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Abstract 

For large-scale implementation of devices magnetron sputtering is a practical method of 

producing metal oxides, however sputtered copper oxides tend to form as a mixture of Cu2O, 

Cu4O3, and CuO, with Cu2O being particularly difficult to produce reliably in pure form. In 

this study, nanostructured thin films of Cu2O, Cu4O3, and CuO were prepared using a novel 

reactive sputtering system, based on plasma-assisted DC magnetron sputtering with 

deposition and plasma assisted reaction zones spatially separated enabling separate control of 

film oxidation.  X-ray diffraction, optical spectroscopy, and Raman Spectroscopy were used 

to characterise the physical and optical properties and it is shown that plasma-assisted DC 

sputtering is a suitable technique for reliable production of CuO and Cu2O films in large 

areas at room temperature without the necessity of further processing.  The results also 

indicate that solar cell performance may relate positively to the presence of crystalline Cu4O3 

(200) and/or Cu2O (111) over other crystalline forms of copper oxide or amorphous copper 

oxide thin films. 
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1. Introduction 

It has been noted that the development of new solar cell technology with improved efficiency 

and reduced costs requires production processes that use inexpensive materials and lower 

energy production methods [1].  The development of p-type semiconductors is one of the key 

technologies for future transparent electronics in applications such as displays and solar cells.  

Copper oxide forms three oxides, Cu2O, Cu4O3, CuO.  Cu2O is widely recognised as the most 

promising p-type oxide because of its desirable optical and electrical properties.  Therefore, 

copper oxide is an attractive material choice for solar cell applications because it is 

inexpensive, non-toxic, abundant, has an absorption coefficient within the visible spectrum, 

and is a natural p-type semiconductor with a direct band gap [2, 3]. 

Solar cells produced from copper oxide thin film have a theoretical efficiency of 

approximately 20 % [4, 5]; however, the best achieved efficiency to date is 8 % [6]. 

Copper oxide has varying optical behaviours and a range of direct optical band gaps due to 

stoichiometric deviations arising from the parameters and method of production [7].  That is, 

the deposition process to produce copper oxide thin films invariably produces a thin film 

containing Cu, CuO, and Cu2O phases [8, 9]. 

Cu2O thin films are noted to be slightly yellowish in appearance, highly transparent, and 

absorb at wavelengths less than 600 nm; whereas, CuO thin films are black in appearance, 

and absorb light strongly in the visible spectrum [8]. 

Cu2O is particularly noted for its good electrical and optical properties in such applications in 

preference to CuO [10].  The direct optical band gap energy values for Cu2O range from 

2.10 eV to 2.6 eV, whereas the values for CuO range from 1.3 eV to 2.1 eV [11]. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Consequently, one of the main factors in terms of improving efficiency is controlling the 

deposition process in order to produce a thin film from Cu2O without a contaminating CuO 

phase [11].  Therefore, there is scope to improve the deposition process and consequently the 

efficiency of copper oxide thin film solar cells. 

2. Thin Film Production Methods 

There are numerous methods to produced copper oxide thin films, such as, thermal oxidation 

[12], electrodeposition [11], chemical brightening [7], spraying [10], chemical vapour 

deposition [13], plasma evaporation [10], vacuum evaporation [14], molecular beam epitaxy 

[15], and reactive sputtering [16].  All noted methods produce a mixture of phases of Cu, 

CuO, and Cu2O [17, 18, 19, 20]. 

Several studies have investigated methods for depositing Cu2O layers outlined as follows. 

Balamurugan and Mehta [10] used the activated reactive evaporation technique and varied 

the nanocrystaline structure by varying the deposition parameters.  The crystalinity was then 

analysed by x-ray diffractometer (XRD).  The results showed that a single phase of Cu2O 

could be deposited at relatively low substrate temperatures using this technique. 

Papadimitropoulos et al. [14] grew copper oxide layer by vacuum evaporation of copper 

layers on silicon substrates in at nitrogen-oxygen atmosphere at temperatures between 185 C 

and 450 C.  The Tauc-Lorentz model was successfully used to extract the refractive indices of 

the films. 

Shishiyanu et al. [21] produced cuprous oxide thin films fabricated by chemical deposition 

and rapid photothermal processing for novel NO2 gas sensors. 

Lupan et al. [22] produced nano-crystalline copper oxide thin films via simple synthesis from 

chemical solutions followed by two types of thermal annealing, namely rapid thermal 
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annealing and conventional thermal annealing, which synthesized copper oxide nanocrystals 

with one and two distinctly different phases, namely Cu2O, CuO, as well as mixed phases 

CuO/Cu2O.  Further work by Lupan et al. [23] produced nanoplanar CuO:Zn/Cu2O:Zn 

heterojunctions in nano-crystals by rapid thermal annealing.  Masudy‐Panah et al. [24, 25] 

also utilised rapid thermal annealing to improve the photocurrent performance of sputtered 

CuO films.  Other recent CuO thin film research has investigated doping with titanium [26], 

aluminium [27], and nitrogen [28], with varying degrees of improvement.  The nitrogen 

doping was found to enlarge the optical bandgap and reduce resistivity.  Recent work by 

Perng et al. [29] produced semi-transparent Cu2O/ZnO nanorod solar cells by 

electrodeposition that achieved a high short-circuit current density (Jsc) of 9.53 mA/cm
2
. 

Ogwu et al. [7] sputtered copper oxide films on glass substrates using reactive radio 

frequency (RF) magnetron sputtering with a copper target in an argon-oxygen atmosphere.  

Maximum transmission was found to be between 40 % and 80 % for copper oxide films 

produced with RF power of 200 W at various oxygen flow rates.  The optical band gaps 

ranged between 2.05 eV and 2.4 eV. 

Therefore, it can be seen that previous research has investigated the films produced using 

XRD and simulation models to determine the optical properties, and that oxygen flow rates 

has an influence on the transmissivity of the films produced, ie, the proportional presence of 

CuO and Cu2O phases. 

One method that has received little investigation in this field is plasma-assisted DC 

sputtering.  Therefore, it is the intention of this research to determine the optimal oxygen 

flow rate in the plasma-assisted DC sputtering process. 

3. Experimental Procedure 
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In this study, a plasma-assisted DC magnetron sputtering system (PlasmaCoat) [30] equipped 

with a 152 mm diameter circular magnetron and copper target (>99.99 %) was used for thin 

film deposition.  A DC power supply (Advanced Energy MDX Series 1.5 kW) was used to 

power the target with 900 W.  Another DC power supply (Advanced Energy MDX Series 

500 W) was used to provide 150 W to a hollow cathode plasma source with both argon 

working gas and oxygen reactive gas.  The PlasmaCoat has two chambers: the main chamber, 

where the sputtering process takes place and a load lock chamber.  The substrate carousel and 

loadlock chamber can be seen in Figure 1a and Figure 1b respectively.  The substrates are 

mounted on the circular holder on the side of the carousel – up to six holders can be attached 

to the carousel in total.  Once mounted within the loadlock chamber, the carousel is able to 

rotate as desired for the experiment.  Figure 1c shows a top view of the deposition chamber 

with the two magnetrons and plasma source.  Figure 1d shows a diagram of the PlasmaCoat 

system. 

The main chamber remains permanently under vacuum.  The substrates are loaded onto a 

rotatable carousel in the load lock chamber.  The main chamber and load lock chamber are 

separated by a gate valve.  Once the load lock chamber pumps down, the rotatable carousel is 

automatically raised into the main process chamber and rotates at 100 RPM during deposition 

to ensure coating uniformity.  Through the use of a roughing rotary pump and turbomolecular 

pump, the coating chamber rests at a base pressure of around        mBar with process 

pressures reaching around        mBar. 

Sputtering takes place at room temperature.  Sputtered copper is deposited onto the substrate 

which subsequently sweeps past the oxygen plasma source at the rear of the chamber, 

reacting to form copper oxide. 
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When the substrate sweeps through the oxygen plasma, as produced by the plasma-source 

situated at the rear of the chamber, reactive oxygen species (ROS) present in the plasma such 

as   ,   
  

,   
  

, etc, chemically react with the growing metallic Cu layer, forming covalent 

bonds with the copper atoms resulting in the growth of a CuxOy layer.  By varying the rate of 

oxygen flow into the chamber, and therefore the oxygen plasma density, the degree of 

oxidation of the CuxOy layer also varies, resulting in the growth of layers with different 

crystalline structures and stoichiometric compositions, such as those deposited and analysed 

in this work. 

A benefit of separating sputter deposition from reaction stage is separate control of film 

oxidation. 

Three different types of substrate were loaded: standard microscope slide substrates (30 mm 

by 12 mm by 1 mm thick glass) previously cleaned using an ultrasonic system (Optimal 

UCS40), circular silica substrates (20 mm diameter) also cleaned using an ultrasonic system 

(Optimal UCS40), and rectangular substrates (15 mm by 12 mm by 1 mm thick glass) coated 

using a MicroDyn 4000 with a 270 nm layer of indium tin oxide (ITO) under a 400 nm layer 

of zinc oxide (ZnO).  The ITO layer was deposited under an O2 flow of 12.5 sccm, argon 

flow of 190 sccm, chamber pressure of 4.1x10
-3

 Torr, DC power of 2.1 kW, 400V, 5.2 A, and 

microwave power of 3 W.  The ZnO layer was DC sputtered for 120 minutes at 420 W, with 

an O2 flow of 13 sccm, argon flow of 3sccm, a chamber pressure of 6.3 x10
-2

 mBar. 

The CuxOy sputtering argon flow rate was 18 sccm.  However, six production runs were 

undertaken with different oxygen flow rates: 8, 9, 10, 11, 13, 15 and 17 sccm. 

Sputtering was stopped once a film thickness of 600 nm had been achieved, controlled using 

power/time.  This approximate thickness of copper oxide has been found to be optimal in 

terms of photocurrent performance [24].  Afterward, a 100 nm top contact layer of gold (Au) 
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was applied to the rectangular substrates using a sputtering system (Quorum EMITECH-

K575X Turbo Sputter Coater).  Figure 2 shows the configuration of the heterojunction solar 

cell device. 

4. Characterisation 

In order to determine the crystalline structure of the copper oxide thin films, the 30 mm by 

12mm glass substrates were analysed by X-ray diffractometry (XRD) and Raman 

spectroscopy.  The XRD analysis used a Siemens D5000 with CuK α radiation (40 kV, 

30 mA).  The diffraction angle was set between 20 º and 60 º with 1 scan (count) per second 

at 0.2 increments. 

Raman spectroscopy measurements were taken using a Thermo Scientific DXR Raman 

Microscope.  Samples were measured using a 100x objective using 532 nm 1.0 mW laser 

excitation.  Fluorescence corrections and medium cosmic ray thresholds were applied to the 

data collection. 

In order to determine the performance of a candidate solar cell device constructed using this 

technique, the current-voltage (I-V) curves of the 15 mm   12 mm glass substrates were 

measured using a Potentiostat/Galvanostat, Metrohm Autolab BV.  Illumination was 

simulated AM 1.5 sunlight at 100 mWcm
-2

 irradiance, generated by a Class AAA small 

collimated Beam Solar simulator (SF300A, Sciencetech Inc.) with the intensity calibrated by 

Si reference cell.  The mismatch factor between the simulated sunlight and the actual solar 

spectrum was not corrected. The solar cells were masked with an aperture to define the active 

area 1 cm
2
. 

In order to determine the optical properties of the copper oxide thin film, the transmission and 

reflection spectra of the 20 mm diameter circular silica substrates were measured using an 
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Aquila Instruments nkd-8000 spectrometer with Pro-Optix software.  Samples were all 

examined in S-polarized light at 10 º angle of incidence, both in transmission and reflection 

over the 350-1100 nm wavelength range. 

Optical bandgap measurements were calculated from the transmission spectrum using the 

Beer-Lambert Law [31] (Eq 1) in order to determine the absorption coefficient and then 

Tauc’s Equation [32] (Eq 2) to determine the direct optical band gap of the copper oxide thin 

films. 

  
 

 
   

  
 
  

                 

                             

                                

Eq 1 

            
   

 

 

                         

                   

                   

                    

Eq 2 

6. Results and Discussion 

6.1. XRD Analysis 

The XRD results of the samples can be seen in Figure 3. 

The location of the spikes in intensity on the XRD plot at the various  θ angles of incidence 

can be related to the material composition and crystalline orientation.  The 2θ angle values 

for each copper composition were taken from JADE5 PDF tables and can be seen in Table 1.  

Consequently, it can be seen that under the various oxygen flows, the composition and 

orientation of the crystalline structure of the thin layers varies. 

For oxygen flow rates of 15 and 13 sccm, the resultant thin films are amorphous. 
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For an oxygen flow rate of 17 sccm, the peaks near 35.42 º and 38.71 º indicates the presence 

of CuO (002) and CuO (111) respectively. 

For an oxygen flow rates of 10 and 11 sccm, the peaks near 42.4 º indicates the presence of 

Cu2O (200).  However, the offset from 42.4 º is possibly due to slight crystalline 

misorientation. 

For an oxygen flow rate of 9 sccm, the peak at 42.4 º indicates the presence of Cu2O (200). 

For an oxygen flow rate of 8 sccm, the small peak near 30.6 º indicates the presence of Cu4O3 

(200), and the peak near 36.5 º indicates the presence of Cu2O (111).  Therefore the thin film 

produced under 8 sccm is a mixture of two copper oxides. 

6.2. Raman Spectroscopy 

The initial Raman measurements can be seen in Figure 4. 

The initial Raman measurements showed that various phases of copper oxide were present in 

the thin films under different oxygen flow rates.  The peaks present in the Raman 

measurement are indicative of each phase [33].  The presence of the various forms of copper 

oxide are summarised in Table 2. 

It can therefore be seen from Figure 3 and Table 1 that as the oxygen flow rate increases, the 

oxide of copper present has a greater oxygen proportion. 

6.3. Optical Analysis 

Figure 5 shows the optical properties (transmittance and reflectance) of the samples across 

the visible spectrum (350 nm to 1100 nm). 

It can be seen that from the plot that the thin film with the highest transmittance values was 

deposited under an oxygen flow of 9 sccm.  The film produced under an oxygen flow rate of 
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8sccm has the lowest transmittance values of all.  For flow rates between 9 and 17 sccm, the 

transmittance values relate inversely to oxygen flow rates: the higher the flow rate, then 

generally lower the transmittance value. 

Reflectance values are not strongly influenced by absorption in thin films, but are used to 

calculate absorptance through the relationship A=1-T-R, assuming scattering in these films to 

be negligible. 

From the calculated absorptance, it can be seen that there is high absorptance at wavelengths 

less than 500 nm, and the higher the oxygen flow rate, the higher the absorptance value.  

Above 500 nm, the absorption values are lower and optical interference fringes are observed 

yet with a trend for lower values.  The film produced with a flow rate of 9 sccm averages a 

significantly lower absorption value than the rest (the thin film produced under an oxygen 

flow rate of 8 sccm is again an exception with a generally higher absorbtance value than the 

thin film produced under 11 sccm). 

6.5. Solar Cell Device 

In order to determine the performance of potential solar cell devices constructed using this 

technique, the current-voltage curve results of the films deposited on 15 mm by 12 mm glass 

substrates were measured and can be seen in Table 2 and Figure 5.  The solar cells were 

measured using a Potentiostat/Galvanostat, Metrohm Autolab BV based at the 

University of Edinburgh Chemistry Department by colleagues who also used the same 

set-up and settings for their research [34].  Illumination was simulated at AM 1.5 

generated by a Class AAA small collimated Beam Solar simulator (SF300A, Sciencetech 

Inc.) with the intensity calibrated by Si reference cell.  It should be noted that the films 

deposited under oxygen flow rates of 15 and 17 sccm did not produce a working solar cell 

and, therefore, do not feature in these results. 
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It can be seen from Table 2 that thin films produced with an oxygen flow rate of 11 sccm or 

less have an energy band gap within the range for Cu2O or Cu4O3 (2.1-2.6 eV).  However, for 

greater oxygen flow rates the energy band gap decreases.  It is suspected that the additional 

availability of oxygen leads to the formation of CuO (1.3-2.1 eV) which reduces the overal 

energy band gap for the thin film. 

From the J-V curves in Figure 6, it can be seen that the solar cell performance of the thin 

films produced under oxygen flow rates of 8 sccm followed by 9 sccm have the best 

performances. 

Given that high absorptance is necessary to produce efficient solar cells, it is therefore not 

intuitively obvious why cells produced with the lower oxygen flows produced the better cells.  

However, it can be noted that for the 8 sccm sample there was Cu4O3 detected by XRD and 

Raman, and Cu2O detected by XRD; whereas for samples 9 sccm, 10 sccm, 11 sccm, 

13 sccm, and 15 sccm, Cu4O3 was only detected by Raman and Cu2O was detected by XRD 

and Raman (except for sample 13 sccm where Cu2O was only detected by XRD).  The PCE 

appears to correlate with the presence of Cu4O3 and Cu2O with the 8 sccm sample having 

highest performance and presence of Cu4O3.  As the oxygen flow rate increases, the presence 

of Cu4O3 declines as does the PCE, except an anomalous Raman peak in Cu4O3 for the 

13 sccm sample that is also matched by an anomalous resurgence in PCE. 

It is clear that the more oxygen rich phases of copper oxide are formed under higher oxygen 

flows. 

It is notable that the thin film that did not function as a solar cell (15 sccm) was suspected of 

having CuO present due to the higher availability of oxygen in the production process 

compared to the other thin films.  The presence of CuO would prevent the solar cell from 

functioning. 
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These results indicate that solar cell performance may relate positively to the presence of 

crystalline Cu4O3 (200) and/or Cu2O (111) over other crystalline forms of copper oxide or 

amorphous copper oxide thin films. 

7. Conclusions 

In general, in terms of visible light (350 nm-700 nm), it appears that the thin films produced 

with higher oxygen flows have higher absorptance and lower reflectance values.  The Raman 

results indicate samples deposited under higher oxygen flow rates have a greater presence of 

more oxygen rich phases of copper oxide – the most oxygen rich, CuO, is black and highly 

absorbent of visible light and is present in the most absorptant thin films that were produced 

under the highest oxygen flow rates (15 and 17 sccm). 

In terms of performance as a solar cell, it is apparent that greater performance is derived from 

those composed of a copper oxide thin films deposited under a flow rate of 8 sccm or 9 sccm.  

The XRD result previously confirmed the presence of Cu2O in the thin film produced under 

an oxygen flow rate of 8 sccm, and the XRD and Raman results previously confirmed the 

presence of Cu2O in the thin film produced under an oxygen flow rate of 9 sccm.  With 

increasing oxygen flow rates in the production of the thin film, the solar cell performance 

appears to decrease.  Although the cell performances in terms of percentage conversion 

efficienies (PCE) are very low, the solar cells serve as proof-of-concept devices for the 

method. 
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Figure 1a Substrate carousel [30] 

Figure 1b Substrate carousel mounted within loadlock chamber [30] 

Figure 1c Top view of deposition chamber with two magnetrons (6 ” diameter) and plasma 

source [30] 

Figure 1d Diagram of PlasmaCoat system 

Figure 2 Heterojunction solar cell device configuration 

Figure 3 XRD of samples deposited under various oxygen flows 

Table 1 2θ angles for XRD of plasma-assisted DC sputtered copper oxide films 

Figure 4 Raman microscope measurements of thin film produced by plasma-assisted DC at 

various oxygen flow rates 

Table 2 Interpretation of copper oxide content based on Raman observations 

a 

b 

c 

Figure 5 Optical properties of samples deposited under various oxygen flows (a –

 transmittance with Eg values, b - reflectance, and c - absorptance) 

Table 3 J-V curve and E-gap measurements 

a 

b 

Figure 6 Current-voltage measurement of samples deposited under various oxygen flows 

(a – dark case, b – light case) 
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Table 1 

Phase Angle Reference 

Cu4O3 (200) 30.6 ° JADE5 PDF Table: PDF#49-1830 

CuO (002) 35.4 ° JADE5 PDF Table: PDF#48-1548 

Cu4O3 (202) 35.8 ° JADE5 PDF Table: PDF#49-1830 

Cu4O3 (004) 36.3 ° JADE5 PDF Table: PDF#49-1830 

Cu2O (111) 36.5 ° JADE5 PDF Table: PDF#65-3288 

CuO (111) 38.7 ° JADE5 PDF Table: PDF#48-1548 

Cu2O (200) 42.4 ° JADE5 PDF Table: PDF#65-3288 

Cu4O3 (220) 44.0 ° JADE5 PDF Table: PDF#49-1830 
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Table 2 

O2 Flow Rate (sccm) Cu2O Cu4O3 CuO 

8 None Present None 

9 Present Present None 

10 Present Present None 

11 Present Present None 

13 None Present None 

15 None Present Present 

17 None None Present 
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Table 3 

Oxygen Flow 

(sccm) 

Energy Band 

Gap Eg (eV) 

Voc (Volts) Jsh (mA/cm
2
) Fill Factor PCE (%) 

8 2.00 0.19 0.008 0.26 0.040 

9 2.37 0.11 0.004 0.15 0.012 

10 2.32 0.08 0.0005 0.11 0.000 

11 2.21 0.09 0.002 0.26 0.002 

13 1.95 0.04 0.002 0.23 0.009 

15 1.84 - - - - 

17 1.81 - - - - 
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Figure 5a 
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Highlights 

 Under different O2 flow rates, copper oxide films were sputtered and characterised 

 Oxidation controlled by spatial separation of deposition and plasma reaction zones 

 Higher O2 flow rates during sputtering produced a less efficient solar cell 

 Solar cell performance related positively to presence of crystalline Cu4O3 and Cu2O 
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