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DREAMER: A Database for Emotion Recognition
through EEG and ECG Signals from Wireless

Low-cost Off-the-Shelf Devices
Stamos Katsigiannis and Naeem Ramzan, Senior Member, IEEE,

Abstract—In this work, we present DREAMER, a multi-modal
database consisting of electroencephalogram (EEG) and electro-
cardiogram (ECG) signals recorded during affect elicitation by
means of audio-visual stimuli. Signals from 23 participants were
recorded along with the participants self-assessment of their
affective state after each stimuli, in terms of valence, arousal,
and dominance. All the signals were captured using portable,
wearable, wireless, low-cost and off-the-shelf equipment that has
the potential to allow the use of affective computing methods
in everyday applications. A baseline for participant-wise affect
recognition using EEG and ECG -based features, as well as
their fusion, was established through supervised classification
experiments using Support Vector Machines (SVMs). The self-
assessment of the participants was evaluated through comparison
with the self-assessments from another study using the same
audio-visual stimuli. Classification results for valence, arousal and
dominance of the proposed database are comparable to the ones
achieved for other databases that use non-portable, expensive,
medical grade devices. These results indicate the prospects of
using low-cost devices for affect recognition applications. The
proposed database will be made publicly available in order
to allow researchers to achieve a more thorough evaluation of
the suitability of these capturing devices for affect recognition
applications.

Index Terms—Affect, Emotion, EEG, ECG, physiological sig-
nals, wireless devices, affect recognition.

I. INTRODUCTION

AFFECT recognition is the process of understanding what
type of affect (emotion) a person is expressing. The

development of efficient and robust algorithms for automated
recognition of human affect is a major challenge for the field
of affective computing and may have great implications on the
way people interact with computing devices. Human-computer
interaction is one of the primary examples of computing
disciplines that rely on knowledge about human emotions and
on knowledge about how acoustic or optical stimuli can affect
the emotional state and the affective expressions of humans.
The introduction of automated affect recognition techniques
in human-computer interaction applications could significantly
increase the quality of the user experience and lead to more
emotional-aware computer interfaces.

Another area that could significantly benefit from progress
in affect recognition is the multimedia industry. Video and
audio content is usually annotated in terms of the emotions
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that the content is expected to elicit through the use of genre
types (e.g. a drama is expected to elicit sadness). Annotation is
performed manually, usually by taking into consideration the
opinion of industry experts, critics and audience. Algorithms
for automated prediction of the expected human emotional
response to the multimedia content would allow the mass
annotation of multimedia content with keywords that would be
more relevant to the emotions actually elicited by the content
[1]. Moreover, taking into consideration that the main focus of
multimedia content is to elicit specific emotions to the audi-
ence, it is evident that the introduction of algorithmic methods
for emotion prediction and measurement could significantly
benefit the multimedia creators. Relations between stimuli and
emotional state and expressions have been extensively studied
by psychologists. Nevertheless, algorithmic affect recognition
remains an arduous and difficult task since human emotion
manifestation involves multiple types of responses, spanning
from affective intonations and facial expressions to physiolog-
ical responses that originate from the human nervous system
[2].

The first step for achieving automated affect recognition is
to conceptualise affect in a strict and clear manner. Psycholog-
ical research has provided ways to conceptualise affect in the
form of discrete categories of emotions or in terms of a small
number of latent dimensions [3]. The use of discrete categories
for describing emotions has been a long standing approach due
to being based on the language used by humans. One of the
most popular discrete categorisations of emotions is the use of
the six basic emotions (happiness, sadness, anger, fear, surprise
and disgust) proposed by Ekman et al. [4], whose use has
also been supported by cross-cultural studies, indicating that
regardless of culture, humans perceive these basic emotions in
a similar manner [5]. Another popular discrete categorisation
of emotions is Parrott’s [6] tree structure of emotions. These
categorisations of emotions seem very intuitive and match the
way people categorise emotions in daily life. Nevertheless,
the use of discrete emotions is not suitable for describing the
whole range of emotions that may appear in natural settings
and thus a more pragmatic and context dependent manner for
describing emotions is needed [3].

The dimensional description of emotion offers a suitable
alternative to the discrete categorisation [7], [8]. Dimensional
scales like the emotion wheel proposed by Plutchik [9] and
the valence-arousal scale proposed by Russell [7] characterise
emotion in terms of dimensions that correspond to the main
aspects of emotions. In the widely used work by Russell [7],
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the valence dimension measures whether a human has negative
or positive feelings, whereas the arousal dimension measures
whether a human feels bored or excited. Each perceived
emotional state can be depicted on a 2-dimensional plane with
valence and arousal at each axis respectively. An expansion
of this approach [10] proposed the use of a third dimension,
called dominance, which measures whether the human feels
without control or empowered. Taking into consideration that
most of the variance in emotion relates to the arousal and
valence dimensions, most works on affect recognition use
only these two dimensions [1], [11]–[13]. Nevertheless, this
categorisation of emotion is not intuitive for humans and as
a result, subjects participating in emotion recognition studies
should be trained on using the dimensional emotion labelling
system. The vast set of different human emotional expressions
poses a great challenge for affect recognition research.

The employment of pattern recognition approaches for
affect recognition requires the acquisition of data regarding
the affective state of a subject during the period that a specific
emotion is expressed. Various modalities have been used
for affect related data acquisition, spanning from facial ex-
pressions, peripheral physiological signals (e.g. electrocardio-
gram (ECG), electromyogram (EMG), electroencephalogram
(EEG), galvanic skin response (GSR)), and speech intonations,
to imaging modalities such as fMRI [2] and thermal infrared
imaging [14]. While initial approaches made use of a single
modality, more recent approaches opt to use multi-modal data
as it has been shown to provide higher recognition accuracy
[1]–[3], [12]. Another important aspect of affect recognition
studies is the selection of suitable stimuli that will be used
for eliciting emotions in human subjects. Stimuli may include
audio-only stimuli, video-only, or a combination of audio and
video in the form of film clips or music video clips. Several
databases containing stimuli media as well as emotional ex-
pressions through different modalities have been created in
recent years. Databases like the Gunes et al. [15], Fanelli et
al. [16], Grimm et al. [17], DEAP [12], MAHNOB-HCI [1]
and DECAF [2] have been used for affect recognition using
pattern recognition methods on signals coming from multiple
modalities, achieving different levels of success. One of the
common characteristics of these databases is that specialised,
non-portable and expensive equipment was utilised in order
to capture the bio-signals included. Although the use of such
devices enables the study of EEG and physiological signals in
relation to affect, it restricts the application of the proposed
algorithms into confined and controlled spaces that can accom-
modate the use of such devices. As a result, the application of
such algorithms cannot be expanded into casual and everyday
scenarios that could benefit from affective computing.

In order to address this limitation of the available databases
for emotion analysis, in this work we propose DREAMER, a
database consisting of recordings of EEG and ECG signals
captured while audio-visual stimuli was presented to the
participants of this study in order to elicit specific emotions.
Portable, wearable, wireless, low-cost and off-the-shelf devices
were used for both the EEG and ECG capture allowing the
evaluation of affect recognition algorithms on signals that
can be conveniently captured in everyday scenarios, providing

the means to integrate affect computing methods into a wide
variety of tasks. Audio-visual stimuli in the form of clips taken
from known films was used for eliciting emotional responses to
the participants who then proceeded to rate the felt emotions
according to three rating scales. After assessing the quality
of the participants ratings, a baseline for this database was
then established by evaluating EEG and ECG -based features
through participant-wise supervised classification experiments.
The motivation of this work is threefold: 1) To provide a
dataset for affect recognition research, consisting of EEG and
ECG signals captured using low-cost portable devices, 2) To
compare the affect recognition -related performance of these
devices against “medical grade”devices and establish whether
they constitute a viable alternative, and 3) To demonstrate
the feasibility of integrating affective computing methods to
everyday applications through the use of portable/wearable
equipment.

The rest of this paper is organised in six sections. Section
II provides an overview of the most recent works in the
field of affect recognition. Section III describes in detail the
experimental procedure, while the proposed data processing,
feature extraction and classification methods are described in
Section IV. Statistics and results of the classification procedure
are presented in Section V and discussed in Section VI.
Finally, conclusions are drawn in Section VII.

II. BACKGROUND

Given the importance and the interest in the field of affect
recognition, there have been multiple proposed approaches in
the domain of affect recognition from physiological signals
and/or other modalities. Zeng et al. [3] provide an extensive
survey on affect recognition methods, proposed till 2009, using
video, audio or both audio and video as stimuli for affect
elicitation. Furthermore, in another more recent survey, Gunes
et al. [18] present an extensive review on continuous affect
detection. Nicolaou et al. [19] proposed the use of features
based on facial expression, shoulder gesture and audio cues
along with Support Vector Machines for Regression (SVRs)
and Bidirectional Long Short-Term Memory Neural Networks
(BLSTM-NNs) for classification. Results showed that arousal
was better predicted using audio cues, while multi-modal
approaches were more successful for valence. Soleymani et
al. [1] evaluated the use of features based on eye gaze data,
EEG and peripheral physiological signals along with a Support
Vector Machine (SVM) classifier for affect recognition on
their proposed MAHNOB-HCI database. Results showed that
the fusion of the best two modalities (EEG and eye gaze)
provided the highest classification accuracy for both arousal
and valence, while the accuracy achieved for the features
based on peripheral physiological responses had high variance
between the participants in the study, leading to reduced
overall performance. EEG and peripheral physiological signals
were also used by Koelstra et al. [12] on their proposed
DEAP database. Their experimental evaluation using the Naive
Bayes classifier showed that EEG-based features achieved
higher accuracy for arousal, while the features based on
peripheral physiological signals performed better for valence.
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Nevertheless, both modalities were outperformed by features
based on the audio and visual content of the music videos
used for affect elicitation. AlZoubi et al. [20] utilized a tutoring
software for affect elicitation and evaluated the use of features
based on Electromyogram (EMG), Galvanic Skin Response
(GSR) and ECG physiological data, along nine classifiers for
affect detection. Results showed that the k-Nearest Neighbour
(k-NN) and the Linear Bayes Normal Classifier (LBNC)
provided the best accuracy in affect recognition and that the
use of features based on a single modality or the fusion of
all modalities yielded better results in general compared to
the fusion of two of the proposed modalities. More recently,
Abadi et al. [2] presented DECAF, a multi-modal data set for
decoding user physiological responses to affective multimedia
content. Instead of the commonly used EEG modality, Abadi et
al. proposed the use of Magnetoencephalogram (MEG)-based
features, along with other peripheral physiology signals (hor-
izontal Electrooculogram (hEOG), trapezius-Electromyogram
(tEMG) and facial data, ECG), for affect recognition. Their
experimental evaluation showed that MEG signals effectively
encoded arousal and dominance, while the peripheral physi-
ology signals were more successful for valence. Valence was
also successfully encoded by facial features, while the fusion
of all modalities provided slightly lower results compared to
different combinations of features. Facial expression features
were also recently used for continuous affect detection along
EEG-based features and Long-Short-Term-Memory recurrent
Neural Networks (LSTM-RNN) and Continuous Conditional
Random Fields (CCRF) by Soleymani et al. [11]. Their
experimental evaluation showed that features based on facial
expressions were superior to both the EEG-based features and
the fusion of facial expression-based and EEG-based features.
Nevertheless, their analysis showed that EEG signals contained
complementary information in presence of facial expressions.

Specialised and non-portable equipment was used for cap-
turing the EEG and the other physiological signals in all
the aforementioned works. Systems like the commonly used
Biosemi Active II (DEAP [12], MAHNOB-HCI [1]), the
ELEKTA Biomag (DECAF [2]) and the BIOPAC MP150
(AlZoubi et al. [20]) provide enhanced capturing capabilities
and increased signal quality but are costly, non-portable and
non-wearable and as a result they are not suitable for casual
everyday applications.

III. EXPERIMENT PROTOCOL

A. Data Acquisition

Audio and visual stimuli in the form of film clips was
employed in order to elicit emotional reactions to the partici-
pants of this study and record EEG and ECG data. A dataset
consisting of 18 film clips selected and evaluated by Gabert-
Quillen et al. [21] was utilised for eliciting emotions. These
film clips contain cut out scenes from different films that have
been shown to evoke a wide range of emotions. From these
18 film clips, two of each targeted one of the following nine
emotions: amusement, excitement, happiness, calmness, anger,
disgust, fear, sadness and surprise. Details about the emotion
targeted by each film clip are shown on Table I. The length

Fig. 1. The Emotiv EPOC wireless EEG headset and the wireless SHIMMER
ECG sensor.

of the film clips was between 65 to 393 s (M = 199 s), which
is considered as sufficient since, according to psychologists,
video stimuli between 1 to 10 min is capable of eliciting single
emotions [11], [22]. Nevertheless, the emotional state of a
person may change over time, especially when video stimuli of
larger length is used. To avoid contaminating data recordings
with multiple emotions, only the recordings captured during
the last 60 s of each film clip were used for further analysis.

The experiments were performed in an isolated environment
with controlled illumination in order to avoid external influ-
ences. An electric curtain was used in order to completely
darken the room and the video clips were presented on
a 45” TV-monitor using the embedded speakers for audio
playback. EEG was recorded at a sampling rate of 128 Hz
using an Emotiv EPOC system [23], [24] that uses 16 gold-
plated contact-sensors that are fixed to flexible plastic arms
of a wireless headset and are placed against the head in
locations aligned with the following locations according to
the International 10-20 system: AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8, AF4, M1 and M2 [23]. The mastoid
sensor at M1 acted as a ground reference point for comparing
the voltage of all other sensors, while the mastoid sensor at M2
was a feed-forward reference for reducing external electrical
interference. As a result, the signal from the other 14 contact-
sensors was recorded and used for the later feature extraction
step. ECG was recorded at 256 Hz using a SHIMMERTM

[25] wireless sensor which is able to produce RA→LL and
LA→LL vectors. In this work, only the RA→LL vector was
later used for feature extraction. Fig. 1 shows the Emotiv
EPOC headset and the SHIMMER ECG sensor.

For the evaluation of the emotions elicited by the film clips
and the recording of physiological data, 25 healthy volun-
teers aged between 22 and 33 years old (M=26.6, SD=2.7)
participated in the study. Before participating in the experi-
ment, subjects were first asked to read an information sheet
which provided details about the experimental procedure and
explained the rating scales used for affect assessment and then
proceed to sign a Consent Form. As mentioned in Section I, the
categorisation of emotion using the valence/arousal/dominance
scale is not intuitive for humans. To ensure that the participants
would provide correct ratings, the rating scale was thoroughly
explained both verbally and through examples. The session
then started only if the participants expressed a sufficient
understanding of the rating scales. A member of the team
conducting the experiment was also available, in order to
answer any questions posed by the participants. Each session
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TABLE I
MEAN RATING AND STANDARD DEVIATION ACROSS ALL PARTICIPANTS FOR EACH STIMULI FILM CLIP AND FOR EACH RATING SCALE

ID Film clip Target emotion Valence Arousal Dominance
1 Searching for Bobby Fischer calmness 3.17 ± 0.72 2.26 ± 0.75 2.09 ± 0.73
2 D.O.A. surprise 3.04 ± 0.88 3.00 ± 1.00 2.70 ± 0.88
3 The Hangover amusement 4.57 ± 0.73 3.83 ± 0.83 3.83 ± 0.72
4 The Ring fear 2.04 ± 1.02 4.26 ± 0.69 4.13 ± 0.87
5 300 excitement 3.22 ± 1.17 3.70 ± 0.70 3.52 ± 0.95
6 National Lampoon’s VanWilder disgust 2.70 ± 1.55 3.83 ± 0.83 4.04 ± 0.98
7 Wall-E happiness 4.52 ± 0.59 3.17 ± 0.98 3.57 ± 0.99
8 Crash anger 1.35 ± 0.65 3.96 ± 0.77 4.35 ± 0.65
9 My Girl sadness 1.39 ± 0.66 3.00 ± 1.09 3.48 ± 0.95
10 The Fly disgust 2.17 ± 1.15 3.30 ± 1.02 3.61 ± 0.89
11 Pride and Prejudice calmness 3.96 ± 0.64 1.96 ± 0.82 2.61 ± 0.89
12 Modern Times amusement 3.96 ± 0.56 2.61 ± 0.89 2.70 ± 0.82
13 Remember the Titans happiness 4.39 ± 0.66 3.70 ± 0.97 3.74 ± 0.96
14 Gentlemans Agreement anger 2.35 ± 0.65 2.22 ± 0.85 2.39 ± 0.72
15 Psycho fear 2.48 ± 0.85 3.09 ± 1.00 3.22 ± 0.9
16 The Bourne Identity excitement 3.65 ± 0.65 3.35 ± 1.07 3.26 ± 1.14
17 The Shawshank Redemption sadness 1.52 ± 0.59 3.00 ± 0.74 3.96 ± 0.77
18 The Departed surprise 2.65 ± 0.78 3.91 ± 0.85 3.57 ± 1.04

lasted approximately one hour, during which the subjects were
asked to minimise their movement. Moreover, they were asked
to provide an emotional assessment derived by what emotions
they actually felt and not what they thought that the video clip
was intended to elicit.

Next, the experiment started by showing a neutral film
clip, i.e. a video clip considered to have no valence in
order to establish the baseline signals. This neutral video
clip was the one used in the work of Gabert-Quillen et al.
[21]. The use of neutral signals as baseline signals have
been proven to allow the removal of daily dependencies
when recording physiological data [12], [26]. As a result, the
neutral clip was shown before each film clip in order to help
the subject return to a neutral emotional state, in addition
to establishing the baseline signal. After viewing each film
clip, the subjects used a graphical user interface presented
to them in order to evaluate their emotion by reporting the
felt arousal (ranging from uninterested/bored to excited/alert),
valence (ranging from unpleasant/stressed to happy/elated) and
dominance (ranging from helpless to empowered) on five
point scales. Self-assessment manikins (SAM) [27] were used
in order to facilitate the subject’s assessments of arousal,
valence and dominance. Finally, the participants data, along
with the recordings of the physiological data and the emotion
assessments were stored in a data structure. The experimental
protocol was implemented using the MATLAB environment
[28] and its details are summarised on Table II.

Furthermore, while the experimenters tried to carefully
follow the experimental protocol and setup, problems arose
with the recordings from two subjects due to technical prob-
lems, resulting to incomplete data. As a result, recordings
from 23 out of the 25 volunteers were subsequently used in
this work due to the unsuitability of the data from the two
aforementioned subjects. From the final 23 subjects used in
this study, 14 were male and 9 female.

This study, including the acquisition and publication of

TABLE II
EXPERIMENT SUMMARY

Audio-visual stimuli
Number of videos 18
Video content Audio-Video
Video duration 65 - 393 s (M=199 s)

Experiment information
Number of participants 25 (23)
Number of males 14 (14)
Number of females 11 (9)
Age of participants 22 - 33 (M=26.6, SD=2.7)
Rating scales Arousal, Valence, Dominance
Rating values 1 - 5
Recorded signals 14-channel 128Hz EEG, 256Hz ECG

anonymised data, was approved by the University of the West
of Scotland University Ethics Committee (UWS UEC).

B. Evaluation of Participants Self-Assessment

After collecting the subjects assessments, the data were
analysed in order to detect any abnormalities or unexplained
variations. While the evaluation of the emotions elicited by
each video may have small variations for each participant,
the overall assessment should not present extreme variations.
In order to obtain a measure of the agreement between the
participants of this study, the coefficient of variation (CV)
for the participants assessments for all the film clips was
computed. CV is defined as the ratio of the standard deviation
and the mean and is a standardised measure of variability. A
CV equal to zero denotes no variability across the samples
(i.e. all samples are the same) while higher CVs denote more
variability. The mean CV between the participants assessments
for arousal was 0.29 ±0.07, for valence 0.31 ±0.15 and for
dominance 0.27 ±0.06, showing that there was low variability
between their assessments. Furthermore, the mean standard
deviation for the assessment of each stimuli film clip was
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TABLE III
NUMBER OF FILM CLIPS SUBJECTIVELY CLASSIFIED ON AVERAGE INTO

EACH CATEGORY

LALV LAHV HALV HAHV
This study 3 4 6 5
Gabert-Quillen et al. [21] 4 6 5 3

TABLE IV
CORRELATIONS BETWEEN THE RATINGS OF ALL PARTICIPANTS FOR THE

SCALES OF VALENCE, AROUSAL AND DOMINANCE FOR ALL STIMULI

Scale Valence Arousal Dominance
Valence 1 -0.02 -0.11*
Arousal 1 0.70**
Dominance 1

* indicates a significant correlation according to the Student’s t-test with
p < 0.05, while ** denotes a significant correlation with p < 0.001.

Fig. 2. Mean location of film clips in two-dimensional affective space as
rated by the participants of this study.

0.81 for valence, 0.88 for arousal and 0.88 for dominance.
The low mean standard deviations further support the claim
of low variability between the participants assessments.

The mean assessments by all the participants in the study
for each film clip in terms of valence and arousal are shown
in Fig. 2 in the form of a scatter plot, while Table I shows
the mean assessment across all participants for each stimuli
film clip and for all rating scales. The assessments span the
whole range of possible ratings leading to a balanced dataset,
as can be seen on Fig. 3. The only misrepresented classes are
the minimum arousal and dominance (for a rating equal to 1).
Depending on the corresponding valence and arousal values,
the valence-arousal space can be divided into four quadrants,
as shown in Fig. 2. The four quadrants refer to each of
the following possible combinations of valence/arousal states:
low arousal-low valence (LALV), low arousal-high valence
(LAHV), high arousal-low valence (HALV), and high arousal-
high valence (HAHV). It is easily derived from Fig. 2 that

Fig. 3. Number of ratings by the participants at each scale of arousal, valence
and dominance.

the self-assessments of the subjects participating in this study
are consistent with the emotions that the used film clips were
intended to elicit [21]. A comparison between the subjective
classification into the four valence-arousal quandrants from the
subjects participating in this study compared to the subjective
classification reported by Gabert-Quillen et al. [21] is shown
on Table III. Furthermore, the Spearman’s rank correlation
coefficient between the subjective ratings by the participants of
this study and the ratings reported by Gabert-Quillen et al. [21]
was computed in order to evaluate their agreement and confirm
the integrity of the collected ratings. The correlation analysis
resulted in a Spearman’s ρ = 0.719 for valence and ρ = 0.870
for arousal, indicating a strong correlation between the ratings
from the two studies. It must be noted that the Gabert-Quillen
et al. study did not collect ratings for dominance, thus a
correlation with this study cannot be evaluated.

The ratings for the different scales are not completely inde-
pendent since the participants may become biased to specific
ratings due to lack of complete understanding of the rating
scales or due to unwanted effects of habituation or fatigue
due to the amount of time needed for the experiment [12].
The Spearman’s rank correlation coefficient was computed
between the ratings of all participants for the three rating
scales in order to explore possible correlation. As shown in
Table IV, a significant (p < 0.001) strong positive correlation
(ρ = 0.70) was observed between arousal and dominance.
Without implying any causality due to the correlation, it
seems that when the participants felt excited about the stimuli
(high arousal), they also felt empowered (high dominance),
while when they felt bored and uninterested (low arousal)
they also felt helpless and without control (low dominance).
Furthermore, a non-significant (p > 0.05) very weak negative
correlation (ρ = −0.02) was observed between valence and
arousal, indicating that the participants were able to distinguish
these two concepts. A significant (p < 0.05) but very weak
negative correlation (ρ = −0.11) was also observed between
valence and dominance.
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IV. DATA ANALYSIS

A. Pre-processing

The captured EEG signals are contaminated with noise and
artefacts that were detected but did not originate from the
brain. Signals caused from cardiac activity, eye movement
and muscular activity, as well as power line noise are also
captured by the EEG device and thus downgrade the quality
of the recorded data, making the use of denoising methods a
necessity. On the other hand, ECG signals are less susceptible
to interferences due to their higher voltage amplitudes and thus
require no further processing.

In the EEG signals, most ocular artifacts (eye blinking, eye
movement, cardiac interferences, etc.) are dominant below 4
Hz, muscle movements produce artefacts above 30 Hz [29]
and power line noise usually lies at 50 or 60 Hz, while the
frequency bands that contain information relative to the affect
recognition task lie in the range of 4 - 30 Hz. This frequency
range is commonly divided in the theta, alpha, and beta bands.
Three separate bandpass Hamming sinc linear phase FIR filters
are applied using the EEGLAB [30] toolbox in order to extract
only the frequencies inside the ranges of interest. Artefacts that
may have been introduced at the beginning or the end of the
EEG data in the form of DC offsets are handled by padding
the data by a DC constant at the beginning and at the end,
before re-sampling using EEGLAB. Finally, the filtered EEG
data are shifted by the filter’s group delay. Furthermore, 50
and 60 Hz interference is not suppressed using notch filters,
since the Emotiv EPOC headset comes with built-in digital
notch filters at these frequencies [23].

The filtering process is not able to remove all the artefacts
from the EEG signals and thus further processing is needed.
The Artefact Subspace Reconstruction (ASR) method, pro-
posed by Kothe [31], is used for artefact removal. The ASR
method consists of a sliding window Principal Component
Analysis (PCA), which statistically interpolates any high-
variance signal components exceeding a threshold relative to
the covariance of an automatically detected data section that
is relatively free of artefacts. The final step for preparing the
EEG data for further analysis is the application of the Common
Average Reference (CAR) method, as recommended by Cohen
[32], which computes the average value over all electrodes and
subtracts it from each sample of each electrode. Removal of
bad channels is performed prior to the CAR method in order
to avoid introducing noise to all channels due to a possible
bad channel.

B. Feature extraction

Due to the variable duration of the film clips used as
stimuli and in order to allow time for a specific emotion to
become dominant, the signal recordings corresponding to the
last 60 seconds of each film clip were used for further feature
extraction and analysis. Table V shows the features that are
then computed from each modality, while an outline of the
feature extraction procedure is provided on Fig. 4.

1) EEG-based features: It is well documented that the
power spectral densities (PSDs) of EEG signals in different
bands are correlated with the affective state of a human

Fig. 4. Outline of the feature extraction procedure.

[33]. Soleymani et al. [11] showed that the higher frequency
components of EEG signals carry more important information
regarding positive emotions compared to negative ones (high
and low valence respectively), while a correlation between
increased beta power and positive emotional self-induction
has also been reported [34]. Koelstra et al. [12] also found
strong correlations between valence and EEG signals at all
frequency bands. Furthermore, their study also found negative
correlations between arousal and the theta, alpha and gamma
bands of EEG signals, while prior studies [35] [36] have
reported an inverse relationship between the power of the alpha
band and the general arousal level.

After the preprocessing step, the captured EEG signals were
separated into the theta (4 Hz - 8 Hz), alpha (8 Hz - 13 Hz),
and beta (13 Hz - 20 Hz) frequency bands. Welch’s overlapped
segment averaging estimator is then used to estimate the PSD
of each EEG band, using a 256 samples window with an
overlap of 128 samples. The logarithms of the PSD from each
of the aforementioned bands are extracted from the signal of
each of the 14 electrodes in order to be used as features, as also
proposed in [1], [11], [12], [37], leading to a total of 42 fea-
tures (3 for each of the 14 electrodes). Finally, all the features
are concatenated into the final feature vector FEEG as follows:
Let Fiθ, Fiα, and Fiβ be the logarithm of the PSD for the
signal of the i-th electrode, i = 1, 2, ..., 14, for the theta, alpha
and beta bands respectively. The final feature vector is defined
as FEEG = [ F1θ F1α F1β ... F14θ F14α F14β ].

2) ECG-based features: Many studies have shown that
features extracted from ECG signals correlate with changes
in the affective state of a person [1], [2], [12], with the most
consistently associated features usually being heart rate (HR)
and heart rate variability (HRV) specific parameters in the time
and frequency domain respectively. For example, heart rate
variability may decrease with fear, sadness and happiness [38],
while when a stimuli induces pleasantness, then the peak heart
rate response may increase [39]. Moreover, spectral features
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TABLE V
EXTRACTED FEATURES FROM EACH FILM CLIP

Modality Extracted features

EEG theta, alpha and beta power spectral density (PSD) for
each electrode

ECG

mean, median, standard deviation, min, max, and range
from each part of the PQRST complexes, difference
between consecutive RR intervals (RMSSD), PSD for Low
Frequency (LF), PSD for High Frequency (HF), LF to HF
ratio, total power

derived from HRV have also been shown to correlate with
affective state [40]. Taking into consideration the effect of the
emotional state on ECG-based features, features derived from
the HR and HRV of the recorded ECG signals are computed.
The Pan-Tompkins QRS detection algorithm [41] is first used
in order to detect the locations of QRS complexes within
the ECG signal and accurately detect R-peaks. Statistical
features, such as the mean, median, standard deviation, min,
max, and range, are extracted from each part of the PQRST
complexes of the ECG data using the Augsburg Biosignal
Toolbox (AuBT) [42]. Then, the following HRV features are
extracted using Vidaurre et al.’s BioSig toolbox [43] which
provides methods for biomedical signal processing: difference
between consecutive RR intervals (Root Mean Square of the
Successive Differences - RMSSD), power spectral density
(PSD) for Low Frequency (LF), PSD for High Frequency
(HF), the ratio of LF to HF, and the total power. A total of 71
features are computed from the captured ECG signal and are
concatenated into the final feature vector FECG.

3) Fusion of EEG and ECG-based features: The use of
features based on multiple modalities has been shown to pro-
vide increased classification accuracy compared to approaches
based on a single modality [1], [2], [11], [12]. In order to
evaluate the performance of the combined EEG and ECG-
based features, the two feature vectors FEEG and FECG are
fused as follows: First, the values of each feature vector are
normalised in the range [0 1] in order to compensate for
the differences in numerical range. Then, the two normalised
feature vectors F ′

EEG and F ′
ECG are concatenated in the final

feature vector Ffused = [ F ′
EEG F ′

ECG ].

C. Baseline normalisation of features

Feature normalisation methods are commonly employed in
machine learning approaches in order to make the data that
form the feature vectors comparable, since their magnitude
and range heavily depend on particular conditions, source
signal characteristics and different subjects. The magnitude
of the features extracted from the EEG and ECG signals
varies significantly depending on the type of feature and
its source (refer to Table V for the type of features). For
example, when extracting features from EEG signals, the PSD
for higher frequencies has a much smaller magnitude than the
PSD for lower frequencies [32]. Physiological signals tend
to have high variance between different subjects, as well as
between the same features measured at different moments for

Fig. 5. Overall class distribution across all participants after conversion to a
two-class rating score.

each individual subject [44]. Furthermore, different types of
features are measured in different units leading to variable
numerical ranges across the features of a feature vector.
Feature normalisation is employed in order to address these
issues.

Baseline features are computed from the EEG and ECG
recordings of the last 4 s of the neutral film clip shown
before each affect eliciting film clip. Then, each EEG and
ECG-based feature is divided by the corresponding baseline
feature. Due to the division of the extracted features by
the baseline features, the derived normalised feature contains
information about the relation of the initial feature to the
background activity, i.e. activity that is present in the data
but is not modulated by actual affective stimuli [32]. As a
result, the feature normalisation method employed, attempts
to remove or strongly attenuate the background activity in
order to obtain only stimuli-related changes in the EEG and
ECG recordings. It must be noted that in the case of fusion
between EEG and ECG-based features, baseline normalisation
is performed before the fusion procedure described in the
respective Section.

V. AFFECT RECOGNITION RESULTS

In order to provide some baseline classification results for
the proposed database, supervised classification experiments
for affect recognition were conducted using the features ex-
tracted by the two modalities, as well as their fusion. Three
different binary classification schemes were defined: the clas-
sification between low/high arousal (calm/excited), low/high
valence (unpleasant/pleasant), and low/high dominance (with-
out control/empowered). The subjective evaluations of each
participant in the form of rating using a scale from 1 to 5 were
used as the ground truth, with the ratings being thresholded
into two classes (low and high). Since a 5-point rating scale
was used, the threshold was placed in the middle, leading to
unbalanced classes for some participants and scales, as also
reported by Koelstra et al. [12] in their work. The overall class
distribution across the whole dataset for the transformed two-
class rating scale is shown in Fig. 5. The dataset is balanced for
dominance, with samples from the first class (low) constituting
on average the 52% of the total samples, while samples from
the second class (high) account for 48% of the total samples
on average, with a standard deviation of 14.4%. The dataset
is slightly unbalanced for arousal, with samples amounting
for 56% and 44% on average for the first and second classes
respectively, with a standard deviation of 14.2%. The dataset
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TABLE VI
ACCURACY AND F1 SCORES OF AFFECT RECOGNITION FOR THE EXAMINED MODALITIES AND THE BASELINE FOR THE PROPOSED DATABASE, AND FOR

OTHER WORKS PROPOSED IN THE LITERATURE USING OTHER DATABASES

Modality Accuracy F1 Score
Valence Arousal Dominance Valence Arousal Dominance

EEG 0.6249 0.6217 0.6184 0.5184 0.5767 0.6166
ECG 0.6237 0.6237 0.6157 0.5305 0.5798 0.6145
Fusion (EEG & ECG) 0.6184 0.6232 0.6184 0.5213 0.5750 0.6171
Random 0.5000 0.5000 0.50.00 0.4885 0.4878 0.4895
Class ratio 0.5440 0.5467 0.5403 0.5000 0.5000 0.5000

DEAP EEG [12] 0.5760 0.6200 N/A 0.5630 0.5830 N/A
DEAP Peripheral [12] 0.6270 0.5700 N/A 0.6080 0.5330 N/A
MAHNOB-HCI EEG [1] 0.5700 0.5240 N/A 0.5600 0.4200 N/A
MAHNOB-HCI Peripheral [1] 0.4550 0.4620 N/A 0.3900 0.3800 N/A
DECAF MEG [2] 0.5900 0.6200 0.6200 0.5500 0.5800 0.5300
DECAF Peripheral [2] 0.6000 0.5500 0.5000 0.5900 0.5400 0.5000

Results in bold indicate the best results for the proposed database only. Peripheral signals include multiple modalities apart from ECG.

is more unbalanced for valence, where the first class amounts
for 61% of the samples on average (39% for the second class),
with a standard deviation of 10.6%.

To cope with the unbalanced class distribution for some
participants, F1-scores are also reported alongside the classi-
fication accuracy in order to provide a more reliable measure
of the classification success. Classification was performed in-
dependently for each participant in this study, using a Support
Vector Machine (SVM) classifier with a Radial Basis Function
(RBF) kernel. Matlab’s SVM implementation was utilised for
tuning, training and testing the SVM classifier. Furthermore, a
10-fold cross validation technique was used in order to validate
the user independent classification performance. The eighteen
samples for each participant were randomly divided into ten
groups, leading to eight groups of two samples and two groups
of one sample. At each step of the cross-validation, one group
was used for testing and the other groups for training the
classifier. This process was repeated until all groups had been
used for testing. Furthermore, in order to compensate for the
random selection of the samples at each group, the whole
procedure was repeated ten times and the average result for
all the iterations is reported. It must be noted that the 3-NN,
5-NN, 7-NN, LDA, and SVM with linear kernel classifiers
were also evaluated using the same procedure, but failed to
produce statistically significant results for all the examined
cases (features and metrics).

Table VI presents the average accuracies and average F1
scores for both classes over all participants and for all
rating scales. Classification accuracy for valence reached
62.49% using the EEG-based features, while the fusion of
the EEG and ECG-based features provided the highest ac-
curacy for arousal (62.32%). For dominance, the highest
accuracy reached 61.84% for both the EEG-based and the
fused features. In terms of F1 score, ECG-based features
provided the best result for valence and arousal (0.5305 and
0.5798 respectively), while the fused features provided the best
result for dominance (0.6171). Apart from the three proposed
modalities (EEG, ECG, and their fusion), Table VI also reports
the analytically computed results for using a random classifier

with uniform distribution and for using a classifier that votes
for each class according to the probability of the respective
class to occur in the training data. It must be noted that the
results of the random and class ratio classifiers are marginally
overestimated since the actual class ratio should be determined
from the training set used at each fold of the 10-fold cross
validation. The random classifier results in an expected ac-
curacy of 50% and an expected F1 score of approximately
0.49 for each participant, while classification according to
the class ratio leads to an accuracy of approximately 54.4%
and an F1 score equal to 0.50. The reported results were
tested for statistical significance using both a one-way ANOVA
and a Wilcoxon signed rank test, by comparing the accuracy
and F1 scores over participants to the analytically computed
expected results from voting according to the class ratio. Both
significance tests resulted in p-values smaller than 0.002 for
accuracy and F1 scores of all modalities examined and for all
rating scales. Furthermore, the same procedure was followed
for evaluating the statistical significance of the reported results
compared to the expected results for random voting, leading to
p-values smaller than 0.0001 for both accuracy and F1 score
and for all rating scales.

Apart from the affect recognition results for the proposed
database, Table VI also shows the baseline results reported
for the DEAP [12], MAHNOB-HCI [1] and DECAF [2]
databases, when using similar modalities for feature extraction
(results for using eye gaze features or features from multi-
media content analysis have been omitted, while results for
dominance were not reported in the DEAP and MAHNOB-
HCI studies). The baseline results for the proposed database
are consistent with the baseline results reported for the other
databases, with the exception of the F1 score for dominance
which is elevated in the present study (0.6171 compared to
0.5300 for the DECAF database). Furthermore, for the DECAF
database, the Magnetoencephalogram (MEG) modality was
utilised instead of EEG, but results suggested that the affect
encoding power of EEG and MEG is comparable, while MEG
offers increased spatial resolution [2].

The comparable baseline results achieved for DREAMER
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and the other three databases provide a strong indication that
the use of low-cost wireless devices is a viable alternative to
expensive and non-portable medical equipment for capturing
EEG and ECG signals for affect recognition applications. The
fairest comparison between the devices used and medical grade
devices would entail simultaneous recording with each modal-
ity for identical subjects and stimuli. Nevertheless, such study
is probably impossible to implement in practice, as argued by
Abadi et al. [2], thus the comparison of emotion recognition
performance is based on the results observed on different
populations (DREAMER, DEAP, MAHNOB-HCI, DECAF)
using similar feature extraction methods when applicable.

VI. DISCUSSION

As shown in Table VI, classification accuracy and F1 scores
achieved for all modalities are close for each rating scale
and within the statistical error. A Wilcoxon signed-rank test
showed that the difference between the performance of the
fusion strategy compared to the results of the EEG-based
features and the ECG-based features was not significant for
both accuracy and F1 score. This finding suggests that the
fusion of EEG and ECG-based features is not beneficial for the
affect recognition problem examined. Moreover, a correlation
analysis of inter-participant results for EEG and ECG-based
features using the Spearman correlation led to a Spearman’s
ρ > 0.97 for classification accuracy for all rating scales and
a ρ > 0.90 for F1 scores, indicating a very strong correlation
between the results. Furthermore, a Wilcoxon signed-rank test
showed that the difference between the performance of the
EEG and the ECG-based features was not significant. These
findings suggest that the features computed from the two
modalities provide similar descriptive power in relation to
affect. Nevertheless, it is not clear whether this effect is a result
of interference to the EEG signal from muscular and cardiac
activity that is also captured in the ECG signal, or a result
of lower descriptive power from the EEG due to the small
number of electrodes of the wireless Emotiv EPOC device
used, or a combination of these and other unpredicted factors.

After examining the mean classification accuracy achieved
by each participant for each rating scale, some outliers across
all modalities were detected. Outliers were considered the
participants for which the classification accuracy was less
than the expected mean accuracy for voting according to the
class ratio for both the EEG and ECG-based features, as
well as for their fused features. Two outliers were detected
for valence, participant #1 and #19, for whom the mean
classification accuracy reached 45.92% and 45.18% respec-
tively. It is worth mentioning that both participants achieved
very high classification accuracy for arousal compared to the
mean accuracy achieved for all participants (62.29% overall vs
72.22% and 77.78% for participant #1 and #19 respectively),
while participant #19 also achieved higher than the overall
mean accuracy for dominance (61.75% overall vs 66.67%) and
participant #1 was marginally not considered as an outlier for
dominance (accuracy 55.56%). Three outliers were detected
for arousal, participants #2, #15, and #18, for whom the
mean classification accuracy reached 43.89%, 43.52% and

45.18% respectively. Participant #2 was also an outlier for
dominance (accuracy 42.40%) but achieved very high clas-
sification accuracy for valence (72.22% vs 62.29% overall).
Participant #15 achieved high accuracy for both valence and
dominance (72.22% and 77.78% compared to 62.29% and
61.75% overall). Finally, participant #18 achieved higher than
the overall mean accuracy for valence (62.29% overall vs
66.67%), while he was marginally not considered as an outlier
for dominance (accuracy 55.56%). As a result, while outliers
can be detected for individual rating scales, this behaviour does
not extend to all scales and thus they cannot be considered as
general outliers and be removed from the dataset. It is worth
mentioning that all the aforementioned accuracies refer to the
mean accuracy of the three feature sets used.

Concerning the usefulness of the proposed database, to
the best of the authors knowledge, DREAMER is the first
database which includes recordings from low-cost, off-the-
shelf, portable, wireless devices for EEG and ECG signals.
These devices have the potential to be used in non-professional
everyday scenarios, providing the opportunity for affect recog-
nition applications to reach a far wider user audience and
for integration with multiple and diverse applications. As a
result, this database can be of great value to researchers
or industry members from multiple disciplines, including
affective computing, multimedia, human-computer interaction,
psychology, etc., as it provides the opportunity to study the
various relations between affect and central and peripheral
nervous system reactions. Furthermore, the proposed database
allows the study of affect recognition methods on signals
captured by low-cost and easy-to-use devices, increasing the
interest for parties trying to introduce affect computing on a
wide variety of applications.

VII. CONCLUSION

In this work, a database for the analysis of emotions elicited
by audio-visual stimuli is presented. The database includes
EEG and ECG recordings from 23 participants, where each
participant rated his emotional response along the scales of
valence, arousal, and dominance, after watching each of the 18
film clips selected to elicit specific emotions. The recordings
of the EEG and ECG signals for this database were done using
portable, wireless, low-cost, off-the-self devices that would
allow for the integration of affective computing technology
and algorithms into a wide range of applications. The quality
of the participants ratings was evaluated through correlation
analysis with the ratings of another study that utilised the
same audio-visual stimuli, proving that there were significant
correlations and low variability between the ratings. Moreover,
participant-wise classification experiments for the scales of
valence, arousal, and dominance were conducted in order to
establish baseline results for the proposed database in terms
of classification accuracy and F1 scores. The classification
results using EEG and ECG-based features, as well as their
fusion, were significantly higher than the results for random
voting or voting according to the class ratio and they were
also consistent with results in similar works that utilised
non-portable medical grade equipment. These findings further
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support the argument that the use of low-cost off-the-shelf
EEG and ECG devices for affect recognition applications is
a viable alternative to expensive and non-portable medical
equipment, a fact that can facilitate the integration of affect
computing methods to everyday applications. The DREAMER
database will be made publicly available after the publication
of this work in order to give the opportunity to researchers
to evaluate their algorithms on a database created from off-
the-shelf wireless EEG and ECG devices and examine the
possibility of applying them to general applications.
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