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Abstract 

Concretes containing mixed recycled aggregate (RA) have a larger number of coarse 

aggregate/paste interfacial transition zones (ITZs) than conventional concretes, due to the 

various component materials present in recycled aggregate. This study investigated the 

properties of various RA/paste ITZs in concrete using nanoindentation and scanning electron 

microscopy (SEM) and analysed the possible impact of the properties of the ITZs on the macro-

mechanical performance of recycled concrete. It was found that the elastic modulus of the ITZ 

varies with the type of constituent materials present in recycled aggregate, with ITZs associated 

with organic components (e.g. wood, plastic and asphalt) exhibiting lower minimum elastic 

modulus values. The impact of ITZ properties on macro-mechanical properties of concrete 

depends on the relative content of different constituent materials present in the recycled 

aggregate and the micro-mechanical properties of the ITZs involved. 

Keywords: interfacial transition zone, recycled aggregate, elastic modulus, thickness, 

engineering properties 

 

1. Introduction 

The reuse of construction and demolition waste (C&DW) has become a necessity in modern 

societies. The aim is to further the efficient use of resources and replace linear with circular 

economies in which waste materials are repeatedly reused to generate new products or raw 

materials [1]. 

At this time, the recycle rate for construction and demolition waste in the European Union varies 

widely from country to country, ranging from 10 to 90 % [2]. Many recent studies have focused 

on assessing the effect of using recycled concrete aggregate [3-5] or recycled mixed [6-10] 

C&DW aggregate on concrete workability, shrinkage, creep, mechanical strength and durability. 
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The interfacial transition zone (ITZ) between recycled aggregate and paste has been studied 

less intensely, and moreover, the limited research conducted has focused primarily on its 

microstructure.  

The microstructure of the ITZ in concrete varies widely from what is found in cement paste 

(greater porosity, precipitation of long portlandite crystals and greater ettringite content) [11]. It 

is regarded as the third constituent phase in concrete, along with coarse aggregate and cement 

paste [12]. A full understanding of this region would afford a scientific explanation for the 

macroscopic performance of recycled concrete given: a) the effect of the zone on concrete 

strength and permeability; and b) the possible of impact of a larger number of recycled 

aggregate/paste ITZs present in new eco-efficient concretes [12].  

While ITZ microstructure in cementitious materials may be analysed with a number of 

instrumental techniques (including electron or atomic force microscopy and nanoindentation), 

scanning or back-scattered electron microscopy (SEM/BSE) has traditionally been the research 

community’s method of choice. With the development and improvement of nanoindentation in 

recent decades, information is now accessible on the modulus of elasticity in the ITZ and its 

width/thickness, properties that could not be determined with the techniques traditionally applied 

[11, 13].  

Limited research published using nanoindentation to study ITZ nano-mechanical properties has 

mainly analysed the ITZ between recycled concrete aggregate and cement paste [2, 13-15]. To 

the best of our knowledge, no studies have been published in international journals on the 

micro-mechanical properties of the ITZs between the paste and each constituent (such as 

asphalt, brick, glass, wood or plastic) found in mixed recycled C&DW aggregate. This is a 

question of practical significance, inasmuch as in some European Union countries such as 

Spain, 63 % of the volume of recycled aggregate is mixed, i.e., with less than 95 wt% of 

crushed concrete and unbound aggregate and over 5 wt% of clay-based material, asphalt and 

floating particles (primarily glass, wood and plastic) [8].  

This study is the first to explore the thickness and elastic modulus of the ITZs between the 

various components of mixed recycled aggregate and paste in recycled concretes with over 

50% mixed recycled aggregate. To that end, the micro-mechanical properties of the ITZs 

associated with the various constituents present in the mixed recycled aggregate (i.e. concrete, 
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brick or clay-based material, asphalt, plastic, glass and wood) were determined. The 

width/thickness of the ITZs determined using SEM and nanoindentation techniques were 

compared. The likely impact of such ITZs on macro-mechanical properties of concrete was also 

discussed. 

2. Materials and experimental 

2.1. Materials 

The natural aggregate used had a coarse fraction (gravel) measuring 4-20 mm and a fines 

fraction (sand) with a grain size of under 4 mm. The majority oxides in these aggregates, SiO2 

and Al2O3, accounted for 67 wt% of the total, while the remainder comprised Fe2O3, Na2O and 

CaO. Although the predominant mineralogical phase was quartz, smaller proportions of 

feldspars and phyllosilicates were also present [7, 8].  

The mixed recycled aggregate (RA) used, with a particle size ranging from 4 to 20 mm, 

comprised primarily stone-like (Rc > Ru > Ra > Rb) but also other minority materials (such as 

glass, plastic, metal and wood) (Figure 1).  

Figure 1. Composition of recycled mixed aggregate 

Table 1 lists the physical and mechanical properties of the coarse aggregate used in this study. 

The grading modulus obtained for the coarse aggregate fell within the 5.5–8.5 interval ordinarily 

used in concrete manufacture [16], an indication that the mean particle size was similar to the 

value observed in conventional aggregate.  

Table 1. Physical and mechanical properties of coarse aggregates 

The recycled aggregate exhibited higher crushing value and water absorption and lower density 

than the natural material. These findings were directly associated with the intrinsic properties of 

the main constituents of the recycled mixed aggregate as described by other authors [17-20].  

SiO2, Al2O3 and Fe2O accounted for 65 wt% of the total chemical composition of the recycled 

aggregate, with other minority oxides and trace elements such as Ba, Zr, Cl and Cr. 

The mineralogical composition of the bulk samples was determined with random powder X-ray 

diffraction (XRD) on a BRUKER Theta-Theta D8 Advance diffractometer fitted with a 2.2 kW Cu 

anode, operating in the absence of a monochromator. Quartz, the majority mineralogical phase 

in this mixed aggregate, was found along with lesser proportions of feldspars (albite, orthoclase 

and sanidine), hematite, magnetite and calcite [7].   
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The concretes were prepared using CEM I 52.5 R portland cement containing at least 95 % 

clinker, as specified in European standard EN 197-1 [21].  

2.2. Concrete mixes used 

The recycled mixed aggregate was processed manually to produce further three sub-types of 

the recycled mixed aggregate, i.e. i) by removing all the floating particles (FL); ii) by removing all 

the brick or clay-based materials (Rb); iii) by removing all the asphalt particles (Ra). This 

facilitates the isolation of various components for studying their possible effects on concrete 

properties. The four types of concretes prepared were using: 50 % recycled mixed aggregate 

(RC50); 50 % recycled mixed aggregate without floating particles (RC50-FL); 50 % recycled 

mixed aggregate without brick or clay-based particles (RC50-Rb); and 50 % recycled mixed 

aggregate without asphalt particles (RC50-Ra).  

The concretes, designed using the British Department of Environment Method [22], had a 

characteristic strength of 30 MPa and an effective water/cement ratio of 0.65. The amount of 

mixing water added was adjusted to natural and mixed recycled aggregate absorptivity.  

The concrete was mixed and cured as specified in European standard EN 12390-2 [23] and 

moulded into 100x100x100 mm specimens (6 cubes/concrete type) for testing. Concrete 

batching particulars and slump and 28 day bulk density values are given in Tables 2 and 3, 

respectively.  

Table 2. Concrete mix proportions 

Table 3. Physical properties of the concretes 

The empirical formula set out in ACI 318-08 [24], which defines the elastic modulus in terms of 

concrete 28 day compressive strength and bulk density, was used to obtain this property .   

2.3. Sample preparation for nanoindentation test 

The reliability of results obtained from nanoindentation highly depends on the surface quality of 

the sample to be tested. Thus sample preparation is a very important part of the 

nanoindentation studies on cementitious materials [25]. The heterogeneity of the material 

demands a complex sample preparation procedure.  

After 28 days curing in a water tank, the centre piece of each of the 100×100×100 mm3 cubes 

was extracted using a diamond saw. Each center piece was later cut into small samples of the 

size about 15x15x10 mm. For the further preparation and ease sample handling in the polishing 
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machine all specimens were embedded in resin disks (Ø 30 mm) followed by a vacuum 

impregnation with an epoxy resin with an elastic modulus of around 3-4 GPa. The resin 

impregnation was required to support and prevent the loss of the weaker phases in the ITZ and 

the cement paste during the specimen preparation. To obtain the final test specimens for 

nanoindentation subsequent grinding and polishing steps were performed, finishing the 

polishing with ¼ µm diamond particle spray (figure 2). Throughout the preparation process only 

alcohol or oil-based polishing sprays and lubricants were used to avoid further cement hydration 

and possible dissolution of hydrate phases [26]. 

Figure 2. Indentation specimens: a) recycled concrete aggregate (Rc)/paste; b) brick or clay-

based material (Rb)/paste; c) asphalt (Ra)/paste; d) glass (GL)/paste; e) plastic (PL)/paste; f) 

wood (W)/paste  

2.4. Nanoindentation testing 

Although nanoindentation is used by many researches in the world to determine micro-

mechanical properties of various materials we recall briefly its operational principles. Indentation 

starts by establishing contact between the indenter tip of known geometry and mechanical 

properties and the material sample of which we want to determine the mechanical properties.  

When in contact an increasing load is applied to the indenter causing the tip to penetrate the 

investigated surface.  After reaching a predefined maximum the load is normally kept at this 

level for a short period (hold segment) to account for creep before the load is eventually 

withdrawn from the indenter.  The elastic recovery of the deformed material results in a 

reduction of the penetration depth [27, 28].  During the duration of the whole indentation 

experiment the changes in load (P) and depth (h) are continuously monitored.  A typical 

outcome of such testing is an indentation load vs. displacement (indentation depth) hysteresis 

curve (figure 3). 

Figure 3. Indentation load vs. displacement curve obtained from nanoindentation/instrumented 

indentation testing 

The determination of the elastic recovery through analysis of the unloading data in accordance 

to a model for the elastic contact problem enables to calculate the reduced modulus, Er, and 

subsequently the Young’s modulus, E, of the probed material. Details of the theoretical 

background and methodology for determining the modulus of elasticity from instrumented 
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indentation testing have been reviewed and discussed by Oliver and Pharr thus leading to the 

following equations 1 and 2 [29-31]: 
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where S=dP/dh, is the slope of the upper portion of the unloading curve during the initial stages 

of unloading (also called contact stiffness). In Eqs. (1) and (2) Er stands for the reduced 

modulus, A is the projected contact area of the indenter tip, and E is the Young´s modulus and v 

is Poisson’s ratio of the tested materials. Finally, Ei and vi represent the material parameter of 

the indenter type (e.g. diamond, Ei = 1141 GPa and vi = 0.07). 

The nanoindentation experiments in this study were performed using an Agilent G200 Nano 

Indenter® fitted with a Berkovich indenter tip. 

To study the ITZ properties, grids of indentation testing points with varying distances to the 

actual aggregate-paste interface were selected. The spacing between the indentation test 

points used were usually 15 µm or 20 µm to cover a sufficient area and also to avoid possible 

overlapping of the test areas. Nanoindentation testing with a maximum load of 2 mN 

(corresponding to an average indentation depth of 300 nm in most cases) was carried out at 

each grid point. The perpendicular distance of each indentation point to the actual aggregate – 

paste interface was measured using an image analysing and the AutoCAD® 2012 tool.  

Some selected indentation areas are shown in the BSE images of the ITZ between different 

aggregates/paste in figure 4. The indentation areas are contained within the rectangles outlined 

in the figures; the number, which always begins from 1, refers to the sequence of the 

indentation tests carried out in each chosen indented area, which facilitate the measurement of 

the distance to ITZ for each test point.    

Figure 4. Area indented in recycled aggregate constituent/paste ITZ a) 15x15 µm; y b) 20x20 

µm 

Validation of test results after the indentation testing was performed for each point to identify 

abnormal or discontinuous indentation test curves, high surface roughness, large voids or 

cracking. When such imperfections were detected, which was only rarely (<2% of the total), the 

respective data were excluded in further data analysis. The total number of valid test points 
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obtained and used is provided in table 4, covering the various aggregates, ITZs and the bulk 

paste. 

Table 4. Number of indentation tests performed for each constituent type 

2.5. Other techniques  

The distribution of Ca and Si in the ITZs between the coarse aggregate constituents (recycled 

concrete aggregate, asphalt, brick, glass, wood and plastic) and the paste was explored on a 

HITACHI S-4800 scanning electron microscope fitted with a tungsten-source energy dispersive 

X-ray analyser and a silicon detector. The flat surfaces of the epoxy-coated, precision-sawed 

samples were carefully polished prior to analysing their microstructure with backscattering 

electron (BSE) microscopy. 

3. Results and discussion 

3.1. Aggregate characterisation 

Figure 5 shows the elastic modulus for the various components of the recycled mixed aggregate 

ranged, which indicates that the E values varies from 4.73 GPa (for wood) to 86.17 GPa (for 

glass). These values were much lower than the 100-120 GPa observed in natural granite 

aggregate [32]. Such large differences were due to the variable nature of the component 

materials, present in the recycled aggregate.  

Figure 5. Nanoindentation-determined elastic modulus of recycled aggregate components 

The variation of E modulus observed within rock materials were mainly due to the differents 

mineralogical compositions, as well as porosity and cracks present, as reported by Zhu et al. 

[27] and Ahmed [33].  

The E value obtained for the old cement paste in the recycled concrete aggregate lay within the 

characteristic values (16-24 GPa) reported by Xiao et al. [14] for paste bound to recycled 

concrete aggregate. That value varied somewhat depending on starting concrete w/c ratio, 

characteristic strength and other properties.  

The E value for the brick material was similar to the modulus reported by Nezerka et al. [34] 

(≈33 GPa) for this type of material and lower than the values reported for other clay-based 

materials such as sanitary ware [25].  
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The elastic modulus recorded for the asphalt material was also in the range of E values (11-

53 GPa) observed for this type of material by previous authors [35-37] analysing the properties 

of the ITZ between aggregate and bituminous binder. 

The values for glass likewise lay within the range for this material (E>50 GPa) reported by 

Mohajeri et al. [35] and Zhao et al. [38].  

The findings for plastic were very close to the 5.8 and 7.5 GPa reported by Huang et al. [39] for 

polycarbonate and polystyrene, respectively.  

Lastly, due its anisotropy, the mechanical and elastic properties of wood vary depending on the 

direction of the load relative to the fibre. The value found here was within the range for the 

transverse elastic modulus (6.5-3.0 GPa) and much lower than the longitudinal modulus; 

Bourmaud and Baley [40] reported analogous results. 

3.2. Nanoindentation-based characterisation of the ITZ between aggregate and paste 

Table 5 presents the nanoindentation results of the elastic modulus in the ITZs between the 

various RA constituents and the cement paste. The pattern of the E values across the ITZs was 

similar in all the constituents analysed and concurred with earlier reports on natural [25, 29, 32], 

recycled crushed concrete [2, 13-15] and clay-based (sanitary ware and bricks) aggregate [2, 

25].   

Table 5. Elastic modulus (GPa) for recycled aggregate constituents by distance from the 

aggregate surface 

The results in Table 5 reveal the presence of three distinct regions starting and ending at 

different distances from the interface depending on the constituent. In the area closest to the 

surface (10-35 µm), the modulus declined to a minimum value that ranged from 13.55 to 22.52 

GPa (Table 5). It subsequently rose in the 15-55 µm region and flattened at around 25.94-

28.66 GPa at distances between 35 and 60 µm. The value found at the points adjacent to or 

less than 10 µm from the aggregate surface was affected by that proximity [29] and the 

perpendicular growth of portlandite plates on the aggregate periphery [41, 42].  

The minimum E values of the ITZs (bold in Table 5) reveal that it was the lowest (11.99 GPa) for 

the plastic/paste, followed by the glass/paste (14.13 GPa), wood/paste (15.07 GPa), 

asphalt/paste (16.72 GPa) and brick/paste (19.27 GPa) ITZs. These values were 46.7, 37.3, 

33.1, 25.6 and 14.4 % lower, respectively, than the modulus (22.52 GPa) observed for the 
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recycled concrete aggregate/paste ITZ. Earlier papers [43, 44] attributed the weaker bonds 

between cement and materials such as asphalt, wood and plastic to the organic nature of the 

latter.  

Such behaviour is also related to the surface texture of each component. Materials with smooth 

surfaces (glass, plastic) exhibit a lower elastic modulus than observed for rough-textured 

products, including asphalt, fired clay products and concrete aggregate. 

The higher minimum E values for the ITZs between the paste and both the recycled concrete 

and brick could be due to possible pozzolanic reaction [45-47]. The resulting hydrate phases (C-

S-H gels and aluminosilicates) would increase binding and reduce porosity in this region [32, 

48] thereby improving its micro-mechanical properties. This effect was shown by other authors 

[14, 15] who pre-treated the recycled aggregate with additions such as fly ash or nanosilica. 

Moreover, the anhydrous cement particles present in recycled concrete aggregate may react 

with water to generate further hydration products.  

Figure 6 shows the minimum and mean modulus of elasticity in the ITZ between the 

constituents of the recycled mixed aggregate and the paste and the mean modulus for the 

paste. The mean aggregate/component ITZ was higher for the stone-like components (clay-

based materials and concrete) and asphalt than for the others (wood, plastic and glass). The 

elastic modulus in the recycled concrete/, clay-based material/, asphalt/, glass/, wood/ and 

plastic/paste ITZs were respectively 94.1, 83.4, 83.3, 76.1, 72.6 and 71.0 % of the value for the 

paste. Those percentages were consistent with the hypothesis that the elastic modulus in the 

ITZ is lower than in the paste (by 15-30 % in natural aggregate [49, 50]).  

Figure 6. Minimum and mean elastic modulus (GPa) in the interfacial transition zone (ITZ) and 

mean value in paste 

As expected, the mean values for the bulk paste were very similar irrespective of the type of 

constituent analysed and lay within the range (7-34 GPa) characteristic of cement hydration 

products (C-S-H gels) [13].  

Figure 7 shows that the thickness of the ITZ between the recycled aggregate constituents and 

the paste varied with the type of constituent materials. The ITZs for some of the components 

(recycled concrete aggregate, wood and asphalt) were thicker than the 10-50 µm reported for 
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natural aggregate/paste ITZs [25, 51, 52]. Glass/paste and plastic/paste ITZ thickness values 

lay within the aforementioned range.  

Figure 7. Nanoindentation-determined thickness of the recycled aggregate constituent/paste ITZ 

The ITZ between brick and the paste was thicker than the 30 µm reported by Medina et al. [25] 

for the clay-based sanitary ware/paste zone, due primarily to the differences between the 

density and porosity of the two types of aggregate. The thickness recorded for the recycled 

concrete aggregate/paste ITZ was in agreement with the 55-65 µm reported by other authors 

[14, 15, 53] studying recycled concrete.  

3.3. SEM-based characterisation of the ITZs 

The results of SEM-based characterisation of the ITZs between the recycled aggregate 

constituents and the cement paste are presented in Figure 8.  

Figure 8. Microstructural analysis and Ca and Si mapping in ITZs: a) recycled concrete/paste; b) 

brick/paste; c) asphalt /paste; d) plastic/paste; e) glass/paste; f) wood/paste 

These micrographs appear to show a more visible distinctive region in the plastic/, glass/ and 

wood/paste ITZs, which are possibly due to the weak affinity/bonding between these 

constituents and the cementitious matrix, and also poor particle packing of cement particles into 

an area adjacent to a relatively large flat surface of these materials. These observations were 

consistent with the nanoindentation findings in which the lowest minimum elastic modulus 

values were obtained for ITZs with plastic, glass and wood materials (see Table 5).  

Also, the recycled concrete and brick materials, seem to, adhere more closely to the matrix, 

exhibiting a more compact and continuous interface than that between the asphalt and the 

paste due to the weak organic material-cement bonding.  

Figure 8 also shows that calcium (Ca) and silicon (Si) were both evenly distributed across the 

ITZ. A minor rise in Ca concentration was observed in the areas nearest the aggregate, 

particularly around the recycled concrete, asphalt, glass and wood. These findings were 

consistent with the EDX analysis (see Table 6). The Si-high regions visible in the cementitious 

matrix denote the presence of the fines (sand) used to prepare the recycled concrete.  

Table 6 lists the variations in the Ca/Si ratio in the ITZs between the recycled aggregate 

constituents and the paste. The values gradually declined as the distance from the interface 
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grew, flattening at around 1.73-1.76, which lies within the range (1.2 - 2.3) proposed by Hewlett 

[54] for calcium silicate hydrates (C-S-H gel). 

Lastly, the data show that the width or thickness of the coarse aggregate/paste ITZ varied with 

the different recycled aggregate constituents, from 40 µm for glass/paste to 80 µm for 

asphalt/paste.  

The width/thickness values of the ITZs obtained using the SEM-based technique were found to 

be slightly greater than those determined using the nanoindentation-based methods (see 

Figure 7). However, both techniques appeared to deliver the same pattern as for the different 

constituent.   

3.4. Concrete macro-properties 

The mechanical strength and elastic modulus for the concretes prepared using 50 % recycled 

aggregates are shown in Figure 9, which reveals the possible effect of the different constituents 

of the recycled aggregate on concrete performance. The removal of floating particles (primarily 

wood) did not lead to a significant difference in strength of the concrete, likely due to the fact 

that only less than 2% floating particles were present in the recycled aggregate. The removal of 

asphalt (RC50-Ra) and brick (RC50-Rb) particles from the recycled aggregate resulted in an 

increase of compressive strength of concrete by 9.2% and 4.7 % respectively compared to the 

concrete using the all-in recycled aggregate (RC50). Similarly, the the increase of elastic 

modulus was moderate, by 5.2% and 3.7% respecitively for the two concrete mixes.  

Figure 9. Macro-properties of 28-day concrete 

The better mechanical performance observed could be attributable to the effect of the 

constituents (brick, asphalt, floating particles) on the intrinsic properties of the recycled 

aggregate [7, 8], their content in the recycled aggregate and the ITZ properties. In terms of 

properties of the ITZs, the minimum elastic modulus value of the ITZ appears to be of particular 

significance. This is in good agreement with previous findings reported by Medina et al.  [25] in 

studying recycled aggregate derived from sanitary ware waste/paste ITZ in recycled concretes. 

Lee and Park [51], and Taqa et al. [49], also suggested that the elastic modulus of  concrete 

was impacted more heavily by the mean value of the elastic modulus in the coarse 

aggregate/paste ITZ. 

4. Conclusions 
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The following conclusions may be drawn from the findings reported and discussed above:  

− The elastic modulus of the ITZ varies with the type of constituent materials present in 

recycled aggregate, with ITZs associated with organic components (e.g. wood, plastic and 

asphalt) exhibiting lower minimum elastic modulus values.  

− The thickness of the asphalt/, wood/ and recycled concrete aggregate/paste ITZs are: 65 

µm, 60µm and 55 µm, respectively. These values are higher than the natural 

aggregate/paste interfacial transition zone, which normally ranges from 10-50 µm. 

− Using electron microscopy and EDX microanalysis appeared to deliver larger ITZ 

thicknesses than using nanoindentation techniques.    

− The properties of the ITZs could have a significant impact on the macro mechanical 

properties of concrete. However, the degree of influence depends on the relative content of 

different constituent materials present in the recycled aggregate and the micro-mechanical 

properties of the ITZs involved. 

− Nanoindentation is an indispensable tool for studying and assessing the effect of new 

materials (recycled aggregate) on the micro-mechanical properties of the ITZ and the macro-

mechanical properties of future recycled aggregate concretes.  

− Every effort should be made when processing recycled aggregate to reduce the wood, 

plastic, glass and asphalt content in the end product as far as possible, due to the weak 

bonding between these components and cementitious matrices.  
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Table 1.Physical and mechanical properties of coarse aggregates 

Characteristic Gravel Recycled mixed aggregate 
Maximum size  (mm) 20 20 
Grading modulus 5.66 5.77 
Particle density on saturated and 
surface - dried base (kg/dm3) 

2.66 2.54 

Water absorption for 24 h (wt. %) 2.66 4.49 
Crushing value (wt.%) 16.28 19.72 

 

 

Table 2.Concrete mix proportions 

Concrete 
Material (kg/m3)  

Sand Gravel Recycled 
aggregate Cement Water (w/c)effective

* (w/c)apparent
** 

RC-50 941.72 510.10 514.84 323.08 228.57 0.65 0.71 
RCF-50 941.72 510.10 514.84 323.08 229.36 0.65 0.71 
RC50-AS 941.72 510.10 514.84 323.08 228.76 0.65 0.71 
RC50-BR 941.72 510.10 514.84 323.08 228.37 0.65 0.71 
 
Note. * (w/c]effective: water used to hydrate the cement 
           ** (w/c]apparent: aggregate water absorptivity + water used to hydrate the cement 
 

Table 3.Physical properties of the concretes 

Physical property Slump (mm) 28 day bulk density (kg/m3) 
RC50 30 2320 
RC50-FL 30 2335 
RC50-Ra 35 2330 
RC50-Rb 40 2340 

 

Table 4.Number of indentation tests performed for each constituent type 

Constituent type 
Number of indentation tests 

ITZ Paste Inner side 
Recycled concrete aggregate 96 47 34 
Brick or Clay-based materials 51 43 34 

Asphalt 50 39 23 
Glass 59 49 27 
Plastic 68 46 45 
Wood 57 47 60 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 5.Elastic modulus (GPa) for recycled aggregate constituents by distance from the 

aggregate surface 

Distance 
from 

interface 
(µµµµm) 

Elastic modulus (GPa)  

Recycled mixed aggregate constituent 

Rc Rb Ra GL PL W 

0.00 44.95+6.94 39.10+8.93 38.11+4.61 81.98+4.71 41.10+3.25 37.48+2.42 

5.00 34.19+5.68 33.99+1.33 25.28+5.54 46.80+4.63 23.98+3.93 28.91+3.88 

10.00 26.20+3.37 19.27+3.98 23.80+4.34 14.13+3.91 20.61+2.29 15.33+2.18 

15.00 27.25+1.23 20.99+0.40 23.03+3.62 23.62+1.81 11.99+1.99 17.45+1.76 

20.00 27.60+1.88 23.82+3.21 23.55+3.40 25.01+2.88 20.19+2.03 15.07+1.51 

25.00 24.11+3.27 24.88+3.80 16.72+3.85 24.46+2.14 20.59+1.44 18.68+2.78 

30.00 24.60+2.92 23.95+0.62 21.19+2.20 26.94+2.15 13.55+2.71 17.55+0.98 

35.00 22.52+3.15 24.53+0.67 22.85+0.66 30.65+2.88 21.28+3.52 21.43+2.68 

40.00 25.42+2.48 26.51+1.96 23.74+3.89 28.91+1.89 22.88+2.38 24.21+1.61 

45.00 25.83+4.75 26.48+0.77 23.44+1.76 28.72+1.11 22.31+3.86 25.01+1.58 

50.00 25.32+4.30 27.47+2.99 23.66+1.74 27.67+2.52 27.28+2.23 25.94+1.77 

55.00 26.07+1.96 27.92+3.22 24.72+1.43 29.91+2.67 27.22+2.26 24.58+2.61 

60.00 26.76+2.88 27.70+1.77 25.36+2.34 27.96+2.29 26.94+1.88 26.47+2.55 

65.00 26.32+3.12 28.20+2.99 26.07+0.91 28.49+1.71 25.97+1.21 27.73+0.44 

70.00 27.00+3.60 27.00+2.74 25.30+3.49 27.34+2.10 27.06+2.14 28.41+2.23 

75.00 26.74+0.55 26.99+2.89 26.86+1.41 27.94+1.76 27.52+2.27 27.95+1.03 
Notes:  
•••• Rc: recycled concrete aggregate / Rb:brick or clay-based material / Ra: asphalt/ GL: glass/ PL: plastic/ 

W: Wood 
•••• + Standard deviation 

 

Table 6.Variations in the Ca/Si ratio in the ITZs 

Distance from 
interface (µµµµm) 

Variation in Ca/Si ratio in ITZs 

Rc Rb Ra GL PL W 

0 3.06+0.06 1.80+0.03 3.60+0.04 3.90+0.05 1.89+0.06 3.53+0.02 

10 3.23+0.02 2.43+0.04 2.93+0.05 2.29+0.04 2.22+0.05 4.12+0.06 

20 3.06+0.01 2.19+0.02 2.31+0.03 2.41+0.02 2.42+0.07 3.88+0.04 

30 2.51+0.07 1.90+0.05 2.14+0.02 2.27+0.04 2.19+0.04 2.64+0.03 

40 2.36+0.06 1.91+0.03 2.07+0.03 1.79+0.03 1.97+0.02 2.47+0.05 

50 2.06+0.01 1.93+0.02 1.96+0.02 1.77+0.02 1.86+0.03 2.08+0.02 

60 1.74+0.02 1.78+0.01 1.86+0.04 1.75+0.01 1.78+0.01 1.95+0.03 

70 1.73+0.01 1.75+0.02 1.81+0.01 1.76+0.01 1.77+0.01 1.79+0.02 

80 1.73+0.01 1.75+0.01 1.76+0.01 1.76+0.01 1.75+0.01 1.73+0.01 

90 1.76+0.01 1.76+0.01 1.73+0.02 1.76+0.01 1.74+0.01 1.73+0.01 

100 1.75+0.02 1.76+0.02 1.73+0.01 1.76+0.01 1.74+0.01 1.73+0.01 
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Figure 1. Composition of recycled mixed aggregate 

 
 

 

 

Figure 2. Indentation specimens: a) recycled concrete aggregate (RC)/paste; b) brick or clay-

based material (Rb)/paste; c) asphalt (Ra)/paste; d) glass (GL)/paste; e) plastic (PL)/paste; f) 

wood (W)/paste  
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Figure 3. Indentation load vs. displacement curve obtained from nanoindentation/instrumented 

indentation testing 

 

 

 

Figure 4. Area indented in recycled aggregate constituent/paste ITZ a) 15x15 µm; y b) 20x20 

µm 
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Figure 5. Nanoindentation-determined elastic modulus of recycled aggregate components 

 

 

Figure 6. Minimum and mean elastic modulus (GPa) in the interfacial transition zone (ITZ) and 
mean value in paste 
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Figure 7. Nanoindentation-determined thickness of the recycled aggregate constituent/paste ITZ 

 

 

Figure 8. Microstructural analysis and Ca and Si mapping in ITZs: a) recycled concrete/paste; b) 

brick/paste; c) asphalt /paste; d) plastic/paste; e) glass/paste; f) wood/paste 
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Figure 9. Macro-properties of 28-day concrete 

  


