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Abstract 

A critically important ethical issue facing the AI 
research community is how AI research and AI 
products can be responsibly conceptualised and 
presented to the public. A good deal of fear and 
concern about uncontrollable AI is now being dis-
played in public discourse. Public understanding of 
AI is being shaped in a way that may ultimately 
impede AI research. The public discourse as well 
as discourse among AI researchers leads to at least 
two problems: a confusion about the notion of ‘au-
tonomy’ that induces people to attribute to ma-
chines something comparable to human autonomy, 
and a ‘sociotechnical blindness’ that hides the es-
sential role played by humans at every stage of the 
design and deployment of an AI system. Here our 
purpose is to develop and use a language with the 
aim to reframe the discourse in AI and shed light 
on the real issues in the discipline. 

1 Introduction 

A critically important ethical issue facing the AI research 
community has to do with how AI research and AI products 
are responsibly conceptualized and presented to the public. 
The issue is most evident in the discourse around so-called 
‘autonomous’ technologies. ‘Autonomy’ is used by AI re-
searchers as a metaphor to refer to a variety of different 
types of computational behaviour, but the multiplicity of 
meanings of the term (both for AI researchers and non-
experts) can lead to miscommunication: ‘autonomy’ sug-
gests to those in the media and the lay public something out 
of human control, something worthy of concern and even 
fear.  In this paper we want to argue for a reframing of AI 
discourse that avoids the pitfalls of confusion about auton-
omy and instead frames AI research as what it is: the design 
of computational artefacts that are able to achieve a goal 
without having their course of action fully specified by a 
human programmer. We don’t claim that AI researchers 
have full responsibility for public misunderstanding but we 
do claim that AI researchers have some degree of responsi-
bility for the way in which their research is presented to and 
understood by non-experts (the public).   

A good deal of concern has recently been expressed 
about the future of AI research and its consequences for 
humanity. A salient example is the open letter, signed not 
only by several AI researchers but also by a number of aca-
demics and scientists from other fields, including entrepre-
neurs, policy makers and professionals. The main point of 
this letter (“Research priorities for robust and beneficial arti-
ficial intelligence” published by the Future of Life Institute.  
[FLI, 2015a]) is a recommendation to widen the focus of 
research to include not only the objective of “making AI 
more capable”, but also of “maximizing the societal benefit 
of AI.”  The letter writers acknowledge the possibility of AI 
endeavors that are not beneficial for society or humanity in 
general. The specter of harmful AI is also evident in some 
researchers’ and entrepreneurs’ view of AI. If some see AI 
as a way for the human mind to overcome the natural decay 
of the body and live forever in digital form [Itskov, 2016; 
Minski, 2013; Kurzweil, 2005], others are more keen on 
warning us against the extinction of the human race by ma-
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chines that are both stronger and smarter than their creators 
[Barrat, 2013; Carr, 2014; Storm, 2015; Gaudin, 2015]. 

Between the extremes of the promise of eternal life and 
the threat of total annihilation lie the AI artefacts of today: 
self-driving cars [Google, 2016], package delivering drones 
[Amazon, 2016], fully automated hedge funds [Aidyia, 
2016], to name a few. Every project, whether fully complet-
ed or still in development, is accompanied by an array of 
questions, including compelling ethical questions: Who is to 
be held responsible when accidents involving self-driving 
cars occur? [Hevelke and Nida-Rümelin, 2015] If drones 
can deliver medicines or drop bombs, are we giving life and 
death powers over humans to artefacts that lack both morali-
ty and mortality? [Heyns, 2013; Berkowitz, 2014] When 
some traders in a stock market are high-speed computers, 
what is left to do for much slower humans? [MacKenzie, 
2014] Will it become impossible for individuals to make 
informed personal decisions about how to invest their mon-
ey in financial markets? [Metz, 2016]  

All of these questions arise from the simple idea that AI 
research and products are designed to delegate traditionally 
human tasks to machines.  Hence, the ethical issues all cen-
ter around the fundamental question: Given task x, what are 
the consequences of having a machine perform x?  This may 
be considered the most obvious ethical issue in AI, the one 
to which many researchers are trying to draw attention.   

However, the question cannot be answered adequately 
without better ways of talking and thinking about AI and 
what happens inside AI artefacts. For one thing, to under-
stand the question as an ethical question requires that it be 
specified as follows: Given task x, what are the social con-
sequences of having a machine perform x?  Answering this 
more specified question requires a conceptual shift that al-
lows the connection between AI and people/society to come 
into view.  All the human actors involved in an AI endeav-
our must be treated as part of AI, not only the researchers, 
but those who make the decision to launch AI, those who set 
up the institutional arrangements in which AI systems oper-
ate, and those who fill roles in those arrangements by moni-
toring, maintaining, and intervening in AI systems.  

Others have called for a similar shift. For example, Da-
vid Mindell illustrates the tight link between humans and 
technology with several examples of AI artefacts deployed 
to explore extreme environments such as deep sea and space 
[Mindell, 2015]. Mindell analyzes existing technologies.  
We go a step further by using a sociotechnical frame to ex-
amine discourse about futuristic AI,  Futuristic AI might 
never come into existence but it is important because dis-
course about it influences understanding of AI. 

In calling for a change in the nature of AI discourse, we 
are calling for concepts and language that in particular clari-
fy the multiple notions of autonomy that are at play in refer-
ring to AI entities as autonomous.  What may look like a 
mere terminological issue reflects a much more serious se-
mantic gap that affects the discussion of AI on several levels 
and in multiple contexts. The gap misleads AI researchers 
themselves as well as those in industry, policy makers, and, 
ultimately, the people whose lives are affected by AI. 

2 A New Frame for AI Discourse 

Our proposal might be seen as a new ontology because we 

propose that AI discourse recognize two distinct entities: 

computational artefacts and AI systems.  Computational ar-

tefacts are digital entities and AI systems consist of such ar-

tefacts together with human actors and social arrangements. 

Because AI always performs tasks that serve human purpos-

es and are part of human activities, we claim that AI should 

be understood as systems of computational components to-

gether with human behaviour (human actors), and institu-

tional arrangements and meaning.  This expanded ontology, 

we claim, will allow ethical issues to be more readily seen 

and addressed.  

When it comes to computational artefacts we propose a 

set of distinctions that are quite familiar to AI researchers.  

Here our purpose is to develop and use language that has the 

clarity necessary for avoiding (or at least diminishing) con-

fusion and miscommunication about the autonomy of AI.  

Our point is to demonstrate and emulate the kind of clarity 

that will allow lay audiences to understand what is and is 

not possible with AI. 

2.1 Computational Artefacts 

A computational artefact is an artefact whose operation is 
based on computation. AI researchers are generally focused 
on a special type of computational artefact, that is, those that 
are meant to mimic activities that are typically human, such 
as reasoning, making decisions, choosing, comparing, etc. 

Programs in Computers 
The first and simplest type of computational artefact is a 
program.  Programs receive digital input and produce digi-
tal output. The operations of a program remain in the digital 
realm. Some authors call software an abstract artefact 
[Irmak, 2012], but such characterization better fits algo-
rithms, which are conceived in the minds of human design-
ers and can exist outside the technological realm (e.g. in the 
form of a block diagram on paper). On the other hand, pro-
grams need to be stored in computers in order to operate, so 
there is a form of embodiment that distinguishes programs 
from algorithms. Moreover, computers are typically 
equipped with peripherals that enable them to exchange dig-
ital data with other computers (e.g. through network cables) 
or with humans (e.g. through a keyboard for input, a moni-
tor for output).  

Programs in Computers with Sensors 

We can distinguish a second type of computational artefact 

as having a form of embodiment that allows it to receive in-

put from the external environment, that is the non-digital 

world. Computational artefacts of this kind have sensors.  In 

a way, even a keyboard could be considered a sensor that 

translates the mechanical movements of a user’s fingers into 

digital data. This is only partially true: finger movements 

are simply a non-digital way for a human to insert digital 

input (i.e. characters and figures) into a computer, whereas  



here we focus on more sophisticated devices that actually 

transform a non-digital phenomenon into digital data. Per-

haps the simplest example of this kind of entity – one that is 

often used – is the thermostat of a heating system.  The 

thermostat is connected to sensors that detect temperature; 

this analog information is translated into digital form so that 

it becomes input to the program.   

Programs in Computers with Sensors and Actuators 

A third type of computational artefact both receives input 

from the external world and moves in the external world.  

We generally call such entities robots. Robots have mechan-

ical parts that allow them to move and, of course, their pro-

grams include instructions aimed at controlling those parts. 

The types of movements that these artefacts can make de-

pend on the forms of the actuators, i.e., their mechanical 

parts. For example, some robots have wheels allowing them 

to move across floors, other robots have arms allowing them 

to reach out and grab, others might have actuators that are 

weapons. The most successful example of a robot, at least in 

terms of sales [Morton, 2014], is the Roomba, a robot that 

cleans floors.  

2.2 Autonomy of Computational Artefacts 

Humans build artefacts and endow them with the proper 
hardware and software with specific goals in mind. By dele-
gating the execution of the operations needed to reach those 
goals to the artefact, humans are freed of that burden.  

This is the basic idea behind automation. It characterizes 
all sorts of artefacts including computational ones.  Humans 
are happy to delegate tasks to computational artefacts since 
they are able to execute operations at super-human speed 
without errors. If all computational artefacts are automatic, 
what makes some of them ‘autonomous’? What does it 
mean for an artefact to be ‘autonomous’? 

Let’s start with an example from the first category, a pro-
gram in a computer, and imagine a software agent for trad-
ing that is supposed to connect to a server and buy shares 
from the best company available. The criteria to compare 
companies and establish the best one are fully coded into the 
agent, but there may be the possibility that two or more 
companies have exactly the same best parameters. The de-
signers could write the software in a way that, in such a sit-
uation, it sends a message to the human user on behalf of 
whom the agent is operating. The agent will then buy shares 
from the company indicated by the user. A different way to 
implement the agent is to write its code in a way that, faced 
with the above-mentioned decision, it will perform a se-
quence of operations that makes the selection of the compa-
ny possible without human intervention. The designers have 
many choices on how to implement the selection process: 
among the eligible companies, the agent could pick the first 
one in alphabetical order, or the oldest, or the newest, and so 
on. The agent might even pick the company, metaphorically 
speaking, by means of a “coin toss”, that is, based on the 
value of a randomly generated number. 

At first glance, the trading agent that does not require 
human intervention for the purchase of the shares appears to 
be more ‘autonomous’ than the other. This is true but not 
the whole picture. If autonomy in programs means simply 
no human intervention, then software written to print the 
first one hundred prime numbers on a screen would have to 
be considered autonomous since it does not require any hu-
man intervention during its run.  

So, we need a more precise account of autonomy in pro-
grams. In the prime numbers printer, the execution is entire-
ly established already at compile time, i.e. when the code is 
written by a human designer, step by step from beginning to 
end. By contrast, in the case of our trading agents, the 
course of action is established at run time and depends on 
the data coming from the server the agent connects to. In the 
case of the agent that comes back to its user to ask for a de-
cision, at least one of those run time conditions is an ac-
tion/intervention by the user, while the other agent will base 
its decisions solely on the basis of what is written in its code 
and the data from the server. 

It seems, then, that autonomy is a characteristic of arte-
facts in which the course of action is established at run time, 
without human intervention and on the basis of the condi-
tions in the environment in which the artefact operates.  Ar-
tefacts that require human decision at run time – as with the 
trading agent requiring a user to choose between two best 
companies – are less autonomous than the ones that require 
no human input at run time. 

From this perspective, endowing an artefact with sensors 
seems to increase its autonomy, because the sensors de-
crease the need for human intervention. For example, com-
pare an artefact that triggers the watering of a garden at reg-
ular intervals with another that acts on the basis of the level 
of humidity of the terrain as measured by means of  sensors. 
The owners of the garden need to intervene in the operation 
of the time-based artefact in at least two possible ways: they 
have to switch it off if there has been abundant rain, and 
they have to manually activate it for extra water during par-
ticularly hot and dry days. On the other hand, with an arte-
fact endowed with sensors, the owners are freed of the bur-
den of intervention/control: the artefact will see to it that the 
humidity of the terrain is always at the optimal level, inde-
pendent of the owner’s monitoring of the weather. 

In the same way, the addition of actuators further increas-
es autonomy. Imagine the garden-watering artefact in the 
form of a robot with arms and wheels: it could be pro-
grammed to move around all the gardens in the area, check 
the levels of humidity in each terrain, and obtain and carry 
water or turn on nearby spigots where needed. Even more 
autonomy could be achieved by means of additional periph-
erals, be they sensors or actuators.   

Needless to say, the additional peripherals would require 
additional code to enable the artefact to use the peripherals.  
The additional code would elaborate the input from the ad-
ditional sensors and control the movements made possible 
by the additional actuators. 

Autonomy is, then, a function of how a computational en-
tity operates at run time when it draws on input from the en-



vironment.  The entity’s autonomy has to do both with its 
responsiveness to its environment and independence from 
human intervention at run time and may also be a function 
of increased capacity for movement. The less intervention 
needed by humans in its operation and the wider its scope of 
action, the more autonomous the artefact.  
  

2.3 Unpredictability of Artefacts 

When autonomy is understood in this way, it becomes clear 
that people will likely pay less attention to the artefact’s op-
eration. This makes the artefact more unpredictable. Imag-
ine again the garden-watering robot. If its owners realize 
that it is not in their garden, they may (correctly) think that 
the robot must be watering some other garden in the area. 
However, they would not be able to predict where exactly it 
is. If human users do not observe the artefact at work, and 
this happens often when the artefact is supposed to be au-
tonomous, they will not know what kind of input the arte-
fact received, hence it will be difficult, if not impossible, to 
predict how the artefact will operate to achieve its goal.  
 
There are many ways in which artefacts can be unpredicta-
ble. Consider some examples. The random number genera-
tor used by the trading agent mentioned before is a piece of 
software that applies a complex mathematical function to 
data provided by the computer’s clock. The output of such 
software is a sequence of numbers that seem not to have 
been determined by any mathematical function, and thus 
appear to be randomly chosen by the software. Obviously, 
such a function exists because a computer only operates 
through functions and mathematical operations, but if a user 
does not know what the function, the output will indeed 
look random. Even the programmers who designed the sys-
tem are not able to foresee the numbers in the output be-
cause the function is parametric and its results depend not 
only on the function itself but also on numerical values from 
the clock, such as the milliseconds of the time at which the 
software was launched. If this piece of information is miss-
ing, not even the designer of a random number generator 
can predict its output. 

This is a very important point that deserves attention: 
human users of computational artefacts, including their de-
signers, need a certain amount of information to be able to 
predict the course of action of the artefacts. Some artefacts 
are such that one only needs to know its code to predict the 
outcome (e.g. the prime number printer), whereas other arte-
facts require observation throughout their run in order to 
make predictions on how they will operate. For instance, in 
the case of our software agent purchasing the best compa-
nies, we would be unable to predict its behaviour unless we 
could know the situations of all the companies on the stock 
market. In principle, however, if on our own we were able 
to find out which company is the best (using the same crite-
ria as the agent), we could anticipate (predict) that our trad-
ing agent will buy shares of that company, provided that the 
software is not faulty. 

In order to predict which of two top companies our trad-
ing agent will choose in the event of a tie, we will have to 
know the specific criteria that are coded into the trading 
agent. If the criteria are based on the names of the compa-
nies or the years of their founding, we need to acquire this 
information to know what the agent will do. Now suppose 
that the agent is designed to use a random number genera-
tor: it runs the generator to pick a number between 0 and 9; 
if the output is between 0 and 4 the agent will buy shares 
from the first company, whereas if the output is between 5 
and 9 it will buy from the second company. In this case, we 
will need a different kind of information to be able to pre-
dict the outcome: as said before, we need to know what the 
mathematical function used in the generator looks like and 
the exact time at which the generator was launched. Since 
this last piece of information is extremely difficult to ac-
quire, it is likely that we will fail at our task, and that the 
agent’s decision will have the appearance of a random act.  

 Indeed, random number generators exist that, just like a 
thermostat, rely on events that happen in the external envi-
ronment: a computational artefact can be endowed with a 
light sensor that contains a “beam splitter”, that is, a half-
mirror that splits light in two orthogonal rays. The device 
includes two photon sensors that can detect where each pho-
ton from the split ray goes: one way or the other, according 
to which a 0 or a 1 will be generated by the device. The 
trading agent may be implemented so to buy shares from the 
first company in case of a 0, and from the second company 
in case of a 1. Unpredictability is increased here in the sense 
that no human can predict where a photon will go (i.e. a 
quantum mechanical phenomenon) and, thus, which figure 
will be generated. This is why devices that are based on 
physical phenomena are called ‘true’ random generators as 
opposed to computational ‘pseudo’-random generators 
[Jennewein et al., 1999]. This is the fundamental mechanism 
that enables software engineers to create programs that op-
erate stochastically: they have the possibility to make the 
completion of an instruction depend on the result of a pseu-
do-random or a truly random event.  

This kind of operation is often used to randomly explore 
different possibilities, in search of an optimal solution. 
Google, for instance, has set up some experiments to train 
robotic arms in the task of opening a door. The computers 
controlling the arms have been provided with code with 
commands that should roughly guide the hardware with the 
right moves. Every time these commands are executed, a 
random small numerical value is added to the parameters 
that determine the positions of the parts of the robotic arms, 
resulting in new, slightly different movements at each 
round. The movements with the best outcome are then regis-
tered in the system for future use [Levine et al., 2016].  
 Lack of information on behalf of the human users make 

computational artefacts unpredictable, but the unpredictabil-

ity stems from several different kinds of ignorance: igno-

rance of the functions used or of the time of their activation 

(as in the pseudo-random number generators), impossibility 

of predicting quantum mechanical phenomena (as in the true 



random number generators), or simply ignorance of the cir-

cumstances in which the artefact operates (as when we can-

not predict which shares the trading agent will buy if we do 

not know the market, or the whereabouts of the garden-

watering robot if we have not been observing it). 
Since autonomous artefacts need little to no human inter-

vention at run time, indeed, since they are often conceived 

to free humans from the burden of several tasks, it should 

not be surprising that users do not have a full knowledge of 

the environment in which the artefacts operate. Hence, the 

autonomy of artefacts is linked to their unpredictability. 

Computational artefacts are unpredictable because humans 

don’t and can’t know the input on which the operation of the 

artefact depends. 

2.4 Limits to Unpredictability 

The unpredictability of computational artefacts is important 

for our purposes here because, rightly or wrongly, it plays 

into public fear and concern about ‘autonomous’ machines. 

However, it is important to note that the unpredictability of 

the operations of an artefact, even when intrinsic because 

based on quantum mechanical phenomena, is limited by at 

least two factors. Firstly, the designer had to specify the 

kind of analog input that could be received by the artefact: 

the choice of endowing the artefact with a temperature sen-

sor or with a light sensor determines what kind of environ-

mental factors will influence the operations of the device. 

Secondly, whatever the randomness in the input that affects 

the operation of the artefact, the range of its course of action 

is bounded by its actuators which in turn are bounded by the 

set of operations specified by human designers, i.e. the op-

erations that control the capabilities of the artefact. 

 A Roomba, for example, is ‘autonomous’ in the sense 

that its course of action (e.g. in terms of movements of its 

wheels) at any given moment depends on the input it re-

ceives about the environment and because this input is used, 

in accordance with the robot’s software, to compute subse-

quent movements. Although the movement of the Roomba 

is unpredictable (because so is the input from the environ-

ment and an average Roomba user does not know its inter-

nal computations), one can, nevertheless, predict (and be 

confident) that the Roomba will not behave in certain ways. 

For example, we know the Roomba will not climb up the 

walls or fly because we can see that it doesn’t have the me-

chanical parts necessary for such behaviour. Moreover, if 

we had the possibility to examine its software and saw that 

nowhere in its code was an operation to compute the square 

root of 2, then we would be able to predict that the Roomba 

will never perform such an operation. 

Unpredictability is often thought to occur or increase 

when software is programmed to learn.  Learning can play a 

significant role in seeming to expand the autonomy of com-

putational artefacts. If the artefact is able to acquire new pat-

terns of behaviour by means of proper training, then the sys-

tem’s autonomy may increase over time. Imagine a futuris-

tic Roomba whose hardware includes a camera able to cap-

ture an image of every object the robot is about to suck up, 

and a sensor that detects when an object is too big and will 

likely clog the robot’s mouth. With the proper software, in-

cluding instructions to compare the current input of the 

camera with stored images of previously encountered ob-

jects, this Roomba might learn to avoid certain objects just 

like it already avoids furniture. Moreover, a Roomba might 

learn by receiving negative feedback from its owner (e.g. 

because it has sucked up a piece of Lego that was supposed 

to stay on the floor). The negative feedback takes the form 

of new inputs for the operation of the learning software.   

Nevertheless, even when robots learn in this way, their 

autonomy is a matter of programmed instructions – instruc-

tions that may make the behaviour of the robot difficult for 

some to predict, but not difficult to predict in the sense that 

the behaviour will be within the boundaries specified in the 

program as well as the boundaries of the hardware. Even in 

an extreme case of unpredictable results like Microsoft’s 

Twitter-bot (a learning software that was taken offline be-

cause it had learned racial slurs from Twitter users and 

started tweeting them around), the unpredictability was lim-

ited to the content of the tweets (e.g. the software did not 

learn new actions like accessing internet banking services).  

Its learning racial slurs might have been avoided if designers 

had tested the program for this quality or observed it more 

carefully when it was first operating.  

So, autonomous computational artefacts have a certain 

kind of unpredictability that is related to their autonomy.  

However, because their unpredictability derives from the 

limitations of human users and observers, it is important to 

remember that autonomous computational artefacts are still 

bounded by their programming – even when they learn – 

and their embodiment.  

2.5 AI Systems 

So far our analysis of autonomy has focused on computa-
tional artefacts.  Indeed, most of the literature on autono-
mous systems focuses on this component of AI. However, 
AI that perform tasks on behalf of humans consist of much 
more in addition to computation by artefacts.  We propose 
that the ontology of AI discourse be expanded to include AI 
systems. An AI system consists of a computational artefact 
together with the human behaviour and people who make 
the artefact a useful and meaningful entity. Drawing on a 
concept and a term from the field of Science and Technolo-
gy Studies (STS), AI systems should be thought of as soci-
otechnical ensembles [Bijker, 1993; Bijker, 1997] or soci-
otechnical systems. Sociotechnical ensembles are combina-
tions of artefacts, human behaviour, social arrangements and 
meaning. For any computational artefact to be used for a 
real-world purpose, it has to be embedded into some context 
in which there are human beings that work with the artefact 
to accomplish tasks. Human actors may be required to 
launch (turn on) the computer in which the computational 
artefact resides, monitor the artefact’s operation, give it in-



put, use the output, and so on. Moreover, the artefact will 
have meaning to the humans involved.  Imagine here an ex-
tremely well designed AI program for a new form of mone-
tary exchange, e.g., bitcoin, airline miles.  Unless the pro-
gram is connected to other computers, it has no real-world 
functionality. Moreover, for it to become a new monetary 
system, networks of people have to recognize computer con-
figurations in the system as having value, and they have to 
accept these configurations as a form of money [Johnson 
and Miller, 2008].  

Human actors might be understood to be part of the ex-
ternal environment of AI in that they give input to the com-
putational artefact.  However, what humans do is more than 
that. For example, a drone that has been programmed to se-
lect targets and fire under certain conditions will be part of a 
military operation. In the military operation, humans will 
decide when to launch the drone and what initial input to 
give to the drone; humans will monitor the drone and decide 
if and when to change its instructions or when to have it re-
turn to the home base. Even if decisions to change instruc-
tions or return to home base are programmed in, a person 
has to decide whether or when to launch a drone and in what 
conditions or context. Moreover, a strike by a drone counts 
as an act of war because of the meaning associated with 
such behaviour by institutional actors (e.g. the governments 
of the nations at war).  Indeed, recent conflicts in which 
drones were used have taught us that drones have different 
meanings in different cultural contexts [Ahmed, 2014].  

The design of AI systems like the design of other soci-
otechnical systems involves decisions about how to delegate 
sub-tasks among humans and non-humans [Latour, 1992; 
Callon, 1999]. Taking a very simple example, when it 
comes to heating a building, the furnace is assigned certain 
tasks and the thermostat others.  These components work 
together with humans who have been delegated the task of 
deciding where the controls will go and the task of setting 
the temperature on the thermostat, not to mention those who 
manufacture and install the device.  Even in an office build-
ing, where individuals cannot control the temperature in 
their own offices, a maintenance person may control the 
temperature.  Of course, this might be done with a program, 
but even here a person would have to set the parameters of 
the program. 

Unquestionably, more and more tasks are being delegat-

ed to computational artefacts and that is why it is so im-

portant to remember that humans are always part of the sys-

tem. 

3 Confusion about Autonomy  

Given what has been said about computational artefacts, the 
fear and concern being expressed in the public discourse 
about AI do not seem justified, or more accurately, the fear 
and concern seem misdirected since the behaviour of com-
putational artefacts is in the control of the humans that de-
sign them. The range of possible outputs in a computational 
artefact, even those with sensors and actuators and embed-
ded in social arrangements, are specified by the parameters 

in the instructions of the program and are limited both by 
the programming and the limitations of the hardware.   

So, why such public fear  and concern?  Those who 
don’t understand how computers work have a very different 
notion of autonomy, one that is associated with human be-
ings (in normal conditions).  Here autonomy refers to the 
characteristic of human beings of having the capacity to 
make decisions, to choose, and to act.  ‘Autonomy’ is here 
tied to ideas about human freedom.  This notion of autono-
my has traditionally been used to distinguish humans from 
other types of animals. Importantly, this form of autonomy 
is what makes human beings moral beings.  Only beings 
with autonomy can be expected to conform their behaviour 
to rules and laws. Indeed, when it comes to morality a dis-
tinction is made between entities that behave according to 
the laws of nature (e.g., the leaves of a tree turning towards 
the sun) and entities that behave according to the conception 
of law (e.g., a person choosing to keep a promise or tell the 
truth or not) [Kant, 1785]. Admittedly, this form of autono-
my is somewhat mysterious and is intertwined with notions 
of what it means to be human.  Nevertheless, it is this notion 
of autonomy that seems to come into play in the fear and 
concern about autonomous machines or robots. When non-
experts hear that machines have autonomy, they attribute to 
machines something comparable to the autonomy that hu-
mans have, something close to the freedom to behave as one 
chooses.   

When the public, the media, and anyone who is not fa-
miliar with the workings of computers is told that machines 
have autonomy, it conjures up ideas about an entity that has 
freewill and interests of its own – interests that come into 
play in decision making about how to behave.  They infer 
that programming will be insufficient to control such enti-
ties, that is, to ensure that they will behave only in specified 
ways.  Such entities will, they fear, behave in unpredictable 
ways, i.e., ways that serve their own interests.    

Although human autonomy may in certain contexts be a 
useful metaphor for the autonomy of computational arte-
facts, some scholars get caught up in the metaphor and seem 
to forget the difference between the thing and its metaphori-
cal parallel.  An example of this can be seen in Omo-
hundro’s chapter in Risks of Artificial Intelligence (2016).  
In describing the possible harmful behaviours of an ad-
vanced AI, Omohundro adopts the approach of presenting 
scenarios in which an artefact behaves like a (possibly soci-
opathic) person who harms others in the blind pursuit of its 
own objectives. He describes, for example, a chess-playing 
robot and a human trying to unplug it: “Because nothing in 
the simple chess utility function gives a negative weight to 
murder, the seemingly harmless chess robot will become a 
killer out of the drive for self-protection. [Omohundro, 
2016, p.15]” The drive for self-protection, a natural charac-
teristic of humans and many other biological entities, is pre-
sented by the author as a property of advanced AI artefacts. 
The drive is then supposed to lead to resource acquisition 
behaviour: “The chess robot (…) would benefit from addi-
tional money for buying chess books (…) It will therefore 
develop subgoals to acquire more computational power and 



money. The seemingly harmless chess goal therefore moti-
vates harmful activities such as breaking into computers 
and robbing banks. [ibid. p.16]”. Omohundro also attributes 
other human properties to machines, for example, the drive 
for efficiency: “[Autonomous systems] will aim at making 
every joule of energy, every atom, every bit of storage, and 
every moment of existence count for the creation of expected 
utility [ibid. p.17]”.  Something similar is done with the 
drive for self-improvement: “…autonomous systems will be 
motivated to completely redesign themselves to take better 
advantage of their resources in the service of their expected 
utility [ibid. p.17].”   

Omohundro attributes to the chess playing program a set 
of characteristics that are associated with the behaviour of 
humans.  He uses language and concepts used in talking 
about humans. He leaves entirely out of the picture that, at 
the current state of technological development, something 
like self-protection in the robot would be produced compu-
tationally through instructions given to it by humans.  At-
tributing to robots the quality of self-protection is a meta-
phor. It is like saying “let’s treat this chunk of computation-
al behaviour as if it were something like self-protection in 
humans.”  This way of discussing AI has the purpose of de-
picting a possible future scenario, but it is misleading and 
dangerous insofar as it distorts what is currently possible in 
AI thereby suggesting to non-experts that some dangerous 
form of computation is in the making.   

Omohundro is, of course, speculating and extrapolating 
from the current state of computation to the future but does 
not bother to explain that the kind of robotic behaviour he 
envisions would require computational forms of a radically 
different kind from current computation. Although the pub-
lic comes to believe such scenarios are possible, the possi-
bility of such new computational forms is neither probable 
nor improbable, but simply unknown.  

The absence of any real understanding of how imagined, 
futuristic robots will work gives futuristic thinkers a free 
hand to present misleading and sometimes contradictory 
scenarios. Here is an example of a futuristic superintelligent 
machine designed with the directive to “make all people 
happy [Yampolskiy, 2016, p.131]” proposed by Yampol-
skiy. Among the many alternative ways that such a machine 
could ‘autonomously’ calculate to reach its goal, the author 
lists killing all people, performing lobotomies, affixing 
permanent smiles by means of forced plastic surgeries, a 
daily dose of ecstasy. According to Yampolskiy, the ma-
chine has an infinite number of approaches to choose from, 
and the chosen one “may be anything but desirable for hu-
manity. [ibid. p.132]”  He seems to forget to mention that, in 
existing machines, choosing means computational processes 
that are programmed by giving the machine instructions, 
and that for that choice to become something comparable to 
the freedom of action that human beings have, a radical 
technological breakthrough (something like Kurzweil’s sin-
gularity [Kurzweil, 2005]) must occur. Whether or not such 
technological advancement will be possible in the future, its 
hypothetical results will have to be substantially different 
from AI systems of today. 

Futuristic thinking has an important role to play in the 
development of new technologies – in stimulating thinking 
about what is possible and what new technologies might 
mean.  We might take these AI scenarios to be cautionary 
tales about how not to design AI.  However, many of the 
descriptions of this kind are irresponsible insofar as they 
hide how computational artefacts actually work and how the 
workings of the hypothetical artefacts of the future are as 
yet unknown and, in fact, impossible with the kind of com-
puting available today and for the foreseeable future.  

4 Sociotechnical Blindness 

Absence of discussion of the role played by program-
mers and other human actors in creating AI is another prob-
lem in current AI discourse that leads to misunderstanding 
and fear. What we call sociotechnical blindness, i.e. blind-
ness to all of the human actors involved and all of the deci-
sions necessary to make AI systems, allows AI researchers 
to believe that AI systems got to be the way they are without 
human intervention. As with confusion about autonomy, 
this blindness facilitates futuristic thinking that is mislead-
ing.  It entirely leaves out of the picture the fact that to get 
from current AI to futuristic AI, a variety of human actors 
will have to make a myriad of decisions.  Human actors will 
have to decide what sort of AI research to invest in, what 
kind of parameters to put into the instructions of programs, 
what kind of hardware to develop and connect up to com-
puters.  Human actors will have to decide what contexts to 
embed the artefacts in and what social arrangements to set 
up to launch, monitor, and maintain the artefacts.  Moreo-
ver, in order to get to a future in which computational arte-
facts exhibit behaviour that might be called ‘kind’, ‘mali-
cious’ or ‘self-preserving’, human actors will have to agree 
(implicitly if not explicitly) to use language in that way. 
They will have to accept the use of these terms when ap-
plied to computational entities.  

4.1 (Un)Predictability  

Neglecting the human actors in the development of a com-
putational artefact makes the artefact seem more unpredict-
able than it actually is. Let us consider again Omohundro’s 
chess-playing killer robot, and let us compare it to the 
Roomba, which is a current system that is autonomous ac-
cording to our definition. Even if the chess-playing killer 
robot has much more advanced and complicated program-
ming, if its operations are regulated by the same basic prin-
ciples as the Roomba’s, our analysis of the limitations to the 
unpredictability of the Roomba also apply to the futuristic 
robot.  

Imagine questions about the possibility of the futuristic 
chess-playing artefact unpredictably killing a human. Is 
such an event possible? Omohundro himself asks: why 
would a chess-playing robot kill the human who is trying to 
shut it down?  His answer is that such an act might turn out 
to be in accordance with its goal of maximizing its utility 
function: the robot will take any possible action to be able to 
play chess. This answer is wholly misleading because a 



chess-playing robot would be directed at playing chess.  To 
imagine that the chess-playing robot could do more than 
make moves on a chessboard requires that we imagine the 
robot to have been built with sensors and actuators that de-
tect and operate on embodied human behaviour. Aside from 
the fact that this would likely be well beyond what would be 
required to play chess, if the chess playing robot did have 
the sensors and actuators necessary to kill, they would have 
had to have been put there, that is, put into the software 
(programming) and hardware of the robot. 

With regard to the software we can ask: where does the 
chess-playing robot’s goal come from? Either it was provid-
ed by a human programmer or, in a futuristic scenario, by 
another machine, which, in turn, was designed either by a 
human or another machine, and so on. The origin of the 
drive guiding the operation of the artefact can always be 
traced back to the choice of a human designer. Is the de-
signer aware of the fact that the robot is going to play chess 
no matter what, even at the cost of a human life? If so, then 
it would seem the designer would be irresponsible in build-
ing particular sensors and actuators into it and then unleash-
ing such a robot on innocent chess players.   

Yampolskiy’s futuristic example of a robot killing be-
cause it is directed at happiness suffers from the same soci-
otechnical blindness. He warns that humans might set an 
artefact’s goal and the artefact might try to reach it in harm-
ful ways. However, is it possible to have pre-established 
goals attained in unpredictable ways? In other words, could 
a chess-playing robot become a killer robot?  As already 
suggested, what kind of actuators would it have to be en-
dowed with?  Would it have a gun attached to its body? 
Would it have an arm with which it could grab and use a 
knife? If so, would its software include instructions to con-
trol these mechanical parts? For a robot to pull a trigger, the 
relevant instruction must be in the program controlling its 
behaviour. Such instruction must have been written in the 
robot’s memory, either directly by a programmer, or indi-
rectly by means of machine learning. Even if these ‘superin-
telligent’ machines of the future can learn at unprecedented 
speeds, in order for them to act, a command must be present 
in their software and the command must be connected to 
embodied actuators. To think otherwise is to fall into an 
even greater fallacy than the autonomy confusion, because it 
involves imagining that such machines not only can act the 
way humans do, they can even conjure up acts out of noth-
ing. If this is what ‘superintelligence’ is about, then it is 
nothing short of magic!  

By keeping in sight the human actors who make AI sys-
tems what they are, the connection between the seeming un-
predictability of artefacts and the issue of responsibility be-
comes much clearer, and fallacies like the so-called “re-
sponsibility gap” can be effectively countered. 

4.2 Responsibility 

The responsibility gap is a concept introduced by Matthias 
to describe a situation in which no person can be held re-
sponsible for the consequences of the behaviour of an arte-

fact [Matthias, 2004]. Instead of depicting far-fetched futur-
istic scenarios, Matthias focuses on the possible develop-
ment of existing artefacts, like the AIBO dog-shaped robot. 
He writes: “With a little experimentation [the AIBO] will be 
able to find out that its battery life can be prolonged by gal-
loping…the robot, while running around the apartment, col-
lides with a small child and injures him. [ibid. p.177]” Ac-
cording to the author, this is an “unforeseeable” develop-
ment for which nobody can be justly said to be responsible. 
However, from the perspective of responsibility, the same 
designers who programmed the robot to have the goal to 
save battery power and endowed it with the capability to 
gallop should have added also programmed in the goal to 
avoid obstacles.  Matthias has hidden from view the human 
actions (or inactions) that would be necessary to produce the 
dangerous AIBO. 

The same ascription of responsibility can be applied to 
Omohundro and Yampolskiy’s killing machines. However, 
the point is not to play the blame game, especially because 
such scary artefacts do not exist (yet, according to these au-
thors). Rather, the point is that putting into the world a robot 
that has the capability of harming humans is a human act, 
and the human actors who release such computational arte-
facts will be responsible for the consequences, not the com-
putational artefact itself. This shifts the focus from futuristic 
computational artefacts to those who design and build them 
and embed them in social contexts.   

5 Conclusions  

In this paper we began with the idea that there is an ethical 
issue with regard to how AI researchers conceptualize, talk 
about, and present AI.  We have argued that discourse about 
AI leads to misunderstanding and ultimately fear of AI be-
cause of two problems in the way AI is discussed and pre-
sented. The first problem is confusion about autonomy and 
the second is blindness to the human actors and human be-
haviour that are part of AI systems.  We have tried to show 
that these problems can be tackled by distinguishing AI 
computational artefacts and AI sociotechnical systems, 
which include computational artefacts. When this shift in 
thinking is made the nature of autonomy in AI systems can 
be clarified and the human actors who are an indispensable 
part of AI systems can be kept in sight.  Our claim is that AI 
research and researchers will be better served and will pro-
vide better public understanding of AI by framing the dis-
course in this way.  

From this perspective, a document like the open letter is-
sued against the indiscriminate use of autonomous weapons 
[FLI, 2015b] makes much more sense than expressions of 
fear about the so-called uncontrollability of future AI. The 
letter warns that this new kind of artefact might be extreme-
ly harmful if it ends up in the wrong hands. This is another 
way of saying that we should be concerned about the human 
actors (and their autonomy) who are part of AI systems. 
Who is deciding which AI systems to build and put in a con-
text? Who is deciding and how are decisions being made 
about which tasks to delegate to humans and which to ma-



chines? How are the humans that work within AI trading 
systems, self-driving transportation systems, or drone sys-
tems being trained? Indeed, there are many reasons for con-
cern and even fear about autonomous systems, but these 
reasons have to do with the human actors in AI systems and 
not merely the computational artefacts in them. 
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