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Abstract

This paper presents a maximum power point tracking (MPPT) method for

photovoltaic system under partial shading conditions using bat algorithm

(BA). The bat algorithm is a swarm intelligence based method which was

inspired by the echolocation behaviour of bats. BA have a high accuracy in

the global optimisation and it can provide good dynamic performance and

very quick convergence rate by automatically switching between exploration

and exploitation stages during the MPPT process. To verify the perfor-

mance of the proposed method, several simulations have been carried out in

Matlab/Simulink environment for various shading patterns. The simulations

results highlight the accuracy of the proposed scheme for optimal manage-

ment of the energy available at the output of the photovoltaic panels. In

addition, the comparison with the P&O and the PSO methods shows that

the proposed method outperforms them in term of global search ability and
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dynamic performance. To verify the practical implementation of the pro-

posed method, a modular reconfigurable architecture is designed using very

high speed description language (VHDL) and implemented on Xilinx Virtex-

5 (XC5VLX50-1FFG676) Field Programmable Gate Array (FPGA). The use

of FPGA for designing the MPPT controller provides high performance, in-

creases the robustness and makes the hardware implementation more felxible.

The algorithm is tested in real time application on a buck-boost converter

using a real photovoltaic panel. Experimental results confirm the efficiency

of the proposed method in the global peak tracking and its high accuracy to

handle the partial shading.

Keywords:

Partial shading conditions, bat algorithm (BA), maximum power point

tracking (MPPT), photovoltaic (PV) system, field programmable gate array

(FPGA).
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1. Introduction

R
enewable energy resources have enormous potential and offer many ad-

vantages over conventional energy resources. Renewable energy comes

from several resources like solar, wind, geothermal, biomass and water. They

can produce electricity in large quantities over a long term without too emit

greenhouse gases. The renewable sources of energy derived from the sun can

be used both directly and indirectly. The direct use of solar energy by means

of sensors is related to two distinct technologies: the first produces calories,

it’s solar thermal energy, and the second produces electricity through the

photovoltaic effect. Photovoltaic (PV) technology is one of the most promis-

ing renewable energy technologies. Photovoltaic systems are configured as

stand-alone, grid-connected and hybrid systems [1].

Various configurations are used for the PV modules interconnection to

meet the voltage-current requirement [2]. The overall characteristics of pho-

tovoltaic generators are varying and depend on several factors, especially the

metrological conditions such as solar radiation, ambient temperature and

wind speed, the aging of photovoltaic cells and partial shading or inhomo-

geneity of the illumination. When PV modules receive a uniform sunlight,

the resulting P -V characteristic is uni-modal and characterized by a single

point of maximum power. When part or the entire module receives a non-

uniform illumination, some cells (dimly lit) become reversed bias and turn

into receiving elements. This phenomenon is called “hot spot” and can result

in the destruction of these cells. To remedy this problem, the photovoltaic

modules are equipped with bypass diodes which function is to protect the

cells that become passive [3]. The integration of bypass diodes in solar mod-
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ule has as consequence the changing of the P -V characteristic which becomes

multimodal when the partial shading occurs [4]. The P -V characteristic is

then characterized by the appearance of several maxima: several local maxi-

mum power points (LMPPs) and one global maximum power point (GMPP).

The number of maxima depends on the type of shading (uniform or partial),

distribution of the illumination on the photovoltaic generator and the number

of bypass diodes incorporated in each photovoltaic module.

Despite efforts to improve the technology of photovoltaic cells, the electri-

cal efficiency is still low [5]. Also, partial shading has dramatic consequences

on the electrical power delivered [6, 7]. To reduce losses caused by partial

shading and increase the efficiency of photovoltaic panels, several approaches

are presented in the literature. These approaches include system architec-

tures, converter topologies, PV array configurations and maximum power

point tracking (MPPT) techniques [8]. Despite the improvements that can

be achieved by the first three approaches, additional material increases the

complexity of the system which becomes more expensive. So a good com-

promise cost-efficiency can be achieved by development of MPPT techniques

which can handle the partial shading.

Several MPPT techniques are presented in the literature to handle the

multimodal P -V characteristic in partial shading conditions. These methods

vary in complexity, in the types and the number of sensors used and the

equipment used for the implementation. [9] proposed a two stage MPPT al-

gorithm for tracking the GMPP. The authors introduce an analytic condition

to distinguish partially shaded conditions from normal conditions. This con-

dition is based on the comparison of the sensed photovoltaic current around
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(0.8×NSS × Voc) and a reference value calculated at uniform insolation con-

ditions with G = 1000 W/m2, where NSS is the number of series photovoltaic

module and Voc is the open circuit voltage. When the region of GMPP is

located, the algorithm calls a hill climbing subroutine to reach the GMPP.

However, in the first stage, (NSS + 1) points should be tested each time

the partial shading conditions are detected before calling the hill climbing

algorithm to locate the GMPP. This method will become time-costly if the

number of series module is large [10]. In addition, temperature sensors must

be used to determine the open circuit voltage. Another two-stage search

method is proposed by [11] for locating the GMPP. The first stage involved

using a fixed spacing method to divide the P–V characteristic curve into

various segments and to obtain the block in which GMPP is located. During

the second stage, a variable step-size perturb and observe (P&O) method is

used to locate the precise location of the GMPP. The authors recommended

using (NSS + 1) segments at the first stage to enhance the tracking perfor-

mance, where NSS denotes the number of PV modules serially connected. It

is shown in [12] that the function describing the PV power as a function of

the PV voltage is a Lipschitz function. Therefore, [12] adopted the divid-

ing rectangles (DIRECT) algorithm to search for the GMPP. Although the

presented experimental results showed the efficiency of this method in track-

ing the GMPP under partial shading conditions, an appropriate choice of the

first sampling interval is primordial for the GMPP tracking performance [13].

[14, 15, 16] employed two-stage search methods to track the GMPP, which

first scanned the P–V characteristic curve and then recorded the GMPP.

In the second stage, these methods applied either the P&O method [14] or
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fuzzy logic control [15, 16] to maintain the operating point at the GMPP.

Evolutionary algorithms (EA) have attracted special attention by the aca-

demic community in recent years. Indeed, several articles have appeared in

scientific journals, highlighting the effectiveness of these algorithms in the

tracking of maximum power point in partially shaded conditions. Thanks

to its simple structure, the particle swarm optimisation (PSO) algorithm is

developed and improved by many researchers. [17] used conventional PSO

algorithm to control several PV arrays with one pair of voltage and current

sensors. In [18], the authors used the PSO technique for the tracking of

GMPP using direct duty cycle control method. PI control loops are elim-

inated and the duty cycle of the Pulse Wide Modulation (PWM) signal is

adjusted directly by the MPPT algorithm. In [19], the authors have im-

proved their algorithm (PSO) by removing random factors from the velocity

equation. The proposed algorithm becomes deterministic and its structure

becomes simpler. However, a restriction is imposed on the maximum of par-

ticle velocity to not fall into a LMPP. [13] combined P&O and PSO to form

a hybrid method to reduce the search space of the PSO. Initially, the P&O

method is employed to identify the nearest local maximum. Then, the PSO

method is used to search for the GMPP. Experimental results show that this

method has a faster convergence time and better dynamic response than the

conventional PSO algorithm. Adaptive approaches are reported in [20, 21]

to tune the PSO algorithm control parameters to increase the efficiency and

performance of the GMPP tracking. In [20] , the authors proposed to ad-

just these parameters in linear way whereas the authors in [21] suggested

varying them in exponential form. Despite improvements provided by these
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approaches, the structure of the algorithm becomes more complex and pa-

rameter selection task becomes more difficult [10]. [22, 23, 24] tracked the

GMPP using differential evolution (DE) algorithm. The conventional DE

is used in [22] whereas modified mutation strategy are adopted in [23, 24]

to improve the convergence speed. [24] proposed to remove the random

numbers from the algorithm, and then the donor vectors (generated by the

mutation) are used directly as a trial vectors. Experimental results of ten

shaded patterns show that this method outperforms the PSO method in

terms of global tracking capability and convergence time. [25] proposed a

maximum power point tracking (MPPT) for PV system using cuckoo search

method (CS). CS is a population based algorithm and its concept is similar

to PSO. The main difference between CS and PSO is the manner to update

the step sizes. In fact, the step sizes in CS are performed by Lévy Flight.

The results shows improvements compared to the PSO technique in terms

of convergence speed and transient fluctuations, but the structure of the CS

algorithm is more complex. [26] presented a MPPT algorithm based on a

colony of flashing fireflies for tracking GMPP in partially shaded PV arrays,

and compared it with PSO algorithm. The published results indicates that

the firefly algorithm based tracking outperforms the PSO method in terms of

tracking speed and dynamic behaviour. [27] proposed a hybrid method called

DEPSO, a combination of PSO and DE. The PSO algorithm is used in odd

iterations and the DE algorithm is performed in even iterations. Although

this algorithm can track the GMPP, the presented results show that DEPSO

requires a lot of iterations to converge, producing large fluctuations in the

power before reaching the steady state [28].
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The main drawback of the mentioned EA based MPPT is that the trade-

off exploration-exploitation is low, which may result in large fluctuations in

the operating power of the PV array during the optimization process, or to

fall in LMPP in some partial shading configurations. [29] has developed a

new metaheuristic method, the Bat Algorithm (BA), which is inspired on

the echolocation behaviour of microbats. BA uses a frequency-tuning tech-

nique to increase the diversity of the solutions in the population. As a result,

the search space is excellently explored. Moreover, this algorithm provides a

mechanism of automatic switching between explorative moves and exploita-

tion during the MPPT process. This feature allows to the algorithm to have

a quick convergence rate towards the GMPP without falling into the trap of

premature convergence. In addition, the combination of exploration (global

search) and exploitation (local search) during the tracking process also al-

lows to the algorithm to present good dynamic behaviour and less oscillations

before reaching the GMPP.

Recognizing these benefits, this paper proposes bat algorithm based MPPT

to track GMPP under partial shading conditions. The remainder of this pa-

per is structured as follows. Section II presents the modelling of the pho-

tovoltaic system and the behaviour of the photovoltaic panel under partial

shading condition. Section III discusses the key features of the bat algorithm

and describes the proposed bat algorithm for MPPT. Section IV highlights

the effectiveness of the proposed algorithm in the global peak tracking and

its superiority over the PSO and P&O algorithms. Experimental validation

is presented in section V and finally, a conclusion is made in section VI.
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2. Modelling of the photovoltaic system

2.1. PV module model

The general equivalent electrical circuit of the two-diode model, shown in

Fig. 1 is used to simulate the behaviour of the solar cell. This model contains

a current source IPV , which describes the photocurrent, two diodes D1 and

D2, a series resistance RS and a parallel resistance RP . An accurate model

of PV array based on this model is presented in [30]. Eq. (1) describes the

output current of the PV array:

I = IPVNPP − Io1NPP

exp
V + IRSNS

(
NSS

NPP

)
a1VTNSNSS

− 1



−Io2NPP

exp
V + IRSNS

(
NSS

NPP

)
a2VTNSNSS

− 1

−
V + IRSNS

(
NSS

NPP

)
RPNS

(
NSS

NPP

)
 (1)

where I and V refer to the output current and the output voltage of the

PV array, respectively. NS is the number of solar cells connected in series

incorporated in each PV module, whereas NSS and NPP denote the number

of PV modules connected in series and parallel, respectively. VT (equal to

KT/q) is the thermal voltage of the diodes, k is the Boltzmann constant

(1.3806503 × 10−19 J/K), q is the electron charge (1.60217646 × 10−19 C)

and T is the temperature in Kelvin. a1 and a2 are the ideality factors of the

diodes D1 and D2, respectively.
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Figure 1: Equivalent circuit of a solar cell.

The photocurrent IPV is directly influenced by the solar irradiance G and

the temperature T . It is given by

IPV = Isc STC +K1 (T − TSTC) . (2)

The diodes saturation currents I01 and I02 are given by

Io1 = Io2 =
Isc STC +KI (T − TSTC)

exp
(

Voc STC+KV (T−TSTC)
NSVT

) (3)

where Isc STCand Voc STC are the short circuit current and the open circuit

voltage of the PV module in the standard test condition (STC), i.e. T =

TSTC = 298.15 ◦K and G = GSTC = 1000 W/m2.

The PV module used in this paper is SM55. The parameters of this

module under STC are given in Table 1. Fig. 2 shows the corresponding

static P -V curves for different values of irradiance G and temperature T .

The module receives a uniform solar insulation, thus, the P -V curves exhibit

an unique maximum power point (MPP).
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Figure 2: The P -V characteristics under uniform condition.

To protect photovoltaic modules against “hot spot” phenomenon, they

are equipped with bypass diodes. The photovoltaic module used is consist-

ing of 36 cells connected in series, and protected by two bypass diodes. Each

diode is connected in antiparallel with a group of 18 solar cells. The presence

of these protection diodes changes the shape of the P -V characteristic and

makes it more complicated when PV panel is subjected to partial shading. In

partially shaded conditions, the resulting P -V characteristic presents several

points of maximum power, several local maxima and one global maximum.

Fig. 3(a) shows a photovoltaic panel consisting of two serially connected mod-

ules SM55. The resulting panel can be considered as four (4) sub-modules

and each sub-module is protected by one bypass diode.

In a first case, we assume that the first module receives a uniform ir-
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Figure 3: (a) Model of PV panel consisting of two photovoltaic modules

connected in series and (b)P -V curves of PV panel under two partial shading

patterns.

radiance of G1 = 1000 W/m2 while the second receives an insulation of

G2 = 500 W/m2 . The resulting P -V characteristic is shown in Fig. 3(b).

We can notice the appearance of two maximum power point P1 = 53.14 W

and P2 = 58.04 W at V1 = 17 V and V2 = 37 V, respectively. Fig. 3(b)

shows the P -V curve in the case where each sub-module receives a different

irradiance, for example G11 = 1000 W/m2 , G12 = 800 W/m2 , G21 = 600

W/m2 et G22 = 400 W/m2 (the notation Gij refers to the insulation G for

the sub-module j of the module i). In this case, the P -V characteristic is
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Table 1: SM55 module specifications.

Parameters Value

Maximum power (Pmpp) 55 W

Short circuit current (Isc) 3.45 A

Open circuit voltage(Voc) 21.7 V

Maximum power current (Impp) 3.15 A

Maximum power voltage (Vmpp) 17.4 V

Temperature coefficient of Isc (KI) 1.2×10−3 A/◦C

Temperature coefficient of Voc (KV ) -77×10−3 V/◦C

Number of series cells in the module (Ns) 36

Number of bypass diodes 2

characterized by the appearance of four maximum power point whose the

global is P = 52.89 W at V = 27.59 V. Thus, the P -V characteristic can

take various forms according to the shading pattern and the tracking of the

global maximum power point (GMPP) becomes a more challenging task.

2.2. DC-DC converter modelling

Fig. 4 shows a simplified electric schematic of a basic inverting buck-boost

converter. In addition to input and output capacitors, the power stage con-

sists of a power metal-oxide semiconductor field-effect transistor (MOSFET),

a diode, and an inductor.

The buck-boost converter assumes two states per switching cycle. The

ON State is when Q is close and the OFF State is when Q is open. The

duration of the ON state is d Ts, where d is the duty cycle of PWM signal
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Figure 4: Electrical circuit of a Buck-Boost converter.

and Ts is the switching period.

During the closing time d× Ts of the transistor, the source voltage Vin is

applied across the inductor L, which results in accumulating energy in the

inductor. During the opening period (1−d)Ts, the diode D is forward-biased

and the voltage of the inductance is applied to the load Z. The current flows

anticlockwise through the diode D. Thus, the output voltage will be negative.

The dynamics of the converter in one switching period is represented by

the following system :
C1

dvin(t)
dt

= iin (t)− d× iL (t)

C2
dvout(t)

dt
= − (1− d) iL (t)− iout (t)

LdvL(t)
dt

= d× vin (t) + (1− d) vout (t)−RLiL (t)

(4)

where iin(t), iout(t) and iL(t) are the input, the output and the inductor

current, respectively. vin(t), vout(t) and vL(t) are the input, the output and

the inductor voltgae, respectively.
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3. The proposed bat algorithm based MPPT

3.1. Overview of Bat search algorithm

Bat algorithm is a population based optimization algorithm inspired by

the echolocation features of microbats in locating their foods. It is developed

by Yang in 2010 [29].

Small bats (microbats) feed primarily on insects which detect using echolo-

cation. The direction and intensity of the return signal enable them to locate

potential prey in direction, and also in distance. At first, the bat overflies the

search space, while emitting a set of ultrasonic pulses of a certain amplitude

(intensity) and a rate (density). Between the pulse trains, it receives the

feedback signals (its own signal and eventually the signals from other bats

in the swarm) by echolocation and interprets them. If the signals received in

return have a low intensity and a strong rate, then it is very likely that prey

is detected and the bat should head toward it. As the bat approaches the

prey, it gradually intensifies the amount of pulses (the ultrasound rate) and,

at the same time, progressively decreases the intensity of these pulses.

Bat algorithm is developed then by idealizing some of the echolocation

characteristics of microbats [29]. Bat algorithm maintains a swarm of N

microbats, where each microbats flies randomly with a velocity vi at position

xi, with a varying loudness Ai and pulse emission rate ri ∈ [0, 1] depending

on the proximity of their target.

During the optimization task, every bat is randomly assigned a frequency

which is drawn uniformly from [fmin, fmax]. Then, the velocity vi and the

position xi of each bat at time step t are defined and updated with

fi = fmin + (fmax − fmin) β (5)
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vt+1
i = vti +

(
xti − x∗

)
fi (6)

xt+1
i = xti + vt+1

i (7)

where β ∈ [0, 1] is a vector randomly drawn from a uniform distribution. x∗ is

the current global best location (solution) which is achieved after comparing

all the solutions among all the N bats at each iteration t.

If a random number is greater than the pulse emission rti , then the ex-

ploitation stage is selected and the position xt+1
i is replaced by the solution

generated by the local search. As a result, a new solution is drawn locally

by using a random walk around the current best solution [31]

xnew = x∗ + εAt (8)

where ε is a random number which can be drawn from a uniform distribu-

tion in [−1, 1] or a Gaussian distribution, while At =< At
i > is the average

loudness of all the bats at this time step [32].

If a random number is smaller than the loudness At
i and the new solution

improve the fitness value, this means that the bat is moving towards the prey

(the optimal solution). Then, the new solution is accepted and its loudness

and emission rates are updated to control the exploration and exploitation.

It is suggested that loudness decreases from positive value A0
i to Amin = 0

whereas the pulse rate of pulse emission increases from 0 to Ri

At+1
i = αAt

i (9)

rt+1
i = Ri [1− exp (−γt)] (10)

where α is a constant in the range of [0, 1] and γ is a positive constant. In

this work, A0
i and Ri are set to 1.
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3.2. Application for MPPT

The bat algorithm is applied to the tracking of GMPP by the direct

duty cycle control method. Thus, the optimization variable is defined as the

duty cycle of the PWM signal. The complete flowchart of the proposed bat

algorithm based MPPT is illustrated in Fig. 5.

Initialisation

Initially, a vector of N duty cycles (first vector of solutions) is generated

from a uniform distribution on [0, 1] or it is predefined. The number of bats

(N) is an important factor in the optimization process. A large number N

guarantee the determination of GMPP but the convergence time can be long

while a small number N will save in convergence time but it can result in

low GMPP tracking accuracy if the parameters of the MPPT algorithm are

not well optimised. To ensure a compromise “convergence speed-efficiency”,

the number of duty cycle, N is chosen to be three (3).

For the choice of first vector of duty cycles (first vector of solutions), the

method of the reflective impedance is used [12]. The first three duty cycles

are calculated thus:

d1 =

√
ηZmin√

RPV max +
√
ηZmin

(11)

d2 =

√
ηZave√

RPV STC +
√
ηZave

(12)

d3 =

√
ηZmax√

RPV min +
√
ηZmax

(13)
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where η is the converter efficiency, Zmin, Zmax and Zave = (Zmin + Zmax)/2

are the minimum, maximum and averege values of the connected load re-

spectively. RPV min and RPV max are the minimum and maximum values of

the reflective impedances of the PV array, respectively, while RPV STC is the

reflective impedances of the PV panel at STC condition. In our simulations,

the values of the parameters are : η = 0.96, Zmin = 40 Ω, Zmax = 70 Ω,

RPV min = 6 Ω, RPV STC = 22 Ω and RPV max = 43 Ω.

It should be mentioned that the interval [d1, d3] serves only for a first

approximation of the search space. This approach leads to prevent having

major disturbances and fluctuations in the voltage of the photovoltaic panel.

The BA based MPPT can then search for the MPP outside of this range.

The minimum duty cycle and maximum duty cycle are defined as 0.02 and

0.98, respectively.

The current and voltage of the photovoltaic array are sensed and the

corresponding power is calculated for each duty cycle. The best duty cycle,

dbest which gives the best value of fitness (PV power) is then stored.

Generating of new solutions

A new vector of solutions is globally generated following the equations

fi = fmin + (fmax − fmin) β (14)

vki = ωvk−1
i +

(
dbest − dk−1

i

)
fi (15)

dkinew = dk−1
i + vki . (16)

Modifications are made on the equation of velocity vi (Eq. (14)) to take

into account the practical limits. The parameter ω called “inertia weight
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factor” [33] is used to limit the speeds of microbats while the term (dbest −

dk−1
i ) serves as a search direction and ensures that solutions still move towards

the best duty cycle dbest.

To ensure an automatic and dynamic failover between the exploration

stage and the exploitation stage, a local solution is generated locally for each

bat when the rate of its emission pulse ri is lower than the rate of reception

pulse randomly generated from a uniform distribution. This local solution is

generated by “Random Walk” around the best solution (dbest) according to

the relationship Eq. (17), and replaces that of the global search.

dkinew = dbest + εΦAk−1 (17)

where ε ∈ [−1, 1] is a uniform random number, Ak−1 =< Ak−1
i > is the

average loudness of all the bats at this step while Φ is a fixed positive constant

used to limit the random walk. This constant is set to be 0.05.

Updating of solutions

The new duty cycles are accepted or rejected not only according to the

obtained values of PV power, but also depending on the amplitude of the

received ultrasonic signals. This amplitude (received) is generated randomly

for each duty cycle and compared with the value of the transmitted signal

(Ai). Thus, for each new duty cycle, if it improves the objective function

(P (dkinew) > P (dk−1
i )) and the amplitude of its received signal is less than a

random number, then it is accepted and will be a new solution for the next

generation. The rate of pulsation of emission of this duty ratio is increased

while the amplitude of the ultrasound signal is decreased according to the

relationships Eq. (9), Eq. (10).
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Convergence criterion

The algorithm continues to calculate the new duty cycles until constraint

on convergence is satisfied. In this article, the condition shown in the Eq.

(18) is used as a convergence criterion. If the absolute difference between

each two different duty cycles is less than a threshold ∆d, then the algorithm

stops the optimization process and brings out dbest∣∣dki − dkj ∣∣ ≤ ∆d ; i, j = 1, 2, 3 (i 6= j). (18)

Re-initialization

Due to varying weather and loading conditions, the global MPP is usu-

ally changing. The MPPT algorithm should have the ability to detect the

variation of shading pattern and to search for the new global MPP. In this

paper, the search process is initialised if the following condition is satisfied

|PPV new − PPV last|
PPV last

> ∆P (19)

where PPV new and PPV last are the values of photovoltaic panel power in two

successive sample periods and ∆P is the power tolerance.
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Figure 5: Complete flowchart of the proposed method.
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4. Simulation results

To verify the effectiveness of the proposed algorithm, a photovoltaic sys-

tem is simulated on Matlab/Simulink. The different blocks constituting the

model are shown in Fig.6. The photovoltaic panel used consists of four SM55

photovoltaic modules connected in series. The photovoltaic module is mod-

eled according to the model of two diode (section II) and the photovoltaic

panel output voltage is determined by the Newton-Raphson iterative method

[30, 34].

IPV

VPV

Buck-Boost

converter
Load

PV

panel

PWM

BA-MPPT

Figure 6: Block diagram of the proposed PV system.

The DC-DC converter used is a Buck-Boost converter. It is designed

for continuous conduction current mode with the following specifications:

C1 = 440 µF, C2 = 330 µF, L = 0.7 mH and a chopping frequency of 50

kHz.

The parameters used in the implementation of the BA-MPPT algorithm

are as follows: N = 3, ω = 0.4, α = 0.9, γ = 0.6, ∆d = 0.01 and ∆P = 0.05.

After applying each duty cycle, we should wait for the transient condition to

settle. Indeed, the time required for the system to reach the steady state can

vary according to the difference between two successive duty cycles. This

difference can be more or less important, which affects the dynamics of the
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DC-DC converter and its settle time. To determine the appropriate sampling

time for the MPPT controller, the tracking response is analysed when the

PV system is subjected to uniform irradiance of G = 1000 W/m2. Starting

with an initial sample time of 0.1 s, the tracked voltage is examined to

determine the optimal sample time which permits to the system to reach

the steady state. Fig. 7 presents the tracked PV voltage using the bat

algorithm. From this figure, it can be noticed that the settle time of the

system is varying. Therefore, an appropriate choice of the sampling time

for the MPPT controller is required in order to have correct samples of PV

current and PV voltage. If wrong values of PV current and PV voltage are

sensed (measured in transient state of the system), the considered PV power

values will be wrong. Therefore, the determination of the best duty cycle may

be affected, which can influence the accuracy of the tracking of maximum

power point. From Fig. 7, it can be noticed that 0.05 s is a reasonable choice.
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Figure 7: Determination of BA based MPPT sampling time.
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Initially, the proposed algorithm is tested for three different configura-

tions of partial shading. Fig. 8 shows the various P -V characteristics corre-

sponding of the configurations as well as the sequence of test. The first P -V

curve is characterized by the presence of five (5) maximum power points.

The global maximum point is located to the right of this curve. The second

configuration presents partial shading with the moving of global maximum

power point to the middle of the P -V curve whereas this point moves to the

left in the third configuration. Each shading configuration lasts 5 seconds.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

Voltage (V)

P
ow
er
(W
)

Shading pattern 1
Shading pattern 2
Shading pattern 3

Figure 8: P -V curve used in the simulation.

Fig. 9 shows the results of the dynamic tracking. Initially, the bat algo-

rithm transmitted the first solution vector (the first three duty cycles) and

begins the optimization process. It can be seen that the proposed bat algo-

rithm is able to distinguish between the global maximum (PGMPP = 146.85

W) and the local maximas. At t = 5 s, the configuration of the shading
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Figure 9: Variation of duty cycle, current, voltage and power of the PV

system during GMPP tracking using BA based MPPT.

changes. The proposed algorithm detects this change through information

on the power of the photovoltaic panel that changes from P = 146.85 W to

P = 86.8 W. The process of the tracking is then re-initialised and the algo-

rithm has successfully locates the new global maximum which corresponds to

V = 45.63 V and I = 2.11 A. At t = 10 s, the global maximum is shifted to

the left of the P -V curve. The power of the photovoltaic panel has changed

from P = 96.21 W to P = 39.3 W, and the condition of re-initialisation is

then satisfied. The proposed algorithm has re-initialised the searching pro-
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cess and the new GMPP is also detected.

As mentioned in the section I, the proposed bat algorithm uses a technique

of automatic switching between the exploration stage (global search) and

exploitation stage (local search). To illustrate this failover, we can define the

function S as follows

S =

1 if d = dglobal

0 if d = dlocal

(20)

Fig. 10 shows the variation of the function S as a function of time. The

function S is 1 when the duty cycle resulting from the global search is selected.

Otherwise, when the duty cycle from the local search that is selected, the

function S is 0. For example, consider the first configuration of the shading

shown on the zoom of the Fig. 10. A MPPT cycle is achieved after evaluating

all the three duty cycles. Therefore, a MPPT cycle corresponds to three

perturbations. For the first vector of solutions, it is assumed that this is a

global search. This assumption is justified by the fact that the first three

duty cycles are selected to “explore” efficiently the search space. Therefore,

S is initially 1.

In the second MPPT cycle, it can be noticed that the algorithm has ap-

plied an automatic zoom to the region where the best duty cycle is located

(the duty cycle which gives the best value of photovoltaic panel power). In

this cycle, it is the local search that is selected for the three duty cycles. Au-

tomatic switching between the stage of exploration and exploitation appears

significantly in the third MPPT cycle. For the first and third duty cycle, it

is the local search that is selected while for the second, it is the duty cycle

26



0 5 10 15
0

1

Time (s)

S

5 5.5 6
0

1

10 10.5 11
0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

Time (s)

S

1st cycle 2nd cycle 3rd cycle 4th cycle

Global search

Local search

Figure 10: Variation of type of search (global or local) during the MPPT

process.

generated from the global search that is chosen. Therefore, the exploration-

exploitation tradeoff is very strong. This feature allows the bat algorithm to

have a quick convergence rate towards the global maximum without falling

into the trap of premature convergence. The advantages of the proposed

algorithm appear also in the selection of the algorithm parameters. Many

metaheuristics applied to MPPT use either fixed parameters (for standard

versions) or adaptive parameters (in enhanced versions). In this second case,

the tuning of the parameters is generally done depending on iterations. In

contrast, the proposed bat algorithm uses parameter control. Indeed, the val-

ues of the algorithm parameters (A and r) are updated not only according

to the iterations, but also according to the values of the objective function
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and loudness. This strategy provides a mechanism of automatic switching

from exploration to exploitation when the global maximum is approached.

The performances of the proposed algorithm are compared with two algo-

rithms, PSO and P&O. The parameters used for PSO algorithm are w = 0.4,

c1 = 0.5 and c2 = 0.75. These parameters are selected after a series of simula-

tions on the shading configurations under test; therefore, it can be confirmed

that the selected combination (w, c1, c2) is optimal. The first population,

the convergence criterion and that of re-initialisation are the same as for the

proposed bat algorithm. For P&O algorithm, a fixed perturbation step of

∆dP&O = 0.01 is imposed every 0.05 s. Fig. 11 and Fig. 12 show the results

of the tracking for the PSO algorithms and P&O, respectively.

As can be seen, the PSO algorithm has detected the changes in the shad-

ing configurations and the re-initialisation of the MPPT process. It also suc-

cessfully locates the global maxima in the three configurations. In contrast,

compared with the results obtained by the proposed algorithm, it can be ob-

served that the bat algorithm gives the best results in static and presents the

best dynamic behavior. This is supported by the results of the calculation

of the static and dynamic efficiency. The static efficiency is given by

ηstatic =
PMPPT

Pmax

(21)

where PMPPT is the power obtained in the steady state condition and Pmax

is the maximum power available on the photovoltaic panel.
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Figure 11: Variation of duty cycle, current, voltage and power of the PV

system during GMPP tracking using PSO based MPPT.

The dynamic performance takes into account the transient time and the

steady state condition. It is calculated as

ηdynamic =

∫ T

0
PPV dt∫ T

0
Pmaxdt

100 =

∫ 15

0
PPV dt∫ 15

0
Pmaxdt

100. (22)

Table 2 shows the results of the tracking in steady state condition. The

results of the calculation of the dynamic efficiency of BA and PSO are 98.36

and 97.87, respectively. Although the PSO algorithm presents good static

efficiency, the fluctuations in the voltage are very high compared to the pro-
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Table 2: Comparaison between the proposed BA-MPPT method PSO-MPPT

method in steady state condition.

Curve no.
Ideal power

Pmax (W)

Power obtained

PMPPT (W)

Static efficiency

(ηstatic)

BA PSO BA PSO

Curve 1 146.87 146.85 146.72 99.98 99.90

Curve 2 96.22 96.21 96.19 99.98 99.97

Curve 3 44.83 44.82 44.82 99.97 99.97

posed method. In addition, the advantage of the proposed method appears in

its faster convergence speed. For the first shading pattern, the PSO algorithm

takes 9 MPPT cycles (27 perturbations) to meet the convergence criterion

whereas the proposed method takes only 7 cycles. It can be noticed that

the proposed method locates the region of the GMPP in less than 5 MPPT

cycles and activates only the local search after 15 perturbations. For the

second shading configuration, the bat algorithm performs 18 perturbations

to reach the steady state, less than the PSO algorithm by 4 perturbations.

Furthermore, for the third shading pattern, the PSO algorithm lasts 8 MPPT

cycles and the bat algorithm requires only 5 MPPT cycles to settle at the

GMPP.

These results are justified by the fact that the bat algorithm combines the

global search and local search in the optimization process. This combination

avoids large fluctuations and disturbances in the photovoltaic panel voltage

and provides better control of the search space.

30



0 5 10 15
0

0.5

d

0 5 10 15
0

1

2

Ip
v
(A
)

0 5 10 15
0

50

100

V
p
v
(V
)

0 5 10 15
0

100

200

P
p
v
(w
)

Time (s)

Shading pattern 1 Shading pattern 2 Shading pattern 3

LMPP
LMPP

Figure 12: Variation of duty cycle, current, voltage and power of the PV

system during GMPP tracking using P&O algorithm.

Fig. 12 also shows the results obtained by the P&O algorithm. For the

first configuration, the P&O algorithm has successfully located the GMPP,

which is found to the right of the P -V characteristic. For the other config-

urations, the algorithm could not distinguish the GMPP from LMPPs and

trapped in an LMPP. These results prove the inability of the P&O algorithm

to handle the case of partial shading.
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Table 3: Steady state tracking results for the proposed BA based MPPT and

PSO technique under various shading patterns.

Shading pattern (1 = 1000 W/m2) Global peak values Proposed BAT-MPPT PSO-MPPT Static efficiency

G11 G12 G21 G22 G31 G32 G41 G42

VGMPP

(V)

IGMPP

(A)

PGMPP

(P)

VMPPT

(V)

IMPPT

(A)

PMPPT

(P)

VMPPT

(V)

IMPPT

(A)

PMPPT

(P)
BA PSO

1 1 1 1 1 1 1 1 1 69.78 3.15 219.25 69.6 3.15 219.24 69.6 3.15 219.24 99.99 99.99

2 1 1 0.9 0.9 0.8 0.8 0.6 0.6 74.88 1.94 144.64 75.04 1.93 144.62 74.12 1.95 144.33 99.98 99.79

3 1 1 0.9 0.9 0.3 0.3 0.2 0.2 34.37 2.88 98.96 34.94 2.82 98.65 35.23 2.79 98.2 99.68 99.23

4 1 1 0.8 0.8 0.7 0.7 0.4 0.4 54.08 2.26 121.77 53.88 2.26 121.74 54.91 2.21 121.21 99.97 99.54

5 1 1 0.9 0.9 0.8 0.8 0.7 0.5 64.56 2.29 147.49 64.57 2.28 147.48 64.14 2.3 147.33 99.99 99.89

6 0.7 0.7 0.6 0.6 0.45 0.45 0.3 0.1 54.74 1.42 77.44 55.05 1.41 77.39 55.61 1.38 77 99.93 99.43

7 1 1 0.5 0.5 0.2 0.2 0.3 0.1 36.04 1.57 56.48 36.18 1.56 56.47 35.21 1.59 56.11 99.98 99.34

8 1 1 0.9 0.9 0.8 0.7 0.6 0.5 65.86 1.95 128.26 66 1.94 128.24 66.51 1.92 127.76 99.98 99.61

9 1 1 0.6 0.6 0.5 0.4 0.3 0.1 46.17 1.6 73.77 46.32 1.59 73.74 45.27 1.62 73.31 99.96 99.38

10 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 56.34 1.61 90.37 56.56 1.6 90.33 56.92 1.58 90.01 99.95 99.6

Table 3 summarizes the tracking results of the proposed bat algorithm

and the PSO technique for 10 different configurations of shading. The P -

V characteristics corresponding to these configurations provide an example

of the influence of partial shading on the output power of the photovoltaic

panel. These P -V curves can have different number of MPP and the location

of the GMPP is variable, making its tracking difficult. As shown in Table

3, the proposed method has accurately located the GMPP for all P -V char-

acteristics studied. It can be seen that it has a static efficiency above 99.9

% for the most of cases. This results from the fact that the proposed bat

algorithm uses a combination of global search and intensive local search. The

small step size of the perturbation in the local search allows the algorithm

to exploit more effectively the best solution. As a result, the bat algorithm

has high accuracy in the search of the optimal solution.
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Figure 13: Schematic of connections in the experimental PV system with the

proposed MPPT controller.

5. Experimental verification

Fig. 13 shows the experimental system developed for the validation of the

proposed bat algorithm. The power converter used is a buck-boost converter

designed to operate in continuous conduction current mode. The specifica-

tions of the converter are shown in Table 4.

The acquisition circuit of current and voltage of the photovoltaic panel is

based on sensors LA 55-P and LV 25-P, respectively. Two ADCs, ADC0804

are used to convert the obtained analog images of current and voltage into

digital values for the MPPT controller.
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Table 4: Specifications of the Buck-Boost converter.

Parameters Value

Capacitor C1 440 µF

Capacitor C2 330 µF

Inductance 0.7 mH

Switch MOSFET IRFP450 (500 V,14 A)

Diode MUR1640 (400 V,16 A)

Switching frequency 50 kHz

The proposed bat algorithm is implemented on an FPGA circuit XC5VLX50-

1FFG676 of Vertex5 family [35]. This circuit is built around an ML501 de-

velopment board. The codes are written in VHDL and are synthesized with

ISE 10.1 of Xilinx.

FPGAs are Very large Scale Integration (VLSI) components. They are

programmable by the designer and mainly constituted by three parts:

A matrix of configurable logic blocks (CLB).

Configurable input/output blocs (IOB).

Programmable resources for interconnection.

The use of FPGA circuit for the implementation of MPPT control al-

gorithms offers many advantages. Indeed, FPGA offers real hardware im-

plementation of MPPT algorithm. Taking advantage of hardware paral-

lelism, FPGAs overtake the computing performance of digital signal proces-

sors (DSPs) and perform more operations per clock cycle. Therefore, these
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circuits offer the possibility of implementing complex control algorithms with

low latency of computing time. Also, the speed of FPGAs allows better tem-

poral resolution and improves the performance of MPPT control algorithms.
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Figure 14: The RTL schematic of the synthesized BA based MPPT.

The Register Transfer Level (RTL) schematic of the synthesized bat algo-

rithm implemented on FPGA is shown in Fig. 14. It includes various blocks

coded separately. This modular programming allows a better optimization

of hardware resource and a more flexible and reusable structure. The “acqui-

sition” block allows the reading of digital values of the current and voltage

generated by the analog-digital converters and the calculating of the value of

the photovoltaic panel power. The “clk divider” block allows the generation,

from the clock of the FPGA, of various clocks needed for the functioning and

synchronization of different blocks. The “MPPT” block is the key element

of calculating of bat algorithm. It comprises several sub-blocks which allow

the execution of the deferent instructions of the bat algorithm and the cal-

culation of the duty cycle. The “PWM” block allows the generation of the
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Figure 15: Photograph of the experimental setup.

PWM signal from the duty cycle d for the control of the DC-DC converter.

The performance of the proposed algorithm is tested experimentally for

four different configurations of partial shading. The photograph of the ex-

perimental setup is shown in Fig. 15. The photovoltaic panel is composed

of photovoltaic modules (SM55) connected in series. The PV panel is ex-

posed to real irradiance conditions. Since it is difficult to predict exactly

the appearance moment of partial shading, this latter is created artificially

by blocking small portions of the PV panel. This is done by using sheets of

different dimensions.

Fig. 16-19 show the recorded experimental results for the four tests.

Each one of these figures includes the P -V characteristic in the presence of

partial shading, the voltage, the current and power of the photovoltaic panel

during the tracking process. Fig. 16 shows the experimental results obtained

for the first test. The first configuration is characterized by the presence of
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Figure 16: Measured array current, voltage and power waveforms under shad-

ing pattern 1 during MPPT process.
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Figure 17: Measured array current, voltage and power waveforms under shad-

ing pattern 2 during MPPT process.
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Figure 18: Measured array current, voltage and power waveforms under shad-

ing pattern 3 during MPPT process.

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

20

40

60

V
ol
ta
ge
(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

C
ur
re
nt
(A
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

Time (s)

P
ow
er
(W
)

0 20 40 60
0

10

20

30

40

Voltage (V)

P
ow
er
(W
) LMPP1

GMPP

LMPP3

LMPP2

(b)

Figure 19: Measured array current, voltage and power waveforms under shad-

ing pattern 4 during MPPT process.
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two points of maximum power, PLMPP = 29.33 W and PGMPP = 35.6 W,

respectively. The global maximum power point is to the left of the P -V curve,

at VGMPP = 15 V. It can be noticed that the bat algorithm has successfully

located the GMPP and the operating point is maintained around V = 15.49

V and I = 2.29 A.

In the second and the third cases shown in Fig. 17 and Fig. 18, the P -V

characteristic has three points of maximum power. In the second case, the

global maximum power point, PGMPP = 33.81 W is in the middle of the P -V

curve at VGMPP = 17.25 V. The proposed algorithm was able to distinguish

the GMPP from the LMPPs and the steady state is reached after four MPPT

cycles. In the third case, the global maximum point (GMPP) and the local

maximum point (LMPP2) are at very close power levels, PGMPP = 31.05 W

and PLMPP2 = 30.46 W, respectively. The bat algorithm effectively tracked

the GMPP and the voltage of the photovoltaic panel is maintained around

V = 17.95 V.

The effectiveness of the proposed scheme is proved also when the PV array

is subjected to extreme partial shading condition. In the fourth shading

pattern shown in Fig. 19, the P -V characteristic curve exhibits four (4)

peaks. For this configuration, the proposed MPPT controller implemented

into FPGA has also successfully tracked the GMPP at V = 38.48 V and

I = 0.92 A.

6. Conclusion

In this paper, a MPPT algorithm based on a bat algorithm is proposed

to deal with the multi-modal characteristic of photovoltaic panel under par-
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tial shading conditions. The key features of the BA are explained in details.

This algorithm can provide very quick convergence and high accuracy since it

dynamically combines the explorations moves with the extensive local search

during the MPPT process. Simulations are carried out under extreme shad-

ing patterns to confirm the global search ability and the good dynamic per-

formance. The simulations results show that the proposed method tracks

the GMPP with a high accuracy and yields a static efficiency above 99.9 %

for the most cases studied. In addition, the proposed scheme outperforms

the P&O and the PSO methods in terms of accuracy and oscillations in PV

power at the transient time. FPGA implementation is presented to validate

the proposed algorithm on real time application. Being reconfigurable, FP-

GAs can offer a high degree of flexibility and robustness. Since the PWM

signal is generated with a high resolution, the performance of the tracking

process is largely improved. Experimental results confirm the efficiency of

the proposed method in the global peak tracking and the accuracy under

partial shading conditions.
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