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Coatings and surface treatments for enhanced
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wave detectors
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D Hammond3, J Hough3, I W Martin3, S Reid1,2†, S

Rowan3, S Song1, C Talbot1, D Vine1, G Wallace1

1SUPA‡ Institute of Thin Films, Sensors and Imaging, School of Engineering and

Computing, University of the West of Scotland, Paisley PA1 2BE, UK
2SUPA‡ Department of Biomedical Engineering, University of Strathclyde,

Glasgow G4 0NW, UK
3SUPA Institute for Gravitational Research, School of Physics and Astronomy,

University of Glasgow, Glasgow, G12 8QQ, UK

E-mail: Ross.Birney@strath.ac.uk, Stuart.Reid@strath.ac.uk

Abstract. Further improvements in the low frequency sensitivity of gravitational

wave detectors are important for increasing the observable population of astrophys-

ical sources, such as intermediate mass compact black hole binary systems. Im-

provements in the lower stage mirror and suspension systems will set challenging

targets for the required thermal noise performance of the cantilever blade springs,

which provide vertical softness and, thus, isolation to the mirror suspension stack.

This is required due to the coupling between the vertical and horizontal axes due to

the curvature of the Earth. This can be achieved through use of high mechanical Q

materials, which are compatible with cryogenic cooling, such as crystalline silicon.

However, such materials are brittle, posing further challenges for assembly/jointing

and, more generally, for long-term robustness. Here, we report on experimental

studies of the breaking strength of silicon at room temperature, via both tensile

and 4-point flexural testing; and on the effects of various surface treatments and

coatings on durability and strength. Single- and multi-layer DLC (diamond-like

carbon) coatings, together with magnetron-sputtered silica and thermally-grown

silica, are investigated, as are the effects of substrate preparation and argon plasma

pre-treatment. Application of single- or multi-layer DLC coatings can significantly

† corresponding author
‡ Scottish Universities Physics Alliance

Page 1 of 23 AUTHOR SUBMITTED MANUSCRIPT - CQG-104189.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Coatings and surface treatments for enhanced performance suspensions 2

improve the failure stress of silicon flexures, in addition to improved robustness

for handling (assessed through abrasion tests). Improvements of up to 80% in

tensile strength, a twofold increase in flexural strength, in addition to a 6.4 times

reduction in the vertical thermal noise contribution of the suspension stack at 10

Hz are reported (compared to current Advanced LIGO design). The use of silicon

blade springs would also significantly reduce potential “crackling noise” associated

with the underlying discrete events associated with plastic deformation in loaded

flexures.

PACS numbers: 07.10.Pz 73.40.-c 05.40.-a 04.80.Nn 07.30.-t 95.55.Ym 07.60.Ly

Submitted to: Class. Quantum Grav.
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Coatings and surface treatments for enhanced performance suspensions 3

1. Introduction

Intermediate upgrades to advanced interferometric gravitational wave detectors

such as Advanced LIGO (aLIGO) [1] are envisaged before the realisation of third-

generation detectors such as the Einstein Telescope (ET) [2]. Given the first

detections of gravitational waves being associated with the merger of binary black

hole systems [3], there is continued interest in enhancements at the low frequency

band of the current detectors (10s of Hz), to allow searches for coalescing intermediate

black hole binary systems. Gravitational wave detectors operate as modified

Michelson interferometers, with kg-scale test masses suspended at the end of km-

scale arms. Improvements at low frequency will require a reduction in radiation

pressure noise (achievable by increasing the mass of the test masses), reduction

in the final-stage suspension thermal noise and the vertical component of thermal

noise, and improvements in seismic isolation. This paper investigates technology that

could significantly reduce the vertical thermal noise component within an enhanced

Advanced LIGO configuration operating at room temperature, through use of silicon

blade springs with protective diamond-like carbon (DLC) coatings.

Another relevant noise is associated with how elastic materials respond to

changing external forces through small (discrete) changes in stress, rather than a

continuously smooth deformation [4], often referred to as crackling noise. Models

for describing the current maraging steel cantilevers within aLIGO are under

development [5, 6]. However, replacing the maraging steel with silicon blade springs

is expected to significantly reduce the total number of crackling events due to the

reduction of atomic creep (e.g. dislocation slip and climb, grain boundary sliding,

and diffusional flow).

It is well-established that DLC, a wide class of amorphous carbons containing

a proportion of 20-90% sp3 carbon to carbon (C-C) bonding, as well as, in some

cases, incorporating some quantity of hydrogen [7, 8, 9, 10, 11], is highly compatible

with silicon as a coating material [12, 13, 14]. The adhesion of DLC coatings to

silicon substrates is generally excellent, with silicon often being used as an adhesion

layer and/or dopant to improve DLC bonding to substrates on which DLC would not

otherwise adhere [13, 14, 15, 16]. Such coatings continue to find a very wide range

of applications, including for protective (e.g. tribological) [9, 16, 17, 18] and optical

(particularly mid-IR) purposes [9].

While the exact properties of any DLC coating depend on the film deposition

Page 3 of 23 AUTHOR SUBMITTED MANUSCRIPT - CQG-104189.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Coatings and surface treatments for enhanced performance suspensions 4

method used and on the composition and structure of the coating, in general it

can be said that that DLCs are characterised by high hardness [9, 16, 15], low

coefficient of friction [9, 19], excellent abrasion resistance [19], and transparency in

the mid-infrared [8]. In future detector designs utilising silicon as a construction

material, DLC may therefore be an interesting coating material for improvement of

the robustness of suspension components, e.g. the cantilever blade springs [20].

A thermally-grown oxide coating, prepared by oxidation of silicon in wet N2 at

1000 ◦C has previously been reported to significantly improve the tensile strength

of silicon flexures [3]. For comparison with these findings, we have performed oxide

growth under the same conditions. Since it is unclear whether the oxide coating is

responsible for the improvement in strength of silicon, or whether this is effectively

due to heat treatment, for further comparison we have also deposited silica coatings

by microwave-assisted magnetron sputtering at room temperature. This may allow

further elucidation of the mechanism of the improvement in strength by thermal

oxidation.

2. Experimental methods

2.1. Substrate preparation

Silicon flexures were prepared by mechanically dicing 0.5 mm thick <100> P-type

(boron-doped) DSP (double-side polished) silicon wafers , with resistivity 1-10 Ω m

(University Wafer, USA), into strips of dimensions 30 × 3.4 mm, using a Disco

DAD3230 dicing saw system. Half of the flexures were mechanically polished (3 µm

aluminium oxide compound) on the long edges to assess the effect of edge quality on

tensile strength; this resulted in average strip width of 3.2 mm.

2.2. Deposition of DLC coatings

Thick single-layer (1.00± 0.05 µm) and multilayer (3.13± 0.02 µm) DLC films were

deposited on the silicon flexures using an IC 10000 pulsed-DC hollow cathode

PECVD (plasma-enhanced chemical vapour deposition) system (Sub-One Systems,

Tucson, AZ, USA), as shown in Figure 1. This process and system are described

at length elsewhere [15, 16]. Briefly, the process allows deposition of increased

thickness (up to tens of microns in total) modified (graded multilayer) DLC films

as compared to traditional PECVD or PVD (physical vapour deposition) methods
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Coatings and surface treatments for enhanced performance suspensions 5

(typically limited to around 1-2 µm due to high intrinsic compressive stress of the

order of -0.5 to -2.0 GPa) [9, 21], at high film growth rates of the order of 300 nm/min.

This is achieved by using a graded multilayer structure, typically using silicon-

containing precursors to firstly deposit a silicon-rich amorphous hydrogenated (a-

Si:C:H) adhesion layer, and by doping the subsequent layers with progressively

decreasing quantity of silicon, finally depositing a cap layer of pure amorphous

hydrogenated carbon (a-C:H). As this is a non-line-of-sight PECVD process, a wide

range of substrate geometries may be accommodated, including interior surfaces.

305 mm

anode

anode

cathode

precursor
gas input

pumping
port

ceramic 
break

sample 
locationB C

ED
* note some items are rotated for clarity

A

3 stages of 
maraging

steel blades 
for vertical 
isolation

fused silica 
penultimate mass

ring heater

fused silica test 
mass (TM)

Figure 1: (A) Schematic of the current Advanced LIGO suspension system [22].

Schematic (B) and picture (C) of the pulsed-DC hollow cathode PECVD system

used to deposit DLC coatings and perform plasma etch treatment on silicon flexures.

Samples were mounted in a vertical position (D) and horizontal position (E) in the

centre of the cathode volume.

All DLC coatings, except sample set 19, were deposited in vertical parallel

orientation using an aluminium stage within a 100 mm diameter pipe chamber, as

shown in Figure 1C. Sample set 19 was coated with the strips mounted in a horizontal
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Coatings and surface treatments for enhanced performance suspensions 6

Table 1: Details of deposition parameters for DLC coatings and argon plasma

treatment. Single-layer DLC coatings follow steps 1-3 and 9-10. Multilayer DLC

coatings follow all steps. Extended argon plasma treatment samples follow steps 1-3.

Step Ar H2 C2H2 TMS Pressure Time Power

(sccm) (sccm) (sccm) (sccm) (mTorr) (min) (DC1/DC2, kW)

1 50 100 - - 70 0:30 0.035/0.180

2 50 100 - - 70 10:00 0.040/0.200

3 100 - - - 70 30:00/60:00 0.040/0.200

(extended etch)

4 100 - - - 70 0:20 0.040/0.200

5 90 - - 70 120 3:30 0.040/0.144

6 60 - 20 60 70 3:30 0.040/0.216

7 50 - 40 40 70 3:30 0.052/0.136

8 50 - 80 20 70 3:30 0.052/0.136

9 50 - 120 - 90 5:00 0.052/0.136

10 85 (+200 N2) - - - - 2:00 0.000/0.000

orientation on a ring fitting as shown in Figure 1D, in order to assess the effect of

substrate orientation within the plasma chamber.

Deposition parameters were as shown in Table 1, with one group of samples

being treated with a standard argon plasma etch prior to coating deposition, and a

second set being subjected to an extended argon plasma etch. Additionally, sample

set 18 was coated with multilayer DLC, following thermal oxidation of the silicon

substrate, as described later in the paper.

2.3. Deposition of magnetron sputtered silica

Sample sets 7, 8, 14 and 15 were coated with silica in two separate deposition runs

(one for each side of the silicon strips), and mounted at a 45◦ angle with respect

to the silicon target to enable coating across all surfaces. The system used was

a DSI MicroDyn microwave-assisted sputtering unit. Coatings were deposited by

sputtering from a silicon target in oxygen atmosphere, resulting in coating thickness

of 542± 7 nm.
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Coatings and surface treatments for enhanced performance suspensions 7

2.4. Thermal oxidation of silicon substrates

Sample sets 17 and 18 were wet oxidised in saturated N2 atmosphere for 1 hour

at 1000 ◦C, resulting in an oxide layer being grown on all silicon surfaces, of layer

thickness 275 ± 1 nm. Sample set 18 was then overcoated with single-layer DLC of

thickness 1 µm on all surfaces, by the same method as used for sample set 3.

2.5. Tensile strength testing

Silicon is a brittle material, and does not withstand significant plastic deformation

under stress, thus making it prone to shatter [23, 24]. Previous tensile strength

studies on silicon samples have shown that silicon will fail at tensile stress of

approximately 200 MPa at room temperature [25]. In [23] it was also shown that

fracture or failure stress decreases with increasing silicon sample cross-sectional area

under three-point flexural testing. More recently, Cumming et al. [26] reported tensile

strengths of the order of 140 MPa for untreated silicon, and demonstrated significant

improvements in strength via various surface treatments. The highest tensile strength

was achieved by wet oxidising <100> silicon, showing a maximum average figure of

around 300 MPa, with some individual strengths up to 450 MPa.

It is believed that the decreasing strength with increasing cross-sectional area

is explained by localised regions of high intrinsic stress [25] e.g. Griffith cracks [27]

on the surface and edges of the sample, and bulk defects such as dislocations and

impurities such as oxygen [23, 28]. Table 2 summarises the relevant properties of

the silicon samples used in this study. A total of 182 silicon samples were tested for

tensile strength, including “base” or untreated, and silicon with 9 different variations

of surface treatments, both with and without mechanical polishing of the ribbon

edges. Additionally, the effect of orientation of silicon flexures within the vacuum

chamber was investigated as discussed earlier and shown in Figure 1C and Figure 1D.

In order to avoid damaging the surface of the samples and prevent slippage

during testing, all samples were bonded between two aluminium “fuse end”

attachments, using Araldite 2012 2-part epoxy adhesive, as detailed in [26]. Sample

assemblies were then bolted via a drilled hole in each fuse end to an alignment jig to

ensure correct alignment of the assemblies before curing; the adhesive was cured by

placing the sample jigs on a hotplate at 80 ◦C for 1 hour, followed by a 24 hour room

temperature curing. After curing, samples were mounted on an adaptable tensile

strength testing system [26, 29] as shown in Figure 2A, with universal joints installed
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Coatings and surface treatments for enhanced performance suspensions 8

Table 2: Details of silicon samples used in tensile and flexural strength tests.

Sample set Dimensions* Edge quality Surface treatment

(mm)

1 30.0× 3.4× 0.5 Unpolished None

2 30.0× 3.4× 0.5 Unpolished Extended argon etch

3 30.0× 3.4× 0.5 Unpolished 1 µm single-layer DLC

4 30.0× 3.4× 0.5 Unpolished Extended argon etch and

1 µm single-layer DLC

5 30.0× 3.4× 0.5 Unpolished 3.1 µm multilayer DLC

6 30.0× 3.4× 0.5 Unpolished Extended argon etch and

3.1 µm multilayer DLC

7 30.0× 3.4× 0.5 Unpolished 542 nm sputtered silica

8 30.0× 3.4× 0.5 Unpolished Extended argon etch and

542 nm sputtered silica

9 30.0× 3.2× 0.5 Mechanically polished None

10 30.0× 3.2× 0.5 Mechanically polished Extended argon etch

11 30.0× 3.2× 0.5 Mechanically polished 1 µm single-layer DLC

12 30.0× 3.2× 0.5 Mechanically polished Extended argon etch and

1 µm single-layer DLC

13 30.0× 3.2× 0.5 Mechanically polished 3.1 µm multilayer DLC

14 30.0× 3.2× 0.5 Mechanically polished Extended argon etch and

3.1 µm multilayer DLC

15 30.0× 3.2× 0.5 Mechanically polished 542 nm sputtered silica

16 30.0× 3.2× 0.5 Mechanically polished Extended argon etch and

542 nm sputtered silica

17 30.0× 3.4× 0.5 Unpolished 275 nm wet oxidised silica

18 30.0× 3.4× 0.5 Unpolished 275 nm wet oxidised silica

plus 1 µm single-layer DLC

19 30.0× 3.4× 0.5 Unpolished 3.1 µm multilayer DLC,

horizontally mounted

∗ Approximate dimensions: Individual samples showed slight variation in width, owing to the dicing

and/or polishing process; this is accounted for in the failure stress calculations.
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Coatings and surface treatments for enhanced performance suspensions 9

above and below the sample assembly to minimise bending/tearing. Furthermore, the

lower fuse end was free to rotate, to reduce torsional forces on the sample. Samples

were tested to destruction, with breaking stress calculated by σ = F/A, where A

is cross-sectional area of the sample, and F is the maximum force exerted on the

sample, i.e. the force at which failure occurs.

A B
Figure 2: Image of (A) tensile and (B) 4-point flexural strength testing set ups, with

arrows indicating sample location.

2.6. Four-point flexural strength testing

3-point bending strength test measurements were previously made on fine silicon

whisker samples by Pearson [23]; fracture stresses of approximately 1-2 GPa, with

a maximum fracture stress of 5 GPa were reported for samples of 20-100 µm

diameter. As already discussed, evidence was presented that fracture stress decreases

significantly with increasing cross-sectional area of the silicon sample. These samples

were smaller in cross-sectional area than would be required for silicon ribbons/fibres

or blade springs for future gravitational wave detectors (which are likely to be of the

order 0.25− 10 mm2) [26].

4-point bending tests are similar to 3-point bending tests, with the major

difference between the methods being the location of the bending moment. The
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Coatings and surface treatments for enhanced performance suspensions 10

four point bending method allows for a more uniform distribution between the two

loading noses, whereas the three point bending method’s stress is located under the

single loading nose. In the case of brittle materials such as silicon, four point bend

testing is generally preferred when determination of strength for design purposes is

required [30, 31, 32]. This is because the centre span is uniaxially stressed, and so

no shear stresses exist, therefore the sample is subjected to both compressive and

tensile stresses, and it is typical for measured flexural strength to be greater than

tensile strength [33]. However, 4-point flexural strengths are likely to be smaller than

those measured by 3-point flexural testing, since a much larger portion of the sample

is exposed to the maximum applied stress [30, 32].

This method may be more appropriate for examining the effects of surface

treatments on silicon components for gravitational wave detectors than tensile

testing, particularly in the case of silicon blade spring cantilevers [20].

Flexural strength testing was carried out on sample sets 1-8, 17 and 18, i.e.

only samples with unpolished edges, with a total of 96 samples tested. Flexural tests

were conducted using a universal testing machine (model Instron 5966 50 kN) with

crosshead speed of 0.25mm/min. Cylindrical profile loading noses were set up with

a support span of 21 mm and loading span of 7 mm, as shown in Figure 2B.

Calculation of failure stress was carried out according to the equation for 4-point

flexural testing on rectangular cross-sections [30, 31, 32] with loading span one third

the size of the support span, such that,

σ =
FL

bd2
(1)

where σ is stress at the point of rupture/failure, F is applied force at point of

rupture, L is the width of support span, b is width of test sample, and d is thickness

of sample.

2.7. Abrasion testing

Single- and multilayer DLC coatings on 2 × 2 cm silicon <100> substrates, both

with and without extended Ar pre-etch, together with untreated base silicon

(corresponding to sample sets 3, 4, 5, 6 and 1 respectively), were subjected to the

TS1888 [34] test using a Grittington abrasion test rig. Although a military standard

test method, TS1888 is widely used in the optical coating industry for qualitative

assessment of abrasion resistance of optical coatings. Samples were subjected to
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Coatings and surface treatments for enhanced performance suspensions 11

5 minutes of wiping at a setting of 1000 rpm, and a wiper load of 20g, using a

mixture of 1cm3 of sand to DEFSTAN 07-55 Type C (military standard) in 10 ml

of water. The sample is considered to have acceptable abrasion resistance and to

have passed the test if there are no significant signs of scratching or other surface

imperfections after the test. Samples were tested as per TS1888 5.4.3 and visually

inspected. Scanning electron microscope images were also recorded of the abraded

samples, using a Hitachi S-4100 FE SEM.

3. Results and analysis

3.1. Tensile strength testing

The results for tensile strength testing of all 19 sample sets are shown in Figure 3.

3.1.1. Unpolished-edge silicon flexures Base (i.e. untreated) silicon (set 1) shows an

average failure stress of 225± 16 MPa, with the argon plasma-treated set 2 showing

similar strength of 221± 31 MPa (all errors quoted as standard error of the mean).

Coating with 1 µm of single-layer DLC (set 3) improves the average strength by

around 65% to 362±53 MPa; adding an extended Ar pre-etch before deposition (set

4) improves the average strength further still, to 405± 33 MPa, which is the highest

average tensile strength measured in this study. However, these latter two results

are within error of one another, so it is unclear as to how significant an effect the

extended etch has.

Multilayer DLC (set 5) improves average failure stress of base silicon by 35% to

304 ± 32 MPa; and, again, combined with an extended duration argon plasma etch

(set 6) increases the average strength to 353± 45 MPa. Again, these two results are

within error of one another.

All of the magnetron silica-coated samples’ strengths were confined to a fairly

low and narrow range, with broadly similar values to the low outlying data points for

other sample types, but without the high outliers seen with DLC coating. There is

no evidence in this study that magnetron-sputtered silica coating (set 7) can enhance

the strength of silicon ribbon; rather, the average strength is reduced to 87±16 MPa,

with the argon-etched counterpart (set 8) having similar strength of 93 ± 11 MPa.

Again, the influence of extended argon plasma pre-etch is not clear. The lower

than expected strength of these samples may have been caused by the mounting
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Figure 3: Tensile strength test results for sample sets 1-19

and dismounting procedure. Samples were held in place for deposition using double-

sided conductive carbon tape; these proved to be rather difficult to remove from

the mounting plates after deposition, and it seems likely that the physical removal

process created additional surface defects, which may have resulted in lower failure

strengths. It is, however, also worthy of note that the range of strengths measured

for these samples is rather narrower than for other sample types, which would not

necessarily be expected were the strengths only being limited by random physical
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Figure 4: Flexural strength test results for sample sets 1-8, 17 and 18

defects caused by dismounting.

By contrast, thermally-grown silica coating (set 17) was shown to increase the

average breaking strength of base silicon by around 35% to 306± 15 MPa; addition

of a 1 µm single-layer DLC coating on top of thermal oxide (set 18) improves the

average strength further to 394± 18 MPa.

It is therefore quite difficult to draw a firm conclusion explaining the

strengthening effect of the thermal oxidation of silicon; this process certainly

improves the strength of base silicon, but whether this is due to the material being

heated to 1000◦C or to the oxide coating itself is unclear at this point. It was

hoped that magnetron silica coatings would have elucidated the point; however, the

unexpectedly low strengths of these samples, as discussed previously, prevented this.
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Coatings and surface treatments for enhanced performance suspensions 14

With regard to the orientation of silicon ribbon samples within the vacuum

chamber, we can compare sample sets 5 and 19. Both sets were coated with 3.1 µm

thick multilayer DLC on unpolished edge silicon, with standard argon plasma pre-

etch. Sample set 5 was mounted in the standard way; vertically, seated in a slot on

the sample stage, and oriented parallel to the pipe length, as shown in Figure 1C. Set

19 was mounted horizontally and radially on a ring fitting within the pipe, parallel

to the direction of precursor gas flow, as shown in Figure 1D.

Sample set 19 showed a very slight increase in average tensile failure stress, at

325±23 MPa, compared to 304±32 MPa for set 5; as these results are within standard

error of one another, it can be concluded that tensile strength shows no strong

dependence here on orientation within the vacuum chamber. It is also interesting

to note that film thicknesses were 3.10 and 3.13 µm for the vertical and horizontal

mounts respectively; again, within experimental error.

3.1.2. Polished-edge silicon flexures Base silicon with polished edges (set 9)

exhibited an average failure stress of 202 ± 16 MPa, lower than that of unpolished

silicon; however, combined with an extended argon plasma pre-etch (set 10) the

strength is somewhat improved to 293 ± 29 MPa . The standard etch (30 mins)

corresponds to 261 nm surface removal, and the extended etch (60 mins) corresponds

to 522 nm surface removal.

1 µm thick single-layer DLC improved the strength of polished edge silicon

flexures (set 11) to 256 ± 23 MPa; combined with an extended pre-etch (set 12),

this is increased to 360± 16 MPa.

3.1 µm thick multilayer DLC coating (set 13) resulted in an average tensile

strength of 395± 25 MPa, which was the highest average figure measured for coated

polished-edge silicon, an increase of around 95% as compared to base silicon with

mechanically polished edges. This was also higher than that of the corresponding

unpolished sample set. In contrast to the unpolished analogues, adding an extended

argon pre-etch step (set 14) resulted in an average decrease in strength compared to

standard etch to 359± 38 MPa, albeit within experimental error of the result for set

13.

As with sample sets 7 and 8, 542 nm thick magnetron sputtered silica coatings on

polished edge silicon showed a large decrease in average tensile strength compared to

untreated silicon, to 105±14 MPa and 86±10 MPa for standard (set 15) and extended

argon etch (set 16) respectively. Again, it seems likely that the mounting and
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Coatings and surface treatments for enhanced performance suspensions 15

dismounting process for the magnetron silica coatings, which necessitated mechanical

removal of the samples from the mounting tape, may have been responsible for the

lower than expected tensile strengths measured.

3.2. Four-point flexural strength testing

All samples tested for flexural strength were silicon flexures with unpolished edges;

results for all samples are shown in Figure 4. In most cases, measured flexural

strengths were similar to, or slightly lower than, tensile strengths.

Base silicon (set 1) showed flexural strength of 174 ± 10 MPa, while applying

an argon plasma etch increased the figure to 235± 20 MPa.

As with tensile strength, single-layer DLC (set 3) appears to improve the flexural

strength of silicon ribbon to 253± 25 MPa; and, combined with argon pre-etch (set

4), the average figure increased to 303± 23 MPa.

Multilayer DLC (set 5) exhibited average flexural strength of 282±19 MPa and,

again, argon pre-etch plus multilayer DLC (set 6) increased the strength further to

358± 41 MPa.

Interestingly, in contrast to the case of tensile strength measurements,

magnetron sputtered silica-coated silicon was found to have a similar flexural strength

to that of base silicon. However, in the case of both sets 7 and 8, this finding was

based on two data points owing to limited numbers of samples, and so the data must

be treated with caution here.

Thermally-grown silica coating (set 17) was shown to significantly increase the

average flexural strength of base silicon, to 412± 54 MPa, while addition of a 1 µm

single-layer DLC coating on top of the thermal oxide (set 18) showed a lower average

figure of 346± 36 MPa, so within experimental error of thermal oxide alone.

3.3. Abrasion testing

It is noteworthy that the uncoated silicon sample showed visible damage to the

surface after 5000 wiper revolutions; scratches were clearly visible to the naked eye.

All of the coated samples passed the TS1888 test protocol, meaning that they showed

no visible damage after 5000 revolutions.

While by its nature a qualitative pass/fail test, the effectiveness of both single-

and multilayer DLC coatings as protective layers for silicon components was clearly

demonstrated. Figure 5 shows SEM images of each of the 5 samples tested.
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Coatings and surface treatments for enhanced performance suspensions 16

For untreated silicon, the surface is noticeably degraded by the wiper test; deep

scratches are apparent. The single-layer DLC coated sample shows no surface

degradation, although a pinhole defect (caused by a local electrical breakdown during

the deposition process) is apparent. There are occasional visible nodular asperities

in the SEM images of both single-layer DLC coated silicon with extended plasma

etch; such features are typical of PECVD-deposited amorphous carbons [15, 35, 36].

A B C

ED

Figure 5: SEM images of samples abraded per TS1888 method for (A) uncoated

silicon, (B) single-layer DLC (set 3), (C) single-layer DLC with extended pre-etch

(set 4), (D) multilayer DLC (set 5), (E) multilayer DLC with extended pre-etch (set

6). Note the damage to the uncoated silicon. The other surface features are typical

of amorphous carbon coatings.

3.4. Thermal noise

As discussed, further reductions in the longitudinal thermal noise associated with

the fused silica monolithic suspensions in Advanced LIGO will likely require

improvements in the thermal noise performance of the lower cantilever blade springs.
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Coatings and surface treatments for enhanced performance suspensions 17

These are currently fabricated from maraging steel, of 4.2 mm thickness and loss

factor of 1 × 10−4 in addition to relevant thermoelastic contribution [37]. The

geometry for enhanced silicon blade springs will be determined from the thermal

noise performance and the ultimate breaking strength. For simplicity, scaling the

thickness and keeping the remaining blade geometries, and providing a factor of 50

safety margin in breaking strength (where σfailure = 350 MPa), would allow a silicon

blade thickness of 1.4 mm to be utilised. The vertical thermal noise can be shown to

be related to the harmonic motion such that,

xvertical =

√
4kBTφtotω2

v

mω(ω2
v + ω2)2 + (φtotω2

v)2
, (2)

where kB is Boltzmanns constant, T is the temperature, φtot is the total

mechanical dissipation, m is the pendulum mass, ωv is the vertical bounce mode

angular frequency, and ω is the angular frequency [38]. The vertical motion of

the suspension stack will couple to the horizontally sensed displacements of the

interferometer by a coupling factor of 1/1000 (due to the curvature of the Earth [39]).

The mechanical dissipation of the DLC coatings was investigated by measuring silicon

cantilever resonators with applied DLC coatings [40, 41]. The mechanical dissipation

of the uncoated cantilevers was observed to follow the expected thermoelastic

dissipation, as previously reported for similar geometry samples [40] as shown in

Figure 6.

The mechanical dissipation of cantilevers was measured before and after coating,

and the mechanical dissipation of the DLC coating, φDLC, calculated by scaling

the difference with the ratio of strain energies in the coating and substrate,

Esubstrate/Ecoating such that,

φDLC =
Esubstrate

Ecoating

(φcoated − φuncoated). (3)

The Youngs moduli are taken to be Ecoating = 110 GPa [15] and Esubstrate =

161 GPa [40]. Coatings were deposited at different thicknesses, to evaluate any

significant thickness dependence in the loss. Two cantilevers were coated in the

same coating run but with one cantilever fully exposed, to coat on all sides, and

the other placed on an aluminium platform, to coat on the upper surfaces only.

Due to the large compressive stresses, typically of the order of −0.8 GPa for single-

layer a-C:H deposited by hollow cathode PECVD [15], the single- and double-side
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Figure 6: (A) Measured mechanical loss for an uncoated silicon cantilever, with and

without Ar etch, compared to the calculated thermoelastic dissipation. The thickness

of the cantilever was calculated from the resonant frequencies to be 97.8 ± 0.4µm

and 96.7 ± 0.3µm before and after etching respectively. (B) Calculated mechanical

loss values for DLC coatings on silicon cantilevers. The standard errors are too

small to show on the plots, typically being approximately 1% from a series of 3 to 4

subsequent ringdowns.

coated cantilevers will provide evidence of whether there is a stress dependence in the

mechanical dissipation. Figure 6 shows the compiled losses for these three cantilevers,

alongside SEM cross-sectional images of the deposited coatings. An upper limit of

φDLC = 5× 10−4 is taken for the subsequent thermal noise calculations.

The mechanical dissipation of the modelled silicon blade springs was calculated

using the upper limit value of φDLC (assuming 1 µm thick DLC coating and scaled

again by the energy ratio for a 1.4 mm thick blade spring). Figure 7 shows the final

calculated vertical thermal noise, compared to the current Advanced LIGO design,

calculated using the GWINC (Gravitational Wave Interferometer Noise Calculator)

[42]. In this case, the contribution from the final monolithic stage is removed, since

this requires improvements. Proposed room temperature upgrades for Advanced

LIGO are discussed in detail by Hammond et al. [43], which could include heavier

test masses (40 → 160 kg) in addition to longer (0.6 → 1.1 m) and thinner silica

suspensions with improved mechanical loss and dilution factors [44].
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Coatings and surface treatments for enhanced performance suspensions 19

A 6.4-times reduction in the vertical thermal noise is observed at 10 Hz, with

improvement across all frequencies above 3.5 Hz. The dominant source of thermal

noise for the blade springs arises from thermoelastic dissipation, associated with the

thermomechanical properties and geometry of the silicon springs. Therefore, further

reductions could be gained through cooling to cryogenic temperature, particularly

where the linear coefficient of expansion of silicon is zero (∼ 18K and ∼ 120K).

Moving to a blade material with more beneficial thermomechanical properties at

room temperature, such as fused silica, could permit further improvements without

the requirement for cryogenics. Further investigations would be required to validate

these approaches.
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Figure 7: Vertical thermal noise calculated for Advanced LIGO assuming current

configuration (red) compared to replacing lower-stage maraging steel blade springs

with 1.4 mm thickness silicon springs coated with 1 µm protective DLC layer (blue).

The lower monolithic stage (TM stage) is ignored.
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4. Conclusions & further work

All coatings and surface treatments, with the exception of the magnetron sputtered

silica, have improved the tensile and flexural strength of untreated silicon. Base

silicon exhibited higher strength than that reported in [26], similar strength to that

in [25], and lower than that in [23]. The silicon surface quality is likely to be the

dominant factor in determining tensile and flexural strength. Note that the silicon

flexures tested in this study were of different geometry to those reported previously

[23, 25].

Multilayer DLC coating combined with an extended pre-deposition argon etch

step increases the average tensile failure stress of silicon by around 80% compared

to the base material. A number of outlying data points for both single- and multi-

layer DLC coated silicon show higher tensile strength. Some data points approach

the values reported in [23] which utilised samples of smaller cross-section, despite

the fact that larger cross-sectional area would be expected to lead to lower tensile

strength. This suggests that higher tensile strengths for silicon are achievable with

the correct choice of surface treatment.

It appears that the edge polishing slightly degrades the strength of the silicon;

this may be explained by the creation of edge defects and/or chips, as shown in [26].

Interestingly, however, this statement does not hold true for multilayer DLC-coated

samples, which are stronger on average than the corresponding unpolished samples.

A possible explanation for this is that these particular coatings are reasonably thick

(∼3 µm) which, together with the conformal nature of coatings deposited by PECVD,

may be enough to fill in any cracks or chips at the edges, and thus compensate for

the increased concentration of defects.

It was shown that substrate orientation within the vacuum chamber during

deposition of the DLC films does not have an appreciable effect on the measured

tensile strength.

It was shown that in addition to improving the strength of silicon flexures,

single- or multilayer DLC coatings also afford an impressive level of protection from

abrasion, which may facilitate easier handling/assembly of suspension components

and improve their robustness. Similar coatings could be considered for relevant silica

and sapphire components, for alternative interferometer configurations.

Replacing the current maraging steel blades of Advanced LIGO with DLC-

coated silicon blade springs could offer a 6.4-times reduction in suspension vertical
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thermal noise at 10 Hz, with significant improvement across all frequencies above

3.5 Hz.

Suspension fibres could also be coated with these DLC films, however we note

that the thermal noise requirements here would be challenging, due to higher surface-

to-volume ratio and greater influence of the suspension fibres on the thermally driven

displacement of the mirrors.
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