candidate. The results using one, two, or three vp-trees are
displayed on Fig. 14. Using two vp-trees significantly improves
accuracy, whereas using 3 yields accuracies in line with the
exact k-NN classifier. A 3-vp-tree classifier using normalized
features achieves 95.07% accuracy in 5824ms, which is still a
speed-up of 132.16x over Weka’s implementation.

Fig. 14 Accuracy vs. processing time of multi-VP-tree classifier with 1, 2, or 3
VP-trees, for both normalized and unscaled features. Baseline accuracies for
exact k-NN classification are presented for reference.

This solution has an increased memory cost, as it requires to
store extra VP-tree structures. However, this cost is minimized
since all tree structures share the same data points.

V. RELATED WORK
Since the introduction of VP-trees, many studies have used

them to speed up k-NN search. Most research focus, however,
has been on improving efficiency of k-NN search in high
dimensions, where performance degrades to linear search.
Approximate k-NN algorithms typically project points to a
lower-dimensional space to handle the curse of
dimensionality, and then carry the search on a standard
VP-tree [35].

Because VP-trees are based on the triangle inequality,
researchers rarely test them with distance functions that do not
satisfy it. In cases where they do, they modify the pruning
function to enforce correctness [36]. When this is done for the
Euclidean2 metric, it results on exact k-NN that is just slightly
faster than Euclidean [37].

Ting Liu et al proposed a refinement to Defeatist Search
that duplicates points and assigns them to more than one leaf
node [34]. However, implementation is tricky, and the idea
assumes the tree will remain static, which is not the case of
our system.

Our work shows that a Euclidean2 metric with no
correctness enforcement is a simpler way to improve
efficiency of VP-trees, obtaining high speed-ups over standard
VP-tree search even at low dimensions. We also identified
additional strategies to improve accuracy or speed to meet the
performance goals of the target platform.

VI. CONCLUSION AND FUTURE LINES
This paper presents a robust and efficient implementation of

a smartphone-based cough detector. Previous studies

Yanilos	
 et	

al.	
 [30]	

Random	

Exact	
 k-­‐
NN	

Defea;st	

0.86	

0.88	

0.9	

0.92	

0.94	

0.96	

0	
 100	
 200	
 300	
 400	
 500	

Ac
cu
ra
cy
	

Bucket	
 size	

0.9	

0.92	

0.94	

0.96	

1000	
 10000	

Ac
cu
ra
cy
	

Time	
 (ms)	

Unscaled	
 Normalized	

Exact	
 k-­‐NN	
 Exact	
 normalized	

1	
 VP-­‐Tree	

2	
 VP-­‐Trees	

	

3	
 VP-­‐Trees	

	

JBHI-00511-2017.R1 9

discarded the k-NN classifier as unacceptably slow and
resource hungry for real-time processing in smartphones,
while others had pointed out that the classification stage was
the costliest part of the system, taking 31–44.9% of the CPU
time, and being up to 8 times slower than the feature
extraction module [38] [39]. The standard (non-optimized)
Feature calculation of Hu Moments takes approximately 22
ms per window when implemented on the smartphone used in
our experiments. Adding the 51ms to classify each window
with Weka’s implementation prevented real-time detection, as
new windows are generated every 25 ms.

We unveiled an interesting synergy between VP-trees and
Euclidean2 distance that results in a k-NN classifier that is fast
and able to perform real-time detection on smartphones,
without needing GPU acceleration or server off-loading. Our
implementation classifies a new window in less than 1% of the
CPU time spent computing the feature vector, performing the
overall computation in less than 23ms.

Our next goal will be to improve the efficiency of the rest of
the modules of the system, to optimize database size, detect
and correct false positives, and maximize the battery life of the
device. To improve the accuracy in real life-scenarios, we plan
to include a self-training module for personalized calibration.
Such a module would increase the computation cost, as it
involves updating the indexing tree. For efficiency reasons, it
should not continuously run all the time, but rather would only
be activated at user request for short-period sessions.

APPENDIX. COMPUTATION OF LOCAL HU MOMENTS
Local Hu moments are computed for each signal window

w[n], n=1,…N, extracted from the acquired audio signal. As
mentioned in Section II, a normalized PSD is computed
PSD[l], l=1,…Nfft, where Nfft=4096. The next step calculates
the logarithm of the spectral energies for every window in a
series of bands defined by a filterbank in the Mel scale:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

masf

ff
mkk fHfPSDmE

min

][]·[log)(Mm <≤0 (1)

where k refers to the k-th window and m denotes each filter
within the filterbank. The f values correspond to Nfft discrete
frequencies in the range [fmin, fmax], where minf and maxf are 0
and 2 kHz, respectively. The filterbank in the Mel scale is
defined as:

()

()
()()

() ()() () ()()
() ()

()()
() ()() () ()()

() ()

()⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+≥

+<≤
−+−−+

−+

<≤−
−−−−+

−−
−<

=

1,0

1,
1·11

1·2

1,
1·11

1·2
1,0

mCf

mCfmC
mCmCmCmC

fmC

mCfmC
mCmCmCmC

mCf
mCf

fHm
 (2)

C(m) Mm ≤≤0 are the central frequencies for each filter
in the filterbank [Hz], uniformly spaced between minf and

maxf in the Mel scale. Conversion from natural frequencies to
the Mel scale and vice versa is performed as:

()700][1·log2595][10 HzfMelf += (3)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 110·700][2595

][Melf
Hzf (4)

The total number of employed filters is 75=M .
Consequently, after performing this step for all the signal
windows, a ()()1−× MK matrix was obtained, with K the
number of signal windows.

Next, the local Hu moments of the energy matrix E are
calculated by dividing E into ()()()1−× wMK blocks ijB , with
w the block size. In our calculation, we used 5=w as in [21]

() ()

() ()⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+

−+

=

−+−+ 1··

1··

11 wjwEjwE

wjwEjwE
B

wiwi

ii

ij

!
"#"

…
 (5)

Ki …1= ()()11 −= wMj …
The latest ()1−w blocks, corresponding to KwKi ,,2…+−=

, are padded with zeros up to the size ()ww× . We got the first
invariant momentθ of each ijB as:

() ()2,00,2 ==+=== qpqp ηηθ (6)

() ()
()()
,

, ,
0,0

p q
p q

ρ

µ
η

µ
= () 22++= qpρ (7)

() () () ()∑∑
= =

−−=
w

u

w

v

qp vugvvuuqp
1 1

,··,µ (8)

() ()vuBvug ij ,, = …,2,1,0, =qp

In (8), u and v are () ()0,00,1 ===== qpqpu ϕϕ and

() ()0,01,0 ===== qpqpv ϕϕ , with:

() ()∑∑
= =

=
w

u

w

v

pp vugvuqp
1 1

,··,ϕ (9)

All θ are used to build a real ()()()1−× wMK matrix, Q.
To conclude, the discrete cosine transform (DCT) is computed
for each row in Q and coefficients 2-14 are finally kept. The
result is a ()13×K matrix TQ, being the rows of this matrix the
Hu moments for each window in the signal.

ACKNOWLEDGMENT
The authors would like to thank the SmartCough clinical

team at the University of Edinburgh. Dr. Lucy McCloughan,
Prof. Brian McKinstry, Dr. Hillary Pinnock, and Dr. Roberto
Rabinovich, who provided valuable support in clinical matters.

Additional thanks are given to Lorna Stevenson, Dave
Bertin, and Jill Adams, from Chest Heart and Stroke Scotland,
for setting up the patient panel for the SmartCough project.

REFERENCES
[1] G. A. Fontana, and J. Widdicombe, "What is cough and what should be

measured?," Pulm Pharmacol Ther, vol. 20, no. 4, pp. 307-312, 2007.

[2] European Respiratory Society (ERS), “The economic burden of lung
disease,” in European Lung White Book, Available: Chapter 2. pp.
16-27, 2005.

[3] J. Smith and A. Woodcock, “Cough and its importance in COPD,”
International Journal of Chronic Obstructive Pulmonary Disease, vol.
1, no. 3, pp. 305-314, 2006.

JBHI-00511-2017.R1 10

[4] R. S. Irwin, “Assessing Cough Severity and Efficacy of Therapy in
Clinical Research: ACCP Evidence-Based Clinical Practice
Guidelines,” Chest, vol. 129, no. 1, pp. 232s-237s, 2006.

[5] S. Ranjani, V. Santhiya, and A. Jayapreetha, "A Real Time Cough
Monitor for Classification of Various Pulmonary Diseases," in Third
International Conference on Emerging Applications of Information
Technology (EAIT), pp. 102-105, Kolkata, Nov. 29, 2012.

[6] J. Hsu et al., “Coughing frequency in patients with persistent cough:
assessment using a 24 hour ambulatory recorder,” European
Respiratory Journal, vol. 7, pp. 1246–1253, 1994.

[7] Y. A. Amrulloh, U. R. Abeyratne, V. Swarnkar, R. Triasih and A.
Setyati, “Automatic cough segmentation from non-contact sound
recordings in pediatric wards,” Biomedical Signal Processing and
Control, vol. 21, no. August, pp. 126-136, 2015.

[8] J. Smith and A. Woodcock, “New Developments in the Objective
Assessment of Cough,” Lung, vol. 186, no. 1, pp. 48-54, 2008.

[9] E. C. Larson, T. Lee, S. Liu, M. Rosenfeld and S. N. Patel, “Accurate
and Privacy Preserving Cough Sensing using a Low-Cost
Microphone,” in UbiComp '11, pp. 375-384, Beijing, Sep. 17-21, 2011.

[10] A. M. Li et al., “Cough frequency in children with mild asthma
correlates with sputum neutrophil count,” Thorax, vol. 61, pp. 747-750,
2006.

[11] S. Leconte, G. Liistr, P. Lebecque and J.-M. Degryse, “The objective
assessment of cough frequency: accuracy of the LR102 device,”
Cough, vol. 7, no. 11, pp. 1-8, 2011.

[12] J. Amoh and K. Odame, “DeepCough: A Deep Convolutional Neural
Network in A Wearable Cough Detection System,” in IEEE
Proceedings of Biomedical Circuits and Systems Conference (BioCas
2015), pp. 438-441, Atlanta, 2015.

[13] S.-H. Shin, T. Hashimoto and S. Hatano, “Automatic Detection System
for Cough Sounds as a Symptom of Abnormal Health Condition,”
IEEE Transactions on Information Technology in Biomedicine, vol. 13,
no. 4, pp. 486-493, 2009.

[14] T. Drugman et al., “Objective Study of Sensor Relevance for
Automatic Cough Detection,” Journal of Latex Class Files, vol. VI, no.
1, pp. 1-8, 2007.

[15] E. Agu et al., "The smartphone as a medical device: Assessing
enablers, benefits and challenges," in 2013 IEEE International
Conference on Sensing, Communications and Networking (SECON),
pp. 76-80, New Orleans, LA, USA, 2013.

[16] S. Larson et al., “Validation of an Automated Cough Detection
Algorithm for Tracking Recovery of Pulmonary Tuberculosis
Patients,” Plos one, vol. 7, no. 10, pp. 1-10, 2012.

[17] M. Sterling, H. Rhee and M. Bocko, “Automated Cough Assessment
on a Mobile Platform,” Journal of Medical Engineering, vol. 2014, pp.
1-9, 2014.

[18] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez and S. Pastrana,
“Power-aware anomaly detection in smartphones: An analysis of
on-platform versus externalized operation,” Pervasive and Mobile
Computing, vol. 18, pp. 137-151, 2015.

[19] J. Monge-Álvarez, C. Hoyos-Barceló, P. Lesso, J. Escudero, K. Dahal
and P. Casaseca-de-la-Higuera, “Effect of Importance Sampling on
Robust Segmentation of Audio-cough Events in Noisy Environments,”
in 38th Annual International Conference of the IEEE EMBC, pp.
3740-3744, Orlando, Florida, 2016.

[20] L. Zhang, F. Xiang, J. Pu and Z. Zhang, “Application of improved HU
moments in object recognition,” in Proc. Int. Conf. on Automotion and
Logistics, pp. 554-558, Zhengzhou, 2012.

[21] Y. Sun, G. Wen and J. Wang, “Weighted spectral features based on
local Hu moments for speech emotion recognition,” Biomed Signal

Process Control, vol. 18, no. April, pp. 80-90, 2015.

[22] K. Yatani and K. N. Truon, “BodyScope: A wearable acoustic sensor
for Activity Recognition,” in UbiComp '12, pp. 341-350, Pittsburgh,
Sep. 5-8, 2012.

[23] V. Könönen, J. Mäntyjärvi, H. Similä, J. Pärkkä and M. Ermes,
“Automatic feature selection for context recognition in mobile
devices,” Pervasive and Mobile Computing, vol. 6, pp. 181-197, 2010.

[24] R. E. Guinness, “Beyond Where to How: A Machine Learning
Approach for Sensing Mobility Contexts Using Smartphone Sensors,”
Sensors 15, pp. 9962-9985, 2015.

[25] P. Casaseca-de-la-Higuera et al., "Effect of downsampling and
compressive sensing on audio-based continuous cough monitoring," in
Proccedings of the IEEE Annual International Conference of the
Engineering in Medicine and Biology Society, pp. 6231-6235, Milan,
Italy, 2015.

[26] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor
Nonparametric Regression,” The American Statistician, vol. 46, no. 3,
pp. 175-185, 1992.

[27] T. Liu, “Fast Nonparametric Machine Learning Algorithms for
High-dimensional Massive Data and Applications,” School of
Computer Science Carnegie Mellon University, Pittsburgh, 2006.

[28] A. M. Kibriya, Fast Algorithms for Nearest Neighbour Search,
Hamilton, New Zealand: The University of Waikato, 2007.

[29] S. M. Omohundro, “Five balltree construction algorithms,”
International Computer Science Institute of Berkeley, California, 1989.

[30] P. N. Yianilos, “Data Structures and Algorithms for Nearest Neighbor
Search in General Metric Spaces,” in Forth ACM/SIGACT-SIAM
Conference on Discrete Algorithms (SODA), pp. 311-321, Austin, Jan.
25-27, 1993.

[31] P. E. Hart, “The Condensed Nearest Neighbor Rule,” in IEEE
Transactions on Information Theory 18, vol. 14, no. 3, pp. 515-516,
May 1968.

[32] R. Marsan, “Weka for Android,” [Online]. Available:
https://github.com/rjmarsan/Weka-for-Android .

[33] R. Weber, H.-J. Schek and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in Proceedings of the 24th International Conference on Very
Large Data Bases, pp. 194-205, New York, 1998.

[34] T. Liu, A. W. Moore, A. G. Gray and K. Yang, “An Investigation of
Practical Approximate Nearest Neighbor Algorithms,” in Neural
Information Processing Systems, pp. 825-832, Vancouver, 2004.

[35] W. Li et al., “Approximate Nearest Neighbor Search on High
Dimensional Data - Experiments, Analyses, and Improvement,” eprint
arXiv:1610.02455 [cs.DB], pp. 1-26, 2016.

[36] B. Naidan, L. Boytsov and E. Nyberg, “Permutation search methods
are efficient, yet faster search is possible,” in Proceedings of the VLDB
Endowment, pp. 1618-1629, Hawaii, 2015.

[37] L. Shi-guang and W. Yin-wei, “Fast nearest neighbor searching based
on improved VP-tree,” Pattern Recognition Letters, vol. 60, no. C, pp.
8-15, 2015.

[38] H. Lu, A. B. Brush, B. Priyantha, A. K. Karlson and J. Liu,
“SpeakerSense: Energy Efficient Unobtrusive Speaker Identification
on Mobile Phones,” LNCS vol. 6696, pp. 188-205, San Francisco,
2011.

[39] N. D. Lane et al., “BeWell: A Smartphone Application to Monitor,
Model and Promote Wellbeing,” in Intl. ICST Conf. on Pervasive
Computing Technologies for Healthcare, Dublin, IEEE press, 2011.

