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Smart Random Neural Network Controller for

HVAC using Cloud Computing Technology

Abbas Javed, Hadi Larijani, Ali Ahmadinia, and Des Gibson

Abstract

Smart homes reduce human intervention in controlling the Heating Ventilation and Air Conditioning

(HVAC) systems for maintaining a comfortable indoor environment. The embedded intelligence in the

sensor nodes is limited due to the limited processing power and memory in the sensor node. Cloud

computing has become increasingly popular due to its capability of providing computer utilities as

internet services. In this work, a model for intelligent controller by integrating Internet of Things (IoT)

with cloud computing and web services is proposed. The wireless sensor nodes for monitoring the

indoor environment and HVAC inlet air, and wireless base station for controlling the actuators of HVAC

have been developed. The sensor nodes and base station communicate through RF transceivers at 915

MHz. Random neural network (RNN) models are used for estimating the number of occupants, and

for estimating the Predicted mean vote (PMV) based setpoints for controlling the heating, ventilation

and cooling of the building. Three test cases are studied (Case 1- data storage and implementation of

RNN models on the cloud, Case 2- RNN models implementation on base station, Case 3- distributed

implementation of RNN models on sensor nodes and base stations) for determining the best architecture

in terms of power consumption. The results have shown that by embedding the intelligence in the base

station and sensor nodes (i.e. Case 3), the power consumption of the intelligent controller was 4.4%

less than Case 1 and 19.23 % less than Case 2.
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I. INTRODUCTION

Internet of things (IoT) is an emerging technology and has been applied in various applications

such as agriculture, healthcare, food monitoring, environmental monitoring, security surveillance,

mine safety, building energy management systems (BEMS). Research challenges for deployment

of internet of things (IoT) highlighted in [1] are: 1) integrating social networking with IoT

solutions, 2) developing green IoT technologies, 3) developing context-aware IoT middleware

solutions 4) employing artificial intelligence techniques to create intelligent things of smart

objects 5) combining IoT and cloud computing.

There are several functional requirements for BEMS i.e., to measure the environmental pa-

rameters (temperature, humidity, light intensity, and CO2), to monitor the energy consumption,

feedback from user to maintain the environment according to user requirement, to detect the

occupant presence, to learn from the user preferences, to learn the effect of control actions on

the environment and to devise the optimal control sequence for energy consumption reduction

while maintaining the comfortable indoor environment as per occupant preferences [2].

Due to latest technological developments in wireless communications, low power embedded

systems, sensor design and energy storage technology, wireless sensors are replacing the tra-

ditional hard wired sensor systems in BEMS. As a result; a new generation of BEMSs have

emerged which incorporate wireless sensor networks (WSN) [3]. This integration of WSN in

BEMS increases the computer processing, and data storage requirements.

To overcome the problem of high computational processing, data storage and data representation,

the authors in [4], integrated the WSN with cloud technologies. The WSNs have limited pro-

cessing power, data storage and battery life whereas cloud computing offers greater data storage

and processing power. Due to these properties, integration of WSN with cloud computing make

a very attractive addition to BEMS.

In this work, a novel RNN based smart controller for HVAC is proposed which incorporates

WSN and cloud computing. The smart controller estimates the number of occupants, estimates

the predicted mean vote (PMV) based set-points for cooling and heating and learns from user

preferences for heating, cooling and ventilation. The environmental data and control parameters

are presented on a web platform. The Hybrid Particle Swarm Optimization with Sequential

Quadratic Programming (PSO-SQP) [5] has been presented in this paper for training the RNN.
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Three test scenarios were compared for determining the best architecture for future BEMS in

terms of battery life, and accuracy. The three test case scenarios were:

1) Data storage, data processing and control algorithms were implemented on the cloud. In this

scenario, the sensor nodes transmitted the environmental conditions and user preferences to the

cloud through base stations. The learning of the RNN algorithm was carried out in the cloud

platform and control actions were sent back to the base station to control the actuators.

2) RNN models were trained in the cloud platform and the trained RNN models were imple-

mented on the base station. The base station received the information from sensor nodes and

estimated the number of occupants, based on this information, the base station took necessary

control actions for maintaining a comfortable indoor environment.

3) Data storage, processing and training of RNN was performed on the cloud. The trained RNN

model for occupancy was embedded in the sensor nodes for determining the number of occupants.

The RNN model for PMV based setpoint estimation and HVAC control were embedded in the

base station to take control actions according to the information sent from smart sensor nodes.

All three architectures are evaluated in terms of battery life to determine the best suitable

architecture for future BEMS.

A. Related Work

In this subsection, a brief overview of different techniques used for BEMS and occupancy

estimation techniques is presented. In [6], a low cost WSN based home automation system was

proposed in which electrical appliances were controlled through a web server. In [7], the authors

presented a smart home energy management system using IEEE 802.15.4 and Zigbee. The smart

home energy management system controlled air conditioning, heating, lights and security system

by detecting the movement of an occupant. The authors in [8], developed the wireless smart

comfort sensing system based on IEEE 1451 standard for monitoring the thermal and indoor

air quality of the building. The power consumption for transmitting the data was 60 mW. The

authors in [9], implemented the wireless sensor network based distributed sensing and control

system for HVAC. The system was decomposed into two modules i.e. radiant cooling module

and distributed ventilation model. Both modules were controlled individually for reducing energy

consumption.

Energy scheduling of the HVAC is another way to save energy. Recently in [10], an energy
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scheduling method was proposed within the framework of IOT by considering the smart pricing

tariffs and user comfort.

BEMS should learn from user preferences in order to reduce energy consumption while main-

taining a comfortable indoor environment. This requires feedback from the user through touch

screen interfaces, web portals, pc based interfaces, mobile phones etc., [11].

The energy consumption of the building can be improved by 10 to 15% through correct detection

of occupancy [12]. The information about the occupancy count can further reduce the energy

consumption of the buildings but this requires an accurate system that can detect and give

information about the occupancy. The output of Passive infrared (PIR) sensor is binary thus PIR

sensors are unable to give the accurate number of people.

In [12], the authors developed an algorithm for occupancy detection by using PIR sensors and

reed switches but their sensor platform was unable to count the number of occupants. Occupancy

was also estimated by using chair sensors [13]. However, chair sensor was unable to detect a

standing occupant in the room.

Humans exhale CO2 during respiration and the measure of CO2 concentration can be used for

occupancy estimation, detection, location of occupants, and activity recognition [13]. In [14],

the authors exploited the correlation between the CO2 concentration and the occupancy levels.

The authors presented occupancy estimation as a deconvolution problem and found that the

presented technique was better than artificial neural networks (ANN) and support vector machine

(SVM). CO2 sensors give information about Indoor Air Quality (IAQ) . Good IAQ improves the

productivity of the occupants inside the building. In [15], the authors compared three different

statistical classification models for occupancy detection in an office using information from light,

CO2, temperature, and humidity sensors. The accuracy of occupancy detection varied between

95% to 99%. However their work was limited for occupancy detection only (whether the office

was occupied or not).

In this work, we developed a smart controller by using multiple RNN models for estimating the

occupancy, and for controlling the HVAC. The Hybrid PSO-SQP training algorithm has been

used for training the RNN models. Three different architectures of the smart controller were

compared to determine the best architecture for getting maximum battery life for the sensor

nodes. In section II, a brief description of RNN and the proposed hybrid PSO-SQP training

algorithm is given. Followed by a description of system architecture for smart homes in section
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III. The RNN models used in the smart controller are described in section IV. The description

of different architectures for smart controllers and results are discussed in section V, followed

by conclusions in section VI.

II. RANDOM NEURAL NETWORKS

Gelenbe [16] proposed a new class of Artificial Neural Networks (ANN) as Random Neural

Networks (RNN) in which signals are either +1 or -1. RNNs can give more detailed system

state descriptions because the potential of neuron is represented by integer values rather than

binary values [17]. Applications of RNN have been reported for modeling, pattern recognition,

image processing, classification, and communication systems [17]. However no such application

has been reported so far in implementing control schemes for HVACs in residential/commercial

buildings (to the best of our knowledge).

In RNNs, signal travels in the form of impulse between the neurons. If the receiving signal

has positive potential (+1) it represents excitation, and if the potential of the input signal is

negative (-1) it represents inhibition to the receiving neuron. Each neuron i in the RNN has a

state ki(t) which represents the potential at time t. This potential ki(t) is represented by non-

negative integer. If ki(t) > 0 then neuron i is in excited state and if ki(t) = 0 then neuron i is

in idle state.

When neuron i is in excited state, it transmits impulse according to the poisson rate ri. The

transmitted signal can reach neuron j as excitation signal with probability p+(i, j) or as inhibitory

signal with probability p−(i, j), or can leave the network with probability d(i) such that

d(i) +
N∑
j=1

[
p+(i, j) + p−(i, j)

]
= 1∀i (1)

w+(i, j) = rip
+(i, j) > 0 (2)

w−(i, j) = rip
−(i, j) > 0 (3)

combining (1)-(3)

r(i) = (1− d(i))−1
N∑
j=1

[
w+(i, j) + w−(i, j)

]
(4)

The firing rate between the neuron is represented by r(i) =
∑N

j=1 [w+(i, j) + w−(i, j)]. As ’w’

matrices are the product of firing rate and probabilities, therefore these matrices always hold
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non-negative values. External positive or negative signal can also reach neuron i at Poisson

rate Λi and λi respectively. When positive signal is received at neuron i its potential ki(t) will

increase to +1. If neuron i is in excitation state and it receives negative signal the potential of

neuron i will decrease to zero. Arrival of negative signal will have no effect on neuron i if its

potential is already 0. The description of symbols used is given in Table 1.

Consider the vector K(t)= (k1(t), .....kn(t)) where ki(t) is the potential of neuron i and n is

the total number of neurons in the network. Let K is continuous time Markov process. The

stationary distribution of K is represented as:

lim
t→∞

Pr(K(t))) = (k1(t).......kn(t)) =
n∏

i=1

(1− qi)qkii (5)

For each node i

qi =
G+

i

ri +G−i
(6)

where

G+
i = Λi +

N∑
j=1

qjw
+(j, i) (7)

G−i = Λi −
N∑
j=1

qjw
−(j, i) (8)

w+
(j,i) and w−(j,i) are positive and negative interconnecting weights between neurons of jth and ith

layer. For input layer I, w+
(j,i) and w−(j,i) are equal to zero. Therefore for three layer network qi

for each layer is calculated substituting 7 - 8 in 6, where qi is the probability neuron i excited

at time t.

qiεI =
Λi

ri + λi
where I is input layer (9)

qiεH =

∑
iεI qiw

+(i, h)

rh +
∑

iεI qiw
−(i, h)

where H is hidden layer (10)

qiεO =

∑
iεH qhw

+(h, o)

rh +
∑

iεI qhw
−(h, o)

where O is Output layer (11)
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A. Hybrid Particle Swarm Optimization with Sequential Quadratic Programming

Majority of researchers have used Gradient Descent (GD) algorithm [18] for learning the

weights of RNN models. The GD algorithm is relatively easy to implement but the zigzag

behavior may cause it to be stuck near a local minimum for application problems which have

multiple local minima. Evolutionary algorithms can be used for solving optimization problems.

These techniques are better than gradient base techniques as they do not require calculation of

derivatives and they do not get stuck in local minimum (the major problem with GD algorithm).

Evolutionary algorithms have been applied for training neural networks. In [19], the authors

trained the feed forward neural network with PSO algorithm and found that PSO converges faster

than back propagation (BP) algorithm. The PSO algorithm performs well in finding the global

minimum but it might be slow to converge to the global minimum. On the other hand, the SQP

optimization algorithm [20] can find the optimum weights but in presence of global minima it can

get stuck in local minima. The problem of slow convergence of PSO and local minima problem

of SQP optimization was addressed by the hybridization of PSO and SQP optimization algorithm

in [5]. The Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms for

training of RNN were implemented in [21] where these algorithms were compared with resilient

backpropagation (RPROP) and GD algorithm. The authors showed that for fixed number of

epochs, the RPROP algorithm was better than GD algorithm and PSO algorithm achieved higher

generalization performance than RPROP algorithm. The goal of training is to learn the input-

output relationship by adjusting the interconnection weights. In this paper, we used hybrid PSO-

SQP algorithm for RNN training. First, RNN is trained with PSO algorithm to find the global

minima, and then based on feasible start point from PSO algorithm, SQP optimization algorithm

converges to global minima.

1) Adaptive Inertia Weight-Particle Smarm Optimization Algorithm for RNN: The procedure

of applying adaptive inertial weight (AIW) PSO algorithm is as follows

Step1: Initialize a population of S particles with random positions and velocities of d dimen-

sions in the problem space. The position vector is an array of interconnected weights of feed

forward RNN of I Input nodes, H hidden nodes and O output nodes. The dimensions of D

is 2(I.H+H.O). The position vector is formulated as Xsd = [w+L1
ih w+L2

ho w−L1
ih w−L2

ho ] where

1 6 i 6 I , 1 6 h 6 H , 1 6 O 6 O. The weights are randomly distrubted over the interval
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of [0;1].

w+L1
ih is positive interconnection weight between node i of layer 0 and node h of layer 1.

w+L2
ih is positive interconnection weight between node h of layer 1 and node o of layer 2.

w−L1
ih is negative interconnection weight between node i of layer 0 and node h of layer 1.

w−L2
ih is negative interconnection weight between node h of layer 1 and node o of layer 2.

Step2: Each particle from position in generation k moves to new position k+1 by using PSO

equation given in 12. The c1 constant value is set to 2.6 and c2, constant value is set to 1.1. Step-

1: Initialize a population of S particles with random positions and velocities of d dimensions in the

problem space, represented as (Vsd). The position vector is an array of interconnected weights of

feed forward RNN having I Input nodes, H hidden nodes and O output nodes. The dimensions of

d is 2(I.H+H.O). The position vector is formulated as Xsd = [w+L1
ih w+L2

ho w−L1
ih w−L2

ho ] where

1 6 i 6 I , 1 6 h 6 H , 1 6 O 6 O. The weights are randomly distributed over the interval

of [0;1].

Step-2: Each particle from position in generation k moves to new position k+1 by using PSO

equation given in equation 12. The c1 constant value is set to 2.6 and c2, constant value is set

to 1.1.

V k+1
sd = WV k

sd + c1rand()(P
k
bestsd −Xk

sd)+

c2rand()(G
k
bestsd −Xk

sd)
(12)

Xk+1
sd = Xk

sd + V k+1
sd

(13)

where Pbestsd, Gbestsd are the local best for position vector Xsd and global best for vector

Xsd.

W k
sd = 1 −

1

1 + exp(−α.ISAk
sd)

(14)

where α is a constant with values in between 0 to 1 and ISAk
sd is given as:

ISA = 1 −
Xk

sd − P k
best

P k
bestsd −Gk

bestsd
+ ε (15)

where ε is a small position constant. Step-3: For each particle, evaluate the fitness function

E =
1

2

N∑
p=1

O∑
o=1

[qo(p) − qdes,o]
2 (16)
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Initialize the random neural network 

with random interconnected weights 

Xsd =[wij
+L1

 wij
+L2 

wij
-L1 

wij
-L2

 ]

Train the network with PSO 

algorithm

If PSO training 

finished

NO

Store the weights

YES

Train the network with SQP 

optimization algorithm

If  training finished

NO

Store the weights

YES

Fig. 1. Flow chart of Hybrid PSO-SQP

where N is the number of patterns, O is the number of output, qdes,o is the desired output in

training pattern, qo(p) is the output of RNN calculated by solving equations (9-11).

Step-4: Compare particle fitness evaluation with particle local best Pbest. If current fitness

evaluation value is less than Pbest, then update Pbest to current value and the Pbest location

equal to current location in d dimensional space.

Step-5: Compare fitness evaluation with all Pbest of population S. If Pbest is less than Gbest

update Gbest to the current particle’s array index.

Step-6: Compute the average squared error. If the MSE is not less than threshold, go to Step-2.

If the stopping criteria is met or maximum number of iterations is reached, learning is complete.

In this work, RNN is trained with AIW-PSO algorithm for 100 iterations. After finishing 100

iterations, the weights of RNN are optimized using SQP optimization algorithm. The flow chart

of AIW-PSO algorithm is shown in Fig 1.
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Fig. 2. System Architecture for Smart Home

III. SYSTEM ARCHITECTURE FOR SMART HOME

The system architecture of smart home is given in Fig 2. The system consists of sensor nodes

for monitoring the indoor environment, HVAC duct sensor node, the base station is connected

with the workstation through serial port and web portal for display.

A. Environment Sensor node

Each room has one environment sensor node. The sensor node measures temperature, humidity,

and CO2. Sensor nodes were built with Arduino UNO boards which have 2KB RAM and

32KB of program memory. Each sensor node is connected with RF transceiver (RFM 69W)

and communicating with the base station at 915 MHz. Sensor nodes were also developed with

Moteino R4 [22] which is low power clone of Arduino UNO board. A DHT 22 sensor was used

to measure temperature and humidity, a COZIR CO2 sensor [23] was used to measure CO2

(consumes3.5mW /1.0 mJ per reading [23]).
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B. HVAC Duct Sensor node

Each room has one HVAC duct sensor node. A sensor node measures temperature, humidity,

CO2 for the inlet air coming inside the room from the HVAC. The HVAC duct sensor node was

built with the same board and RF transceiver as used for environment sensor nodes. The HVAC

duct sensor node is also developed with using MOTEINO R4 board.

C. Base Station

The base station was implemented by using Arduino Mega 2560 board which has 8KB RAM

and 256 KB of program memory. The board is connected with RFM 69W transceiver and it

receives information from the sensor nodes and transfers the data to the workstation through serial

port. The base station controls the environment of the chamber by controlling the actuators of

the HVAC.

D. Server for RNN training and data storage

To create the cloud processing scenarios, the base station was connected with the workstation

through serial port. The base station transmitted the data received from the sensor nodes to the

workstation which stored the data and trained the RNN by using PSO-SQP algorithm. Apart

from this it also uploaded the environmental parameters/control signals on the cloud computing

platform, ThingSpeak [24].

IV. RNN MODELS FOR INTELLIGENT CONTROL OF BUILDING

The smart control of the building was managed by using three different RNN models. The

description of each RNN model is given in the following sub sections.

A. Occupancy Estimation

A RNN model was trained to learn the relationship between the occupancy levels and CO2 con-

centrations, room temperature, and ventilation actuation signals for identification of occupancy

estimation model. The inputs for RNN model were: room temperature, inlet air temperature,

inlet CO2 concentration, indoor CO2 levels, and inlet air actuation signal while output of RNN

model was occupancy levels. The RNN model for occupancy estimation is shown in Fig 3.

The effect of outside temperature on determining the number of occupants was negligible as an
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Fig. 3. Occupancy Estimator

HVAC was maintaining the heating/cooling setpoints for the building. The rise/decline in the

indoor temperature of the building due to outside temperature was controlled through HVAC.

Therefore, the effect of the outside temperature on the building was indirectly reflected by the

change in HVAC inlet air temperature.

B. PMV based setpoint estimator

Thermal comfort is state of mind when a person is satisfied with indoor environment of the

building. Human body decides the level of thermal comfortably with the amount of heat exchange

between the body and environment. Thermal comfort can be different for different people wearing

different types of clothing. For calculating thermal comfort in buildings, Predictive Mean Vote

(PMV) method was used. PMV is the most commonly used indoor thermal comfort index in

buildings [25]. Fanger developed the thermal sensation scale of 7 values to determine the thermal

comfort index. PMV was developed as a function of six variables: air temperature, mean radiant

temperature, air velocity, air humidity, clothing resistance, and activity level as shown in Fig

4. Where PMV=0 means Neutral, PMV =1 represents Slightly Warm environment, PMV=-1

represents slightly Cool indoor environment. Similarly if the user selects PMV=-0.7, it means

the indoor environment is near to slightly cool index. As per ISO recommendation, it is required

to maintain PMV at 0 with tolerance of 0.5.

In this work, the training data set was generated by using Fanger equation for PMV [25]. In

order to reduce the human interference, clothing insulation of 0.8, metabolic rate of 1.1, and air

velocity of 0.15 m/s were assumed to be constant. After generating the training dataset, RNN
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Fig. 4. PMV Thermal Sensation Scale

was trained with PMV and humidity as inputs and temperature as an output. A 2-4-1 RNN was

trained with hybrid PSO-SQP training algorithm. In this work, PMV of -0.1,-0.3,-0.5 was tested

for heating setpoint and PMV of 0.3, 0.5 and 0.7 was tested for cooling set point.

C. HVAC Control

A smart RNN controller was trained for maintaining comfortable indoor environment by

controlling the heating, cooling and ventilation of HVAC. The cooling set points and heating set

points were varied by occupants to train the controller. A 5-7-3 RNN controller with 5 neurons

as input, 7 neurons in the hidden layer and 3 neurons as output layer (shown in Fig 5) was

trained with PSO-SQP training algorithm. The training dataset for the RNN HVAC controller

was collected by manually operating the HVAC for maintaining the heating setpoints of 19 oC,

20 oC, 21 oC, 22 oC, 23oC and cooling setpoints of 25 oC, 26 oC, 27 oC, 28 oC. The accuracy

of RNN HVAC controller was calculated in percentages by comparing the output of trained RNN

with the training dataset. The smart controller learned the human preferences with accuracy of

94.87% for heating, 98.39% for cooling, and 99.27% for ventilation.

V. RESULTS AND DISCUSSION

The intelligent controller was tested for controlling heating, cooling and ventilation in the

environment chamber.

A. Test Bed

The test bed consists of an environment chamber of 12x8x8 ft located in Glasgow Caledo-

nian University campus. The test chamber has dedicated HVAC that can humidify/dehumidify,
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Fig. 6. Indoor View of Environment Chamber

heat/cool the environment chamber. The chiller of the environment chamber can bring the air

temperature down to 5 oC. Inside the environment chamber, there are two sensor nodes one for

HVAC duct and one for monitoring the environment of the chamber. The base station is connected

with control panel of the environment chamber to turn on/off heater, cooler and ventilation. The

indoor view of the environment chamber is shown in Fig 6.

B. Occupancy Estimation

The RNN model for occupancy estimation was tested in the environment chamber for detecting

a single occupant. The ground truth value for occupancy was recorded manually in the sensor

node for generating the training dataset. The smart controller detected the occupancy with an

accuracy of 87.4% as shown in Fig 7.
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Fig. 7. Occupancy Estimation with RNN Occupancy Estimator
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Fig. 8. Occupancy Estimation with RNN Occupancy Estimator

The study was carried out to check the performance of RNN for estimating the occupancy

when the chamber was occupied up to three persons. The CO2 concentrations increased when

number of occupants increased but when the occupants left the chamber, the CO2 concentrations

remained constant for a long period of time. This non-linear behaviour makes the occupancy

estimation a very challenging task. The occupancy estimation by RNN is shown in Fig 8. The

accuracy of RNN occupancy estimation was 92.48% and with an error of 3.81% for estimating

+/- 1 person to the ground truth values.

C. HVAC control

The user can maintain the PMV based setpoints for heating and cooling by using RNN PMV

based setpoint estimator or if not satisfied with the PMV based setpoints, the air temperature of

the building can be maintained according to the user requirement. The upper and lower threshold

for turning ON/OFF the heating/cooling of the environment chamber was implemented. The
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PMV based indoor air temperature of the environment chamber along with PMV based heating

setpoints, and lower threshold of heating setpoints is shown in Fig 9. The indoor air temperature

along with PMV based cooling setpoint and lower cooling setpoint is shown in Fig 10. To test the

performance of the RNN controller, the PMV based setpoints for heating were varied to check

the heating control. The HVAC cooling control was tested by turning ON the heating to allow the

air temperature of the environment chamber to reach the cooling setpoint. Once cooling setpoint

was reached, the HVAC cooling was turned ON as shown in Fig 10. The maximum overshoot

for maintaining the PMV based heating setpoint was 0.69 oC while for PMV based cooling

setpoint, the maximum overshoot was 0.21 oC. The amount of time in terms of percentages

when overshoot was above 0.5 oC was 2.75%.

The smart controller was also tested for maintaining the user defined heating setpoints (19 oC,

20 oC , 21 oC , 22 oC , and 23 oC ) during winters and for maintaining the cooling setpoints

(25 oC, 26 oC , 27 oC , and 28 oC) during summer season. The indoor air temperature while

maintaining heating setpoints is shown in Fig 11 and the indoor air temperature for maintaining

cooling setpoints is shown in Fig 12. The maximum overshoot for maintaining heating and

cooling setpoints during summers was 0.3oC.

The smart controller turns on the ventilation of the environment chamber if CO2 level reaches

600 PPM and ventilation remained ON until CO2 levels dropped to 500 PPM. The performance

of controlling the ventilation of the test chamber is shown in Fig 13. The RNN HVAC controller

and RNN PMV based setpoint estimator was trained during the month of February, while the

tests were also conducted during summers as well and from Fig 12 it is shown that the smart

controller can maintain accurate temperature during summers as well. Moreover RNN HVAC

controller was trained for maintaining user defined setpoints but results showed that it could

maintain accurate temperature for PMV based setpoints as well.

D. Comparison of Training algorithms for RNN

The PSO-SQP training algorithm was compared with PSO and GD training algorithm for

training occupancy estimator, PMV based setpoint estimator and HVAC control. The MSE with

all training algorithms is shown in Table I. The MSE of PSO-SQP training algorithm was

63.52% less than GD and 35.52% less than PSO for occupancy estimator. The MSE of PSO-

SQP training algorithm was 71.50% less than GD and 63.23% less than PSO for training the
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Fig. 11. . Indoor Air Temperature alongwith heating setpoints of 19 oC, 20 oC, 21 oC,22 oC,23 oC, yaxis represents temperature
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Fig. 12. Indoor Air Temperature alongwith cooling setpoints of 25 oC, 26 oC,27 oC, 28 oC, y-axis represents temperature in
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TABLE I. COMPARISON OF MSE FOR TRAINING ALGORITHMS

Algorithm Occupancy Estimator HVAC Control Setpoint Estimator

GD 4.03e-02 9.02e-02 2.63e-05

PSO 2.28e-02 6.99e-02 1.67e-05

PSO-SQP 1.47e-02 2.57e-02 6.11e-06

HVAC control. Similarly for PMV based setpoint estimator, the MSE of PSO-SQP training

algorithm was 76.76% less than GD and 63.41% less than PSO. The results showed that hybrid

PSO-SQP training algorithm for RNN outperformed GD and PSO algorithm in terms of MSE.

E. Case Study to determine the best architecture for embedding the RNN controller for getting

maximum battery life

In this study, we tested three different architectures for smart controller to determine the best

architecture for maximum battery life.

1) Case 1 : Processing in Cloud: Data storage, data processing and control algorithm were

implemented on the cloud. In this scenario, the sensor nodes transmitted the environmental

conditions and user preferences to cloud through base station and the control actions were

determined by base station by using cloud processing. The architecture is shown in Fig 14. The

Base station requires only 12004 bytes for program memory and RAM consumption was 1050

bytes

2) Case 2: Control Algorithm at Base Station: Data storage and processing on the cloud while

control algorithm was implemented on the base station. In this scenario, the model was trained on
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the cloud platform and the trained RNN models were implemented on the base station. The base

station received the information from sensor nodes and estimated the number of occupants, based

on this information the base station took necessary control actions for maintaining a comfortable

indoor environment. The architecture is shown in Fig 15.

3) Case 3: Base Station with Intelligent Sensor Nodes : Data storage and processing on

cloud with embedded intelligence in sensor nodes and base station. In this scenario, the sensor

nodes had embedded intelligence for determining the number of occupants and base station took

control actions according to the information sent from smart sensor nodes. The architecture of

this scenario is given in Fig 16.

4) Comparison of Architectures: The base station of Case 1 consumed 21.34 % less RAM, 44%

less program memory and 18.40% less power compared to base station of Case 2. As compared

to base station of Case 3, the base station of Case 1 required 35.42% less memory, 16.335%
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less RAM but consumed 8.22% more energy. The sensor node for Case 1 required 32.42% less

program memory, 28.28% less RAM and 21.42% less power consumption as compared to the

Case 3. The detailed comparison of the resources, power consumption is given in Table II while

comparison of power consumption is shown in Fig 17. The arduino UNO board was not suitable

for implementing the sensor node due to its high power consumption, so a similar node was

implemented with another lower power board (Moteino R4) which hadthe same Atmel 328P

microcontroller. The battery life for this sensor node was 98 days. The base station for Case 2

required 79.42%

The base station for Case 2 requires 79.42% more program memory, 27.14% more RAM, and

22.55% more power consumption as compared to base station of Case 1. Similarly as compared

to base station of Case 3, it requires 15.85% more program memory, 6.375% more RAM and

32% more power consumption. The sensor node for this scenario is same as used in Case 1.

The base station for Case 2 required 79.42% more program memory, 27.14% more RAM, and

22.55% more power compared to base station of Case 1. Similarly as compared to base station of

Case 3, it required 15.85% more program memory, 6.375% more RAM and 32% more power.

The sensor node for this scenario was the same used in Case 1. The base station of Case 3

required 54.84% more program memory, 19.52% more RAM and 7.6% less power than base

station of Case 1.

The base station of Case 3, required 13.697% less program memory, 5.99% less RAM and

24.60% less power than base station of Case 1. But the intelligent sensor node consumed

27.78% more power than the standard sensor node. The MOTEINO low power sensor node
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TABLE II. COMPARISON OF POWER CONSUMPTION

Power

Con-

sumption

Program

Memory

Require-

ments

RAM Available

Battery

Life

Control

Deci-

sion

Delay

Base Station

for Case 1

465.55

mW

12004

bytes

1050

bytes

264.46

hrs

350ms

Base Station

for Case 2

570.45

mW

21538

bytes

1335

bytes

215.82

hrs

8.5ms

Base Station

for Case 3

430.05

mW

18588

bytes

1255

bytes

286.28

hrs

7.0ms

Arduino Sen-

sor Node for

Case 1 & Case

2

388.8

mW

12984

bytes

753

bytes

316.66

hrs

N/A

Arduino Sen-

sor Node for

Case 3

497.52

mW

19214

bytes

1050

bytes

247.46

hrs

N/A

Moteino Sen-

sor Node for

Case 1 & Case

2

29.08

mW

13302

bytes

783

bytes

2352.13

hrs

N/A

Moteino Sen-

sor Node for

Case 3

32 mW 18150

bytes

1097

bytes

2137 hrs N/A

with embedded intelligence consumed 10.01% more power than the similar MOTEINO low

power sensor node without intelligence. The battery life for this sensor node was 89 days. The

overall power consumption (base station and sensor node) for Case 3 was 4.4% less than the Case

1 and 23.82% less than Case 2. In terms of power consumption, Case3 is the best architecture

for getting maximum battery life.

The time taken for control decision by base station in all three architectures was also calculated.

The base station for Case 1 took an average time of 350 ms. The minimum time taken by base

station was 295 ms while the maximum time was 995ms. The base station was monitoring the

environment every 1 minute so this delay of control decision had no effect on the performance

of the controller. The time required for base station in Case 2 was 8.7ms and in Case 3 was

7.0ms.
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Fig. 17. Comparison of Power Consumption , y-axis represents the power in mW

VI. CONCLUSION

In this work, we presented our novel RNN based intelligent controller for HVAC control.

The RNN controller calculates the number of occupants, estimates the predicted mean vote

based setpoints for heating and cooling, and learns the user preferences for controlling heating,

cooling and ventilation. The occupancy estimation was 92.48% accurate with an error of 3.81%

for estimating +/- 1 person. The training of RNN models was performed by our novel hybrid

PSO-SQP training algorithm. The results showed that PSO-SQP training algorithm gives 76.76%

less MSE compared to GD training algorithm. The power consumption of the sensor nodes is

a major hurdle in using IoT. Three different architectures for intelligent control of the building

was presented and evaluated in terms of battery life and control decision delay. The sensor

node with embedded intelligence consumed 10.01% more energy than standard sensor node but

overall power consumption (base station and sensor nodes) for Case 3 (control algorithm on

base station with intelligent sensor node for occupancy) was 4.4% less than the Case 1 ( control

algorithm on cloud). In terms of control decision delay, Case 3 outperformed other architectures.

The control decision delay of Case 3 is 7.0 ms.
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