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Abstract— The potential of telemedicine in respiratory health 

care has not been completely unveiled in part due to the 
inexistence of reliable objective measurements of symptoms such 
as cough. Currently available cough detectors are uncomfortable 
and expensive at a time when generic smartphones can perform 
this task. However, two major challenges preclude 
smartphone-based cough detectors from effective deployment 
namely, the need to deal with noisy environments and 
computational cost. This paper focuses on the latter, since 
complex machine learning algorithms are too slow for real-time 
use and kill the battery in a few hours unless specific actions are 
taken. In this paper, we present a robust and efficient 
implementation of a smartphone-based cough detector. The 
audio signal acquired from the device’s microphone is processed 
by computing local Hu moments as a robust feature set in the 
presence of background noise. We previously demonstrated that 
pairing Hu moments and a standard k-NN classifier achieved 
accurate cough detection at the expense of computation time. To 
speed-up k-NN search, many tree structures have been proposed. 
Our cough detector uses an improved vp-tree with optimized 
construction methods and a distance function that results in 
faster searches. We achieve 18x speed-up over classic vp-trees, 
and 560x over standard implementations of k-NN in 
state-of-the-art machine learning libraries, with classification 
accuracies over 93%, enabling real-time performance on low-end 
smartphones. 
 

Index Terms— Cough detection, Mhealth, Efficient 
Implementation, k-Nearest Neighbors, Vantage Point Trees.  
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I. INTRODUCTION 

COUGH constitutes the most recognizable symptom in 
respiratory disease and is associated with more than one 
hundred pathological conditions [1]. The economic burden of 
lung diseases has been estimated to be in the order of €96.4 
billion per annum in the EU; plus another €283 billion in 
opportunity costs due to premature mortality [2]. Chronic 
Obstructive Pulmonary Disease (COPD) and asthma are the 
most prevalent, with a cost of €6,147–7,443 per patient per 
year [2]. Effective and objective tracking of symptoms such as 
unexpected increases in cough frequency would allow 
physicians to take preventive measures before a critical point 
is reached [3], thus avoiding hospitalization and significantly 
lowering the treatment costs. 

The most common conditions involving chronic cough in 
non-smokers are asthma, gastro-esophageal reflux, and rhinitis 
[4]. Cough monitors can potentially aid physicians in their 
diagnostics, as different illnesses have different coughing 
patterns [5]. For instance, patients with bronchitis cough more 
than others [6], pneumonia tends to produce short and 
low-intensity coughs [7], and asthmatics may produce  
nocturnal coughs [8] [5]. Cough assessment methods rely on 
subjective questionnaires where data reported by the patient 
often has little connection with reality [9] [10]. Leconte et al. 
demonstrated that cough frequency correlated with perceived 
Quality of Life [11]. However, manually counting cough 
events is a tedious and error-prone task, prompting the need of 
automatic cough counters.  

Automatic cough detection is an established field of 
research with a number of systems achieving high sensitivity 
and specificity [12] [13]. Most systems in the literature rely on 
pattern recognition engines based on features extracted from 
cough sounds and other biomedical signals (chest movements, 
electrocardiograms, etc.), with the latter acting as support for 
the microphone signal [14]. However, the vast majority of 
those systems can be considered as expensive and 
uncomfortable (i.e., non-wearable during daily activity) [9]  
solutions at a time when telehealth has moved towards generic 
readily available sensors.  The recent advances in smart 
phone technology allow their use as intelligent cough 
monitoring systems as these are devices that patients can carry 
with themselves, and are able to capture sound and run 
general-purpose programs. 
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A major challenge when using a smartphone as a cough 
detector, resides in the need of dealing with noisy 
environments when processing the audio signal [15]. Most of 
the current systems identify the cough sounds using Mel 
Frequency Cepstral Coefficients (MFCC) obtained from the 
spectral analysis of the signal. However, this feature set fails 
to accurately detect cough sounds in noisy scenarios to an 
extent that currently available smartphone-based systems 
deactivate cough detection when the Signal to Noise Ratio 
(SNR) is perceived to be low [16].  

Another significant challenge is battery consumption [15], 
since complex machine learning algorithms are prone to kill 
the smartphone battery in a few hours, whereas the user would 
prefer the app running seamlessly with no effect on the normal 
phone functionality. With no visible impact on daily activity, 
patients would be less conscious of the medicalization of their 
lives. The work in [9] solved this problem by using the phone 
only for data acquisition and off-loading the processing to an 
external server. Even in these conditions, the use of the phone 
connectivity and storage modules can constitute a significant 
burden in terms of consumption. An ideal cough monitor 
should withstand at least 24 hours of operation, but current 
classification systems are very computationally expensive, 
with several studies reporting battery issues [9] [17]. A call 
was made to develop more energy-efficient pattern recognition 
engines for mobile platforms [18].  

Our preliminary work in [19] proposed using local Hu 
moments in the time-frequency domain as a robust feature set 
to carry out cough detection in noisy environments. 
Hu-Moments have been extensively used in image processing 
for object recognition [20], and were recently extended for 
speech emotion recognition [21]. By using them together with 
a k-NN (nearest neighbours, with k=1) classifier, we achieved 
sensitivity and specificity values of 94.17% and 92.16% 
respectively for SNR=15dB. This showed the synergy of local 
Hu-Moments with a widely used classifier in audio 
processing.  

The advantage of k-NN over other classifiers is that it does 
not require a costly training phase, allowing the use of 
adaptive learning from the patient’s input. Adaptive learning 
has shown superior performance over trained-once classifiers, 
with over 30% better recall rates [22] [23]. It also naturally 
solves the problem of sensor variability between phone 
devices. However, the main disadvantage is that queries are 
slow, as for every classification it must compute the distance 

of the new sample to all instances in the data set. In 
benchmarks, instance-based classifiers such as k-NN scored 
last in terms of speed and battery use [24]. Furthermore, 
accuracy in these classifiers is dependent of the size of the 
training set. So to get good detection rates, the database has to 
be large, thus making classification slower. Space and 
memory limitations become relevant as the entire database 
must be stored in the device and loaded into memory. 

This paper presents a robust and efficient implementation of 
a smartphone-based cough detector. The audio signal acquired 
from the device’s microphone is processed by computing local 
Hu moments as a robust feature set in the presence of 
background noise. These features feed an optimized k-NN 
classifier for final cough detection. A study on the effect of 
different optimizations of the k-NN algorithm is presented to 
propose a novel optimized version of the classifier. The 
proposed classifier speeds-up the nearest neighbor search 
using Vantage Point Trees where vantage points are selected 
over reduced datasets to optimize their construction. In 
addition, a simplified distance function is employed to 
speed-up calculations. Our results show that the proposed 
cough detector outperforms optimized implementations in 
state-of-the-art standard machine learning libraries while 
achieving high classification accuracy, thus enabling real-time 
performance on low-end smartphones. 

 

II. OVERVIEW OF THE SYSTEM 
An overview of the proposed system is sketched in  
. The audio signal from the device’s microphone is sampled at 
8.82 kHz, a frequency shown appropriate for cough event 
detection [25]. After that, 50 ms windows with 25 ms shift are 
extracted for classification using a Kaiser window with

3.5β = . As a starting point, the power spectral density (PSD) 
for each window is extracted and normalized. Initial speed-up 
is performed at this stage by using optimized FFT algorithms 
and taking advantage of the 25 ms window overlap to perform 
only 50% of the required computations. A feature extraction 
block carries out the computation of local Hu moments as 
detailed in the Appendix to subsequently feed the pattern 
classification module where the efficient versions of the k-NN 
algorithm have been implemented. 
 

 

 
Fig. 1. Overview of the proposed cough detector 

Signal	  
Preprocessing
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Pattern	  
Classification
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III. K-NN OPTIMIZATION 
 
K-NN classifiers store a set of instances with pre-assigned 

classes, known as the training set, and classify new instances 
by assigning them the most common class among the k closest 
relatives in that set. To determine closeness, k-NN converts 
feature vectors to points in a multidimensional metric space; 
then, it measures the distance between points according to a 
distance function [26]. Fig. 2 illustrates classification using 
k-NN. The logic behind this classifier is that less similar 
instances are less likely to belong to the same class. In 
two-class classification problems, k is usually set to an odd 
number to prevent ties. If the classes in the training set are 
unbalanced, a large k skews the results towards the majority 
class, whereas low values of k are less stable against outliers. 
As a result, the optimum k is usually set experimentally. 

 
Fig. 2. Illustration of the classification process with k-NN, and how changing 
k impacts classification. In the example, a point located at X would be 
classified as B if k=3, or as A if k=5. 

 

A. Metric trees 
Basic (naïve) k-NN search has O(n) cost because all points 

in the training set are compared against the query, even if they 
are far apart in the metric space. Metric trees [27] are tree-like 
data structures that logically split the metric space in 
sub-regions, with each child node containing about half the 
points of its parent. This partitioning allows to perform binary 
search on the tree, which brings down the cost of queries to 
O(log n). The following subsections describe three popular 
structures namely, KD-trees, Ball-trees, and (Vantage Point) 
VP-trees. 
1) KD-trees 
KD-trees partition the geometric space using hyperplanes as 
shown in Fig. 3. Non-leaf nodes have two child nodes, and 
define hyperplanes that split the metric space alongside one 
dimension. Points below a certain threshold value go to the 
left child, and the rest go to the right child. The thresholds can 
be chosen in several ways. For our experiments, we 
implemented the Median of Widest Dimension construction 
method described by Kibriya [28]. Branching stops whenever 
a child node contains equal or fewer points than a threshold 
referred to as bucket size. Lower values of this parameter 
result in more nodes and smaller regions. The performance of 
KD-Trees degrades as the dimensions increase, becoming 
slower than linear search [28]. 

 

 
Fig. 3. Illustration of a kd-tree created by partitioning the metric space with 
hyperplanes. 
 

 
Fig. 4. Search is limited to those regions that overlap with the ball  centered at 
the query point with radius equal to the distance to the current best k-NN. 
 

Queries in KD-Trees start with a depth-first search to the 
leaf node that would contain the query point (see Fig. 4). Then, 
it calculates the distance to all the points within this node. The 
distance to the best k-Nearest Neighbor found so far will be 
used as the radius of a hyperball centered at the query point. If 
the hyperball is within the margins of the region, the algorithm 
stops; otherwise, the algorithm goes back up one level in the 
tree and checks for overlaps between the ball and the other 
child nodes, visiting them and updating the ball radius as 
better neighbors are found. The backtracking ends once the 
root node has been explored. 

 
2) Ball-trees 
 

 
 
Fig. 5. Illustration of a ball-tree created by clustering points inside minimal 
hyper-balls 

As illustrated in Fig. 5, ball-trees partition the space through 
the use of minimal hyper-balls that completely contain all of 
their children, while overlapping the least with other sibling 
spheres. Unlike KD-Trees that are based on coordinate values, 
ball-trees define regions in terms of relative distance to the 
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centroids of child nodes. Queries exploit the reverse triangle 
inequality property of metric spaces to skip the evaluation of 
nodes that cannot contain points closer than the current best 
candidate. Ball-trees are hard to construct optimally, and also 
become less efficient than linear search for high dimensions 
[28]. For our experiments, we implement the top-down 
Ball-tree construction method proposed by Omohundro [29]. 
Searches first visit the hyper-balls whose centroid is closest to 
the query point, and also those that overlap with the ball 
centered at the query, with radius equal to the distance to the 
best k-NN found so far.  
 
3) VP-trees 
Yianilos et al. [30] proposed Vantage Point trees (vp-tree), a 
structure similar to ball-trees, except that the center of the 
hyper-ball is always a point in the node, termed the vantage 
point. To split the space, the radius µ of this hyperball is set to 
a value that encompasses half of the points of the parent node, 
leaving the rest outside (see Fig. 6). The left child will contain 
all the inner points, whereas the right outer child will contain 
the rest. 

 
Fig. 6. A non-leaf node in a vp-tree is defined by a vantage point and a radius 
µ that splits the points in 2 disjoint sets. 
 

Search commences by comparing the distance of the query 
point to the vantage points of non-leaf nodes, starting from the 
root node. If the distance is lower than µ, the inner child is 
explored, otherwise the outer child. Once a leaf-node is 
reached, it measures the distance of the query to all the points 
contained in it, storing the distance dk to the current best 
k-NN. This value will define the radius of a hyperball with the 
query point at its centre. If the hyperball does not intersect 
other regions, the search ends; otherwise, we go up the tree 
and check for regions that overlap with the ball, updating the 
values as better candidates are found, until the root node is 
evaluated. To check if there is an overlap, we measure the 
distance τ of the query to each parent vantage point, with 
overlaps occurring if 𝑑! ≥ 𝜏 − 𝜇  (see Fig. 7). 

 
Fig. 7. In this example, the query does not overlap with the hyperball of the 
vantage point, so points inside that ball can be safely ignored. 
 
 

B. Distance functions 
Distance functions are used to calculate the relative 

closeness between two instances or points in the metric space. 
They can have impact both in classification accuracy and 
efficiency, especially for the latter, when complex 
computations are involved in the calculations. The most 
commonly used metric is Euclidean distance (L2-norm of the 
difference vector), which computes the distance between 
points p = (p1, p2,..., pn) and q = (q1, q2,..., qn) ∈ ℝn, according 
to: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑝, 𝑞 =    (𝑞! − 𝑝!)!!
!!!  (1) 

As the square root is an expensive operation, we considered 
two other distance functions that are simpler to compute, 
paying a small accuracy penalty in exchange for faster 
classification times. Manhattan distance (2), for example, is 
the sum of the absolute differences for each coordinate 
(L1-norm of the difference vector). 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑝, 𝑞 =    𝑞! − 𝑝!!
!!!  (2) 

We also consider the squared L2-norm of the difference 
vector, which is denoted as Euclidean2 in (3). In this case, we 
avoid the calculation of the square root for efficiency. This 
function is a pseudo-metric, as it does not always satisfy the 
triangle inequality on which many metric trees are based. It is 
thus worth noting that using it can lead to accuracy loss when 
building Ball-trees or VP-trees. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛! 𝑝, 𝑞 =    (𝑞! − 𝑝!)!!
!!!  (3) 

C. Database pruning 
One common way to improve search times in 

instance-based classifiers is to reduce the size of the database. 
Hart’s algorithm, also known as Condensed Nearest 
Neighbour, is an algorithm for data reduction that aims to 
remove redundant instances of the database [31]. In our 
experiments, we evaluated the different implementations using 
a pruned training set constructed with Hart’s algorithm. The 
size of the pruned database was 17.5% of the original one. 
Even though this can lead to significant savings in 
computation time, the impact on the classification accuracy 
can be major. 

D. Feature normalization 
Direct distance calculation from non-normalized feature 

vectors can result in one dimension dominating over the 
others. For example, if a feature f1 ranges from [0,100] and f2 
ranges [0,1], f1 will have more impact in the returned distance 
even if f2 is a better discriminator. To avoid this, a common 
practice in machine learning is to normalize all values in the 
training set so every dimension has a [0,1] range, scaling the 
feature vector of the query points accordingly for proper 
comparison.  
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IV. EXPERIMENTS 

A. Experimental setup 
We implemented different versions of the k-NN classifier. 

The baseline one used linear search (no optimization) and was 
used as a reference for comparison with the optimized version, 
and as first testbed to assess the impact of different distance 
metrics, normalized/non-normalized feature sets, and pruning 
of the database using Hart’s “Condensed NN” algorithm [31]. 
Due to the lower performance in cough detection for k>1 [19], 
we based our experiments in 1-NN. The optimized versions 
respectively used VP-Trees, KD-Trees and Ball-Trees 
structures for fast search. All the trees perform partial sort to 
find the k-NN. Once a decision on the structure was made, we 
evaluated different tree construction strategies and the impact 
of parameters such as the bucket size in the search.  

As performance metrics, we used sensitivity and 
specificity, respectively computed as the ratios Detected cough 
windows/Total cough windows, and Identified non-cough 
windows/Total non-cough windows. Overall accuracy was also 
computed as the pooled average of those values weighted with 
the respective cough/non-cough frequencies. In terms of 
efficiency, we used the processing time and calculated the 
relative speed-up compared with a standard base 
implementation. For this standard implementation, we chose 
the widely used Machine Learning library Weka. A freely 
available version of the library for the Android platform can 
be found in [32]. Weka’s naïve (non-optimized) algorithm 
reads the training set and normalizes it. Then, for each query, 
it computes the distances from all points in the database to the 
query point, sorts the list, and returns the k closest neighbours 
to the query. Weka also features optimized versions of k-NN 
using KD-Trees and Ball-Trees. We used these versions for 
comparison purposes. 
 The smartphone used for the tests is a Sony Xperia Z2, 
running on Android 5.1.1. The computed times obtained in 
this study correspond to an average of five measures taken for 
each option.  

B. Cough database 
The cough database used in evaluation consists of a library 

of sounds recorded at 44.1 kHz with a precision of 16 bit, then 
down-sampled to 8820Hz and grouped in windows of 441 
samples (50ms) with 50% overlap. The database contains 
patient and voluntary cough events and other relevant audio 
events such as speech, laugh, throat clearing, etc. The events 
were contaminated with background noise from various 
sources, such as environmental noise from roadworks, street 
with vehicles passing by, a crowd, etc. The sounds in the 
database have a total duration of 1245s. The database was split 
into three sets: training (60%), validation (10%), and testing 
(30%). The training set has a total of 30139 windows, whereas 
the test set has 15069. We kept the same ratio of cough/no 
cough windows for all these sets, at 18.57%, and we included 
samples with SNR values between -15 and 0 dB. To deal with 
the unbalance between classes, we performed importance 
sampling using the Distinct-Borderline2 Synthetic Minority 
Oversampling technique (DB2SMOTE) and a cost matrix as 
in [19]. Only the feature vector and label for each window are 

stored in the device. The whole database is contained in a 
9.8MB file stored in an efficient binary format. 

C. Results and discussion 
1) Impact of distance metric, normalization, and size of the 
database in baseline model 
 
Fig. 8 shows a scatter diagram of the computation time vs. 
overall accuracy for our linear search (non-optimized) k-NN 
implementation. The relevant parameters for this analysis are 
been coded as follows: 

1) Normalized/Unscaled features (color coded); 
2) Different distance metrics (shape coded); 
3) Full/Pruned (17.5%) database (transparency coded). 

 
 
Fig. 8. Computation time vs. overall accuracy for non-optimized k-NN 
classifier with: 1) Normalized/Unscaled features (color coded); 2) Different 
distance metrics (shape coded); 3) Full/Pruned (17.5%) database (transparent). 
 
We can conclude on the following from the figure: 

• The Euclidean2 distance function achieves the same 
results as Euclidean in terms of accuracy, with lower 
computation times. Manhattan distance did not provide 
speed advantages over Euclidean2, while being itself 
less accurate. Thus, for further analysis, we will keep 
the comparison between Euclidean and Euclidean2, 
setting Manhattan aside for the sake of simplicity.  

• Normalization has a positive impact on the accuracy of 
the classifier for non-pruned databases. This can be 
used later on to improve accuracy of the finally 
selected optimized classifier. 

• We also observed that the use of Hart’s algorithm 
reduces	  the accuracy of the classifiers below acceptable 
levels, even though the computational savings are also 
significant. This is especially relevant in terms of 
sensitivity, as can be seen in Fig. 9, where the scatter 
plot shows sensitivity vs. specificity. 
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Fig. 9. Sensitivity vs. Specificity for linear search k-NN classifier with: 1) 
Normalized/Unscaled features (color coded); 2) Different distance metrics 
(shape coded); 3) Full/Pruned (17.5%) database (transparency coded). 
 
2) Efficiency improvement from metric trees 
 
Fig. 10 presents a scatter diagram of the computation time vs. 
overall accuracy for different optimizations (color coded) of 
the k-NN algorithm using metric trees. The standard Weka 
library implementations are presented for the sake of 
comparison. We have used transparency coding in the figure 
to specify which implementation (Weka or ours) was used. 
 
Weka’s algorithm performs some steps that are unnecessary in 
1-NN search, like sorting the array of distances. As this 
operation has a substantial O(n·log(n)) cost, we also include 
our own 1-NN linear-search algorithm for a more apt 
comparison. The distance metrics are specified in the figure 
using shape coding as before. 

 
Fig. 10. Computation time vs. overall accuracy for different k-NN 
implementations using metric trees. Baseline non-optimized linear versions 
are also presented for comparison. Parameters are encoded as follows. 1) Type 
of structure, metric trees (KD, VP and Ball), and non-optimized version (color 
coded); 2) Distance metric (shape coded); 3) Implementation, ours or standard 
library Weka (transparency coded). 

The following conclusions can be extracted from the figure: 
• Our linear-search 1-NN classifier is one order of 

magnitude faster than Weka’s implementation, remarking 
the advantages of skipping the sort step in the 1-NN case. 

• VP-Trees are the fastest structure, and present an 
unforeseen synergy with Euclidean2 distance. The 
resulting classifier is one order of magnitude faster than 
the one using Euclidean, and three orders of magnitude 
faster than the Weka’s base implementation. 

• The other structures, particularly ball-trees, yield 
unacceptable computation times, even higher than linear 
search. A possible explanation for this is the “curse of 
dimensionality”, which results in poor performance for 
KD-trees and Ball-trees for dimensions larger than 10 
[33]. 

• We did not expect Euclidean2 to be a good distance 
function for VP-trees, as it violates the triangle inequality 
on which this structure is based, so we sought an 
explanation. Ting Liu et al. reported that metric trees 
typically find a very good nearest neighbor candidate in 
the first moves, then spend up to 95% of the time 
verifying that they got it right [34]. From this, we infer 
that Euclidean2 results in less overlaps with surrounding 
regions, speeding up the queries. 
 

We rank the classifiers in terms of speed-up, which is 
computed as the time required by Weka to classify all 
instances, divided by the time it takes the other classifiers to 
do the same. 

• The default naïve k-NN algorithm available in the Weka 
library normalizes the dataset and takes an average 
769,728ms to classify the 15069 test samples with 
95.16% accuracy. At roughly 51ms per sample, the 
performance is unacceptably slow for real-time use, as 
new windows are generated every 25ms, and the system 
must also acquire the audio signal, calculate spectral 
features and compute the Hu Moments. 

• Our linear-search 1-NN takes 82663ms when using 
Euclidean2, which is 9.31x faster than Weka.  

The following experiment shows the impact of carrying out 
feature normalization in the preferred VP-tree structure. Table 
I shows computation time and overall accuracy for the 
VP-Trees implementations using both Euclidean and 
Euclidean2 distances. The performance obtained with Weka 
implementation using both the full database and a pruned one 
is also presented for the sake of comparison. Table II 
summarizes the speedups achieved when using our VP-Trees 
implementations compared to Weka. We can extract the 
following conclusions from the tables: 

• Using non-normalized versions of the feature set 
significantly improves efficiency at a low accuracy cost. 

• The speedup obtained from VP-Trees using Euclidean2 
distance is very significant (425x and 559x for normalized 
and unscaled features respectively) while keeping high 
classification performance. The speed-up over classic 
VP-Trees using Euclidean distance is 18.12x for 
normalized features and 13.23x for unscaled. 

• Even in comparison with a pruned database, the speedup 
is highly valuable (71x and 94x for normalized and 
unscaled features respectively), especially considering 
that Weka’s classification performance drains in this case. 
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TABLE I 
COMPUTATION TIME VS. OVERALL ACCURACY VP-TREES IMPLEMENTATIONS 

COMPARED TO WEKA (FULL AND PRUNED DATABASE).  

Accuracy (%) Time (ms) Implementation Distance Normalized  

95.16 769728 Weka (full DB) Euclidean Yes 

95.16 762757 Weka (full DB) Euclidean2 Yes 

87.69 129239 Weka (pruned DB)  Euclidean Yes 

87.60 124239 Weka (pruned DB) Euclidean2 Yes 

95.16 32818 VP- Trees  Euclidean Yes 

94.04 1811 VP- Trees Euclidean2 Yes 

93.24 1377 VP- Trees Euclidean2 No 

94.46 18226 VP- Trees Euclidean No 
 
 
 
 
 
 
 

TABLE II 
SPEEDUP OF VP-TREES IMPLEMENTATIONS COMPARED TO WEKA WITH FULL 

AND PRUNED DATABASE 

Distance Normalization 
Speedup 

Accuracy 
(%) Full 

Database 
Pruned 
Database 

Euclidean Normalized 23.45 3.94 95.16% 

Euclidean Unscaled 42.23 7.09 94.46% 

Euclidean2 Normalized 425.03 71.36 94.04% 

Euclidean2 Unscaled 558.99 93.86 93.24% 
 

According to the results presented so far, we select the 
VP-Tree structure together with Euclidean2 distance as our 
baseline optimized implementation for the k-NN algorithm. 
The following experiments explore further optimizations of 
this structure for the final proposal. 

 

D. Optimizing VP-Tree construction for Euclidean2 distance 
1) Selection of vantage points 

The efficiency of k-NN search in VP-Trees depends on the 
number of regions that overlap with the query’s hyperball. 
When creating VP-Trees, how the vantage points are picked 
up has a significant impact on the odds of overlap. Most 
implementations pick the vantage points at random to keep the 
cost of building the tree O(n·log(n)), but Yanilos et al. 
described a method for picking vantage points that minimizes 
overlaps [30]. They found that vantage points that maximized 
the second moment of their distances from all the other points, 
which are notably located in the corners of the space (see Fig. 
11), resulted in faster searches [30]. 
 

    
Fig. 11. Two VP-Trees on the same set of points. The left one assigns vantage 
points at random while the right one picks points at the corners of space. 

Building an optimal vp-tree according to Yanilos’s criteria 
has a prohibitive O(n2·logn) cost, so we implement instead an 
approximation; for nodes with over 1000 points, we only 
evaluate 10% of candidate vantage points against 25% of the 
remaining points in the node. As tree creation has a random 
component, this naturally results in random performance of 
the classifier. To ensure deterministic behavior between 
sessions of the app, we store the generated tree in a 
binary-efficient file and load it at start-up. We found out that 
searches on trees loaded from memory were up to 60% faster 
than on newly-constructed trees, which we attribute to better 
cache locality. 

 
2) Effect of bucket size 

The bucket size chosen at VP-Tree construction controls the 
size and number of regions in which the space is subdivided. 
Higher values make searching each region slower, but since it 
also reduces the number of overlapped regions, there is a 
range that results in faster queries. 

A larger bucket size improves accuracy. Wrong results 
when using Euclidean2 are caused by the algorithm not 
visiting the region that contains the true k-NN, and larger 
bucket sizes increase the odds that the nearest neighbour will 
be found on the first leaf nodes visited. 

 
We tested bucket sizes ranging from 1 to 500 points. Fig.12. 

shows the accuracy obtained using both tree construction 
methods. For reference, we also include the obtained accuracy 
using Euclidean distance as an upper bound, and for the lower 
bound we used the so-called “Defeatist” search, which stops 
after exploring the first leaf node [34]. The following 
conclusions can be extracted from the figure. 

• Even though VP-trees created using Yanilos’s criteria were 
notably faster, trees using this construction method did not 
pair well with Euclidean2 distance, reducing accuracy and 
sensitivity by a significant amount. We therefore chose the 
random method as it performed better and was fast enough 
for our real-time needs. However, the use of Yanilos’ 
construction method can be an option for slower devices.    

• For random method, accuracy increases proportionally to 
bucket size until the value of 20 is reached, then stops 
improving. This bucket size was thus finally selected, as it 
was also fast enough for real-time computation.  
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Fig.12 Overall Accuracy vs. bucket size for different Vantage point pick-up 
strategies in VP-Trees construction. Exact k-NN and defeatist strategy are also 
presented as upper and lower bounds for comparison. 

3) Multiple VP-trees 
A final optimization to improve accuracy at a expense of 

higher computation times would rely on the use of multiple 
VP-trees to finally pick the one providing the closest nearest 
neighbor. Fig. 13 shows the visual projection in 2D space of 
VP-Trees constructed with different bucket sizes. Spots that 
violate the triangle inequality when using Euclidean2 distance 
are marked in yellow. There are two points of note here: 
• For bucket sizes above 20, yellow points become confined 

to the boundaries of the sub-regions. Errors are exclusively 
dependent on tree structure. 

• By picking vantage points at random, the final result is that 
two VP-Trees will have totally different boundaries despite 
containing the same points. In other words, it is unlikely 
that errors appear in the same place for both trees. So, 
using multiple trees and selecting the one with the closest 
nearest neighbour will yield higher accuracies. 

 

 

  
Fig. 13 VP-Trees with bucket sizes 2, 8, 30, and 50 (clockwise, starting from 
top-left). Points in yellow mark points in space in which Euclidean2 distance 
returns the wrong k-NN.  

We test k-NN search on several Random VP-trees using 
Euclidean2, updating the k-NN if a later vp-tree finds a better 
candidate. The results using one, two, or three vp-trees are 
displayed on Fig. 14. Using two vp-trees significantly improves 
accuracy, whereas using 3 yields accuracies in line with the 
exact k-NN classifier. A 3-vp-tree classifier using normalized 
features achieves 95.07% accuracy in 5824ms, which is still a 
speed-up of 132.16x over Weka’s implementation. 

 
Fig. 14 Accuracy vs. processing time of multi-VP-tree classifier with 1, 2, or 3 
VP-trees, for both normalized and unscaled features. Baseline accuracies for 
exact k-NN classification are presented for reference. 

This solution has an increased memory cost, as it requires to 
store extra VP-tree structures. However, this cost is minimized 
since all tree structures share the same data points. 

V. RELATED WORK 
Since the introduction of VP-trees, many studies have used 

them to speed up k-NN search. Most research focus, however, 
has been on improving efficiency of k-NN search in high 
dimensions, where performance degrades to linear search. 
Approximate k-NN algorithms typically project points to a 
lower-dimensional space to handle the curse of 
dimensionality, and then carry the search on a standard 
VP-tree [35].  

Because VP-trees are based on the triangle inequality, 
researchers rarely test them with distance functions that do not 
satisfy it. In cases where they do, they modify the pruning 
function to enforce correctness [36]. When this is done for the 
Euclidean2 metric, it results on exact k-NN that is just slightly 
faster than Euclidean [37]. 

Ting Liu et al proposed a refinement to Defeatist Search 
that duplicates points and assigns them to more than one leaf 
node [34]. However, implementation is tricky, and the idea 
assumes the tree will remain static, which is not the case of 
our system. 

Our work shows that a Euclidean2 metric with no 
correctness enforcement is a simpler way to improve 
efficiency of VP-trees, obtaining high speed-ups over standard 
VP-tree search even at low dimensions. We also identified 
additional strategies to improve accuracy or speed to meet the 
performance goals of the target platform. 

VI. CONCLUSION AND FUTURE LINES 
This paper presents a robust and efficient implementation of 

a smartphone-based cough detector. Previous studies 
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discarded the k-NN classifier as unacceptably slow and 
resource hungry for real-time processing in smartphones, 
while others had pointed out that the classification stage was 
the costliest part of the system, taking 31–44.9% of the CPU 
time, and being up to 8 times slower than the feature 
extraction module [38] [39]. The standard (non-optimized) 
Feature calculation of Hu Moments takes approximately 22 
ms per window when implemented on the smartphone used in 
our experiments. Adding the 51ms to classify each window 
with Weka’s implementation prevented real-time detection, as 
new windows are generated every 25 ms.  

We unveiled an interesting synergy between VP-trees and 
Euclidean2 distance that results in a k-NN classifier that is fast 
and able to perform real-time detection on smartphones, 
without needing GPU acceleration or server off-loading. Our 
implementation classifies a new window in less than 1% of the 
CPU time spent computing the feature vector, performing the 
overall computation in less than 23ms.  

Our next goal will be to improve the efficiency of the rest of 
the modules of the system, to optimize database size, detect 
and correct false positives, and maximize the battery life of the 
device. To improve the accuracy in real life-scenarios, we plan 
to include a self-training module for personalized calibration. 
Such a module would increase the computation cost, as it 
involves updating the indexing tree. For efficiency reasons, it 
should not continuously run all the time, but rather would only 
be activated at user request for short-period sessions. 

APPENDIX. COMPUTATION OF LOCAL HU MOMENTS 
Local Hu moments are computed for each signal window 

w[n], n=1,…N, extracted from the acquired audio signal. As 
mentioned in Section II, a normalized PSD is computed 
PSD[l], l=1,…Nfft, where Nfft=4096. The next step calculates 
the logarithm of the spectral energies for every window in a 
series of bands defined by a filterbank in the Mel scale: 

⎟
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⎜
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⎛
= ∑
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min

][]·[log)(  Mm <≤0   (1) 

where k refers to the k-th window and m denotes each filter 
within the filterbank. The f values correspond to Nfft discrete 
frequencies in the range [fmin, fmax], where minf and maxf  are 0 
and 2 kHz, respectively. The filterbank in the Mel scale is 
defined as: 
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C(m) Mm ≤≤0  are the central frequencies for each filter 
in the filterbank [Hz], uniformly spaced between minf  and 

maxf  in the Mel scale. Conversion from natural frequencies to 
the Mel scale and vice versa is performed as: 

( )700][1·log2595][ 10 HzfMelf +=   (3) 
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The total number of employed filters is 75=M . 
Consequently, after performing this step for all the signal 
windows, a ( )( )1−× MK  matrix was obtained, with K the 
number of signal windows. 

Next, the local Hu moments of the energy matrix E are 
calculated by dividing E into ( )( )( )1−× wMK  blocks ijB , with 
w the block size. In our calculation, we used 5=w  as in [21] 
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The latest ( )1−w  blocks, corresponding to KwKi ,,2…+−=

, are padded with zeros up to the size ( )ww× . We got the first 
invariant momentθ  of each ijB  as: 
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In (8), u and v  are ( ) ( )0,00,1 ===== qpqpu ϕϕ  and 

( ) ( )0,01,0 ===== qpqpv ϕϕ , with: 
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All θ  are used to build a real ( )( )( )1−× wMK  matrix, Q. 
To conclude, the discrete cosine transform (DCT) is computed 
for each row in Q and coefficients 2-14 are finally kept. The 
result is a ( )13×K  matrix TQ, being the rows of this matrix the 
Hu moments for each window in the signal. 
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