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Abstract 

       

Surface engineering techniques are used to enhance surface properties, such as wear, erosion 

and/or corrosion of materials, by developing a functionally graded metal matrix composite 

layer. Recently, as an economic alternative to laser processing, a tungsten inert gas torch has 

been used to incorporate ceramic particles into a metal surface. This produced about 1µm 

depth melted and resolidified track on the surface, which during processing, required 

protection by from oxygen and hydrogen environment, by a shielding gas. The present study 

analysed the effect of three shielding gases argon, helium, and nitrogen, on the melt zone 

morphology, microstructure and hardness after melting a microalloyed steel surface under 

different energy input conditions. The aim was to determine the optimum conditions for 

future research related to surface engineering, incorporating ceramic particles. The results 

show that when protected by argon and  using energy inputs < 420 J/mm, an increase of 5% 

in the temperature  between the start and finish of the melted track was recorded, but this 

increased to ~25% when using energy inputs > 420 J/mm. It was also found, that compared to 

nitrogen, using   argon and helium, a re-solidified homogeneous and consistent cross- section 

developed along the melted track.  

 

Keywords: Surface engineering, TIG, argon shielding gas, microhardness determination, 

energy input .  
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1. Introduction 

Surface engineering techniques are used to enhance surface properties, such as wear, erosion 

and corrosion of materials. This  allows the surface to perform functions that are distinct from 

those demanded by the bulk material [1]. For structural engineering applications where the 

surfaces will be in moving contact, it is recommended that  the  surface microstructure is  

modified  to a depth ≥ 1mm. This can be achieved by a melting process provided by a high 

energy source, such as a laser [2-6] or a TIG torch [7-10]. Molten surfaces must be protected 

from the atmosphere by shielding gases. In welding, oxygen, nitrogen and hydrogen are 

prevented from solution and chemical reaction with the melt, by shielding gases such as 

carbon dioxide, argon or helium, singly or in combination [11]. In laser surface engineering,  

nitriding  is a common technique, where the flow of gas over the molten surface is controlled 

[12-14]. However, in non-nitriding laser surface engineering, which includes cladding or 

incorporation of ceramic particulates, with the aim of developing a functional graded surface, 

region, protection of the melt is normally   by argon and/ or helium [4, 12, 13, 15] An 

alternative, cheaper option to lasers for the surface modification, is a TIG torch technique, 

which has been shown to be suitable, initially for titanium alloys [8,16-18] and more recently, 

steels [19,20]. 

In techniques where the melting occurs along a track, such as in laser or TIG surface 

engineering,   the heat generated by the source is normally conducted to the substrate ahead 

of the torch, and has been described as ‘preheat’. This leads to a gradually higher substrate 

temperature, resulting in different cooling rates between the start to the finish of a melted 

surface track, [21]. While ‘preheat’ has been recognized as affecting the cooling rates during 

solidification of the molten pool and in the heat affected zone following welding, it has 

received little attention in surface engineering utilizing lasers or TIG. Furthermore, 

inhomogeneity in the microstructure, due to ‘preheat’, is rarely considered in the published 

literature.  

The present work builds on a previous study, [22] which compared the influence the 

shielding gases  argon, helium and nitrogen, and recently [23] for one level of  energy 

input,~840J/mm, obtained  from a TIG torch melting a single track in a steel surface. Here, 

the effect of shielding gases under a range of energy inputs is considered, as a precursor to 

incorporating ceramic particles to create a functionally graded metal matrix composite layer. 

 

2. Experimental Procedure 

2.1. Workpiece characteristics 

Microalloyed steel, with a composition of 0.1C-0.7Mn-0.05Cu-0.05Nb (all wt.%), in the form 

of  plates 300 x 30 x 10 mm, was used in this study. The chemical composition of the 

microalloyed steel substrate was determined using a Glow Discharge Optical Emission 

Spectrometer model Horiba GD-OES  profilometer. 
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Three holes, of 1 mm diameter and 5 mm depth, were drilled from the underside of  the  

substrate, and type K thermocouples inserted to record the temperature during the melting 

process. The distribution of the drilled holes divided the melted track into four sections of 75 

mm each, as shown in Figure 1. Once the melting process was completed, the samples were 

allowed to cool at room temperature for microstructural analysis and microhardness 

determination. 

 

 
Figure 1 Schematic of the sample dimensions and location of thermocouples along  

the melted track  

 

To reveal the parent microstructure and that produced by the melting process at 75, 150 and 

225 mm along the re-solidified track, metallography was conducted following ASTM E3-01 

standard. Figure 2 shows the banded microstructure of the parent microalloyed steel, where 

ferrite grains (white zone) and pearlite regions (dark zone) can be observed. As expected, the 

amount of pearlite is smaller than ferrite, reflecting the carbon content of the steel.  

 

 

 
Figure 2. Microstructure of the parent material. Light grains are ferrite, dark region is pearlite 
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The microhardness measurements were conducted using a Mitutoyo MVK G1 microhardness 

tester with 200gf and 15s delay and followed the procedures set out in  BS6507-1 1998 and 

BS 1043-2 1993. Figure 3 shows the pattern used to take the hardness readings on the 

specimen cross-section, of the melt or fusion zone (FZ), heat affected zone (HAZ) and parent 

material (PM), starting at 0.1 mm from the fusion zone surface, and taking measurements in a 

vertical distance at 0.2 mm apart towards the centre of PM. 

 

 

 

 
 

Figure 3. Pattern of indents taken on cross- sectional area of melted track.  

First indentation taken at 0.1 mm from the fusion zone (FZ) edge and 0.2 mm apart towards 

the parent material 

2.2. Shielding gases characteristics 

The thermal properties of the three different shielding gases used for the experiments, are 

collected in Table 1 

Table 1. Thermal properties and density of the shielding gases used in this research 

Property Argon Nitrogen Helium 

Density [Kg/m
3
] 1.62 1.17 0.17 

Specific heat [kJ /Kg K] 0.52 1.04 5.19 

Thermal conductivity [W/m K] 0.02 0.03 0.14 

First ionization potential [eV] 15.80 14.50 24.58 

 

Argon, with its low ionization potential, promotes easy arc starting and stable arc operation. 

However, its lower thermal conductivity promotes the development of axial spray transfer in 

some forms of Gas Metal Arc Welding (GMAW). Helium, because of its high thermal 

conductivity and high ionization potential, transfers more heat to the base material, thus 

enhancing the penetration characteristics of the arc, and for the same energy input produces 

deeper and wider welds than argon. This can allow faster welding velocities to be used, thus 

counteracting the higher cost of the gas. [22].The respective generalized weld cross sections 
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are seen in Figure 4. It is apparent from Table 1, that nitrogen, which is avoided in welding 

but is important in laser surface engineering, [4,12-14]  has properties closer to argon than 

helium. 

 

 

 
Figure 4. Schematic drawing on weld cross sectional areas when using  

different shielding gasses (Adapted from ref.[11]) 

  

2.3 TIG Equipment characteristics  

A Miller Dynastry 300DX TIG equipment with a 2.4 mm diameter thoriated tungsten 

electrode was used to generate an arc The tungsten electrode was direct current negative and 

the tip of the electrode was placed 1 mm above the sample surface  

2.4. Melting conditions and temperature registration 

Different energy input conditions were obtained by varying the combination of the welding 

parameters. The energy input was calculated using Eq. 1. 

                                        E=ηVI/s                                                    (1)                                                                                                                             

where η is the efficiency of energy absorption, or arc efficiency, which was taken as 0.48 ± 

0.03 for a TIG process [24,25]  

Table 2 shows the different heat input values used. For Helium, the lowest values were 

limited by the arc stability. 

 

Table 2.  Energy input values 

 

 

 

Shielding gas E [J/mm] 

 210 

Argon 420 

 840 

Nitrogen 385 

 840 

 650 

Helium 840 
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3. Results and Discussion 

Figure 5 shows the maximum temperature registered by each thermocouple under different 

energy inputs. 

 

 

 
Figure 5. Maximum values of temperature registered by each thermocouple located at 

different positions along the melted track 

 

 

The temperatures recorded by the three thermocouples, which are ~4 mm below the molten 

zone/HAZ interface, provide relative data only. As observed in Figure 5, for all the samples a 

higher temperature was recorded by thermocouple 3, 225 mm along the melted track. This 

was due to the preheating process to which the samples were subjected during melting [20-

22]. Also, it is observed that a more noticeable change in maximum temperature occurs 

between the value registered by the first and third thermocouples respectively, when using 

nitrogen or helium compared with argon, at energy input rate of ~ 840J/mm. This result is 

associated with the smaller values of specific heat and thermal conductivity for argon, Table 

1. Also, the higher temperatures recorded using helium are associated with the high values of 

thermal conductivity and the high ionization potential, Table 1, which develop a hotter and 

boarder arc, conducting to give a deeper and wider fusion zone, Figure 4.This results in a 

slower  cooling  of the sample, which means that a coarser microstructure should be obtained 

when reaching  room temperature. 

Analysing the data after shielding with nitrogen, it is observed that  increasing the  energy 

input  from 385 J/mm to 840 J/mm (~120 %), resulted in the maximum temperature, 

increasing by  almost 85%, from 395 °C to 740 °C. The corresponding figures for  argon 

show that an increase of 100% in the energy input  (from 210 J/mm to 420 J/mm and from 
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420 J/mm to 840 J/mm) produced an increase in the  maximum temperature of 65% (from 

230 °C to 380 ºC) and 55% (from 380 ºC to 590 ºC)  respectively. This smaller increase in 

temperature, despite the greater increase in energy input, is associated with the arc stability, 

which is promoted by the low ionization potential of this gas, Table 1. The results obtained 

for argon are in agreement with those of Patel et al [22], despite the difference in the 

geometry of the samples, 50 mm in length, compared to 300 mm used in this research. 

Figure 6 shows an increase in the fusion zone geometry (depth and width) with energy input. 

It can be seen that  the behaviour of nitrogen when using an energy input rate of ~ 840 J/mm,  

is observed to produce a fusion zone on average, 45 % wider and 100% deeper compared to 

argon, while the corresponding figures for helium are 85 % and 90%. These results are again 

associated with the high values of ionization potential and specific heat of the helium, 

determining the conduction of heat outward from the core of the melted zone.  

 

  

Figure 6. Influence of the heat input on melted zone geometry  

a) depth of FZ and b) width of FZ, for different shielding gases 

 

 

Figure 7 shows macrographs of the melt pool cross- sectional areas as well as the respective 

values of areas of the fusion zone (dash red lines), at two distances along the melted track. As 

observed when analysing Figure 7, in general, a homogeneous appearance of the melted pool 

cross-sectional area along the melted track was seen using   argon and helium as a shielding 

gas. Tewari et al [26] found similar results using argon.  However, a very irregular surface of 

the melted track was obtained for nitrogen after 75mm, changing to a smoother surface after 

225mm sample. This was especially the case when using an energy input rate of ~840 J/mm. 
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Figure 7.  Appearance of the melted pool cross sectional at different locations of the melted 

track when using shielding gases at different conditions. 
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Also, it is observed that in general, the cross sectional areas increased when comparing the 

initial and final stage, by ~32% for argon, 42% for nitrogen and 15% for helium. This change 

is probably due to the final section of the melted track responding to the preheat process. It 

was also noticed that an increase in the energy input produced an increase in the cross 

sectional area, an increase of 300% in energy input when using argon produced an increase of 

~73% of fusion cross section area, an increase of 118% of energy input when using nitrogen 

produced an increase of ~110% of cross sectional area, and an increase of 30% of energy 

input when using helium produced an increase of ~80% in cross sectional area. These figures 

indicate that helium has greater influence on the melt zone cross sectional areas when 

compared to argon and nitrogen. 

 

The Vickers hardness profile resulted when using argon and nitrogen as shielding gas with 

different energy input is collated in Figure 8. Analysing this data, shows that in general the 

melted zone reached the highest hardness values, followed by the HAZ and finally the parent 

material, regardless of the melted conditions. Also, it is observed that the higher the energy 

input the smaller the hardness value of the melted zone. This result was expected as the 

higher the heat input the higher the temperature reached and indeed the slower the cooling 

process.  

 

It is observed that when using argon as shielding gas an increase of 400% of the energy input 

rate (from 210 J/mm to 840 J/mm) produced a decreased of hardness in the melted zone of ~ 

55%, while an increase of ~120% in energy input rate (from 385 J/mm to 840 J/mm), when 

using nitrogen gas, produced a decrease of ~35% in the melted. The hardness for helium was 

kept practically the same when using an energy input of 650 J/mm and 840 J/mm. The data 

for helium is in agreement with previous research [20]. When comparing argon, nitrogen and 

helium at ~840 J/mm, a lower hardness was obtained when using helium; this result is 

associated with the high ionization potential value for this gas. The data for argon and at this 

energy input (~840J/mm) was kept almost the same. 
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a) 

 
b) 

 
c) 

Figure 8. Hardness profile for samples melted under different conditions 

a) Argon, E=210 J/mm, b) Argon E=840 J/mm and c) Nitrogen, E=385 J/mm 
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The unusual cross-sections for melting under nitrogen shown in Figure 7g.h and i, have been 

considered in more detail in Figure 9, along with the main elements detected in the EDX 

spectra.  The convex surface in Fig.9b has an upper ‘polygonal grain’  oxide layer, ~37% O, a 

composition relatively close to haematite, Fe2O3,giving an uneven surface appearance. At the 

oxide-MZ interface, the O level decreased  to 3%, and the interface is smooth. The thickness 

of the MZ increases from the top surface to the vertical MZ-PM interface, and the SEM 

secondary images shown in  Fig9c and Fig.9d, for both the MZ and PM, look similar,  with 

zero O detected at the MZ-HAZ interface, indicated by the dashed arrow. Fig.9d is a bainitic 

microstructure, while Fig 8c, is similar, but contains more ferrite due to a slower rate of 

cooling. Similar levels of O were recorded for the top layer seen in Figs. 9e and 9h, while the 

PM may have an  O content  below the levels of detection. The Fe-O phase diagram, Figure 

10, compiled by Wriedt [27], shows that below ~1400°C, O is in solid solution in Fe, but  at  

~30 wt% O, Fe2O3 forms, which is slightly below the O levels shown on  Figs.9b, 9e and 9h. 

It known that the nitrogen used as a shielding  contains gaseous  impurities, which in the 

present work are influencing the upper ~10µm of the fusion zone, resulting in the irregular 

surface found in Figs7g, 7h and 7i. This would be ground during any wear testing operation, 

exposing the alloy below, and contributing to three-body wear. 

 

The build-up of heat resulting in the changes in shape of the MZ, between Figs.9a and 

Fig.9f,where in the latter, the sides, indicated by the broken arrows have wetted with  the 

contact angle θ ≈ 0°,but in the MZ central region where θ→90°,the MZ has globulrized, 

indicating little wetting. The EDX analysis showed nearly 10%Si associated with the MZ. Si 

was not recorded in any of the other EDX spectra in this work. Fig.5 indicated a significant 

increase in the maximum temperature recorded by thermocouple following processing at 

840J/mm compared with processing at 385J/mm with a nitrogen shielding gas.  

The higher energy input resulted in the concave smooth surface observed in Fig.9i, but the 

hardness of  the MZ is similar to that of the PM. Here, the shape of the surface and the defect 

–free MZ, are more important than the hardness, which will be increased in future work, by 

the addition of ceramic particulates. 
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N 385J/mm (75 mm from sample start end) 

 

(a) 

 

 (b) 

O=37% 

Mn=0.64% 

Fe=62% 

 (c) 

O= 3% 

Mn=1.16% 

Fe=95% 

 (d) 
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Mn=0.98% 

Fe=99% 

N 385J/mm (225 mm from sample start end) 
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Ca=1% 
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(f) (g) 

Mn=1.18% 

Fe=98 % 

N 840 J/mm (225 mm from sample start end) 

 

 

 

(h) (i) (j) 

O=33% 

Fe=67% 

 Mn=0.82% 

Fe=99% 

Figure 9. SEM images for samples welded with nitrogen at different energy input 

HAZ 

HAZ 

HAZ 



13 
 

 
Figure 10. Fe-O phase diagram  from 22-31 wt% O (adapted from Wreidt [27]) 

The higher energy input of 840J/mm, resulted in a slightly concave surface, a thin adherent 

oxide layer, with the MZ exhibiting excellent wetting on the steel. The influence of the 

wetting propensity has a direct effect on the surface roughness. This is apparent in Table 3, 

which  shows the surface roughness value taken at the end of the melted track (225 mm from 

the start end).It was not possible to acquire data for N385J/mm and He 650J/mm, because the 

surfaces  were too uneven to record Ra values. 

The corresponding micrographs are also given in Table 3, which clearly show the advantage 

of using argon as a shielding gas, at  840J/mm energy input, recording an Ra of 4µm,the 

lowest in this set of experiments. This surface would require little or no machining, prior to 

wear testing. 

 

Table 3 shows the surface roughness value taken at the end of the melted track (225 mm from 

the start end) 

Table 3. Average surface roughness values obtained at 225 mm from start end 

Sample Ar 

210J/mm 

Ar 

420J/mm 

Ar 

840J/mm 

N 

385J/mm 

N 

840J/mm 

He 

650J/mm 

He 

840J/mm 

Ra 

[µm] 

8.0 

(Fig 7b) 

10.0 

(Fig 7d) 

4.0 

(Fig 7f) 

- 25 

(Fig 7j) 

- 

(Fig 7l) 

12 

(Fig 7n) 
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4. Conclusions 

• The aim of this research has been achieved: finding the processing conditions to 

produce a flat melt track surface showing no signs of porosities and/or cracks within a 

melt zone depth > 1 mm. 

• The increased in temperature at the final stage of the melted track is considered to 

depend more on the type of shielding gas used rather than the welding parameters. 

However changes need to be greater than 200 
o
C to possibly result in changes to the 

microstructure.  

• Optimal weld conditions for the microalloyed steel studied in the present work can be 

achieved when using values of energy input of ~840 J/mm with argon as shielding 

gas. This provided consistent cross-sectional area along the melted track and lower 

values of surface roughness. 

• Experimental and theoretical cross-section geometry differ as when using helium as 

shielding gas a much deeper melted zone was obtained under same conditions of 

energy input. 
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