
 

UWS Academic Portal

Direct detection of delayed high energy electrons from the 181 Ta target irradiated by a
moderate intensity femtosecond laser pulse
Savel’ev, A.; Chefonov, O.; Ovchinnikov, A.; Agranat, M.; Spohr, K M

Published in:
Plasma Physics and Controlled Fusion

DOI:
10.1088/1361-6587/aa5427

Published: 30/01/2017

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Savel’ev, A., Chefonov, O., Ovchinnikov, A., Agranat, M., & Spohr, K. M. (2017). Direct detection of delayed high
energy electrons from the 181 Ta target irradiated by a moderate intensity femtosecond laser pulse. Plasma
Physics and Controlled Fusion, 59(3), [035004]. https://doi.org/10.1088/1361-6587/aa5427

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/227577487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1361-6587/aa5427
https://uws.pure.elsevier.com/en/publications/1d820f7b-2d80-4903-8f10-8cce27d79a13


Direct detection of delayed high energy electrons from the 
181

Ta  

 

1 

 

 

Direct detection of delayed high energy electrons from the 181Ta 

target irradiated by a moderate intensity femtosecond laser 

pulse 

A Savel’ev
1,2,*

, O Chefonov
1
, A Ovchinnikov

1
 and M Agranat

1
, K M 

Spohr
3,4

  

1 
Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya st. 13, 

Bd. 2, Moscow 125412, Russia 
2 

Physics Faculty and International Laser Center of M.V.Lomonosov Moscow State 

University, Leninskie gory, Moscow 119991, Russia 
3
 School of Engineering & Computing, University of the West of Scotland, High Street, 

Paisley, PA1 2BE, Scotland, United Kingdom 
4 

Scottish Universities Physics Alliance (SUPA), University of Glasgow, Kelvin Building, 

University Avenue, Glasgow, G12 8QQ, Scotland, United Kingdom  

 
*
e-mail: abst@physics.msu.ru 

 

Abstract. We depict an experimental study of delayed fast, negatively charged particles from femtosecond 

laser-plasma interaction at an intensity of I~10
17

 Wcm
-2

. Plates of 2 mm thickness made of 
181

Ta (~100 % 

abundance) and natural W were used as targets. We distinguished certain delayed events due to detection of 

negative H
-
, C

-
 and O

-
 ions. However, most events which were delayed by 0.5 µs – 5 µs with respect to the 

instantaneous plasma formation caused by the laser pulses, were identified as electrons with energies of 3 keV 

-7 keV. A comparative analysis between the tantalum and tungsten spectra was undertaken. This revealed a 

close similarity between the measured spectrum for tantalum and the predicted spectrum for electrons arising 

from to the internal conversion decay (IC) of the 6.237 keV nuclear isomeric state in 
181

Ta. 

 

Keywords: femtosecond plasma, moderate intensity, isomeric nuclear levels, internal 

conversion 

 

PACS: 23.20.Nx Internal conversion and extranuclear effects (including Auger electrons and internal 

bremsstrahlung), 52.70.Nc Particle measurements, 52.38.Ph X-ray, γ-ray, and particle generation ,29.30.Dn  

Electron spectroscopy 

 

1. Introduction.  

Plasma created by an intense femtosecond laser pulse, under its interaction with dense matter, has 

been studied for almost 25 years. Nowadays most attention is paid to relativistic I ≈ 10
18

 Wcm
-2

 or even 

ultra-relativistic intensities I > 10
22

 Wcm
-2

. However, lower, moderate, intensities are also important, 

especially as low intensity plasma can be routinely produced with commercially available lasers which 

have pulse energies of a few mJ, pulse durations in the order of 30-50 fs, and high repetition rates in the 
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kHz regime. These parameters provide for intensities up to I=10
18

 Wcm
-2

, inducing short lived, dense 

plasma which efficiently emits hard X-rays, accelerates multi-charged ions, etc. [1, 2].  

The feasibility of low energy isomeric nuclear level excitation is an appealing, but still unanswered 

question in plasma physics. Different mechanisms for excitation were discussed and described from the 

first order processes, such as direct photoexcitation by plasma X-rays and electron inelastic scattering, to 

higher order processes such as Inverse Electronic Conversion (IEC) and others [3,4,5,6,7,8,9]. 

Femtosecond plasma created with a moderate intensity laser pulse is characterized by a high density of 

nuclei, a high peak flux of hard X-rays and energetic electrons. As such it is treated as the most 

appropriate plasma medium for an experimental search of low energy nuclear excitation [6,10].  

A low energy nuclear excitation event can be detected through gamma decay yielding delayed X-

ray photons, or an internal conversion (IC) process yielding delayed fast electrons. In plasma the IC 

process has specific features due to a deep ionization of atomic shells [11]. Two key experimental 

schemes are usually facilitated: (i) the direct nuclear excitation in plasma [12] and (ii) the nuclear 

excitation in a secondary target containing nuclei under study which are irradiated by X-rays and 

electrons from a primary laser plasma target [13]. The first scheme is characterized, generally, by higher 

excitation rates compared to the latter. The second scheme however allows studying a confined, tiny 

amount of a specific nuclei without the potential drawback that excited atoms may be sputtered from the 

target by the initial laser pulse. Moreover by using a secondary target, a higher signal-to-noise ratio can 

be achieved as the fast parasitic signals emerging from the direct flux of plasma X-rays and electrons can 

be suppressed. Both decay channels can be measured using these two schemes.  

Experiments aimed at low energy isomeric level excitation report optimistic data [7, 12, 13, 14, 15] 

(except for [16]), but deduced nuclear excitation rates appear much larger than numerical estimates. That 

is why, until now, the feasibility of such a process in plasma has been considered as not confirmed. This 

situation stimulates interest for new experiments with a better signal-to-noise ratio, and the search for new 

possible mechanisms of low energy nuclear excitation with intense lasers.  

In this paper, we present experimental data on detection of direct delayed electrons with energies of 

3 keV -6 keV from the plasma created by a I~10
17

 Wcm
-2

 femtosecond laser pulse on the 
181

Ta target 

surface. It is shown that the spectrum of these electrons has a tight coincidence with the calculated 

spectrum of IC electrons associated with the decay of the isomeric 6.237 keV nuclear level in 
181

Ta. At 

first, we reason our choice of the target nuclei and present the expected spectrum for the IC electrons. 

After this the experimental setup is described. We present the experimental data on X-ray production 

from the Ta and W targets to confirm the similarities of the plasma created. This finding backs our 

experimental approach based on comparison of delayed fast electron spectra for these two targets. The 

last part of the paper is devoted to the measurement of the delayed electron spectra and its discussion.  
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2. Problem formulation. 

Most suitable for a proof-of-principle experiment regarding the direct detection of delayed IC 

electrons is stable 
181

Ta, as this isotope has an isomeric nuclear level with an energy of 6.237 keV and a 

half-life of 6.05 µs. The IC coefficient of the related decay is  =70.5 [17]. For a variety of reasons this 

lifetime is somehow optimal for such an experiment. Firstly, its relative shortness provides for an efficient 

isomeric level population in a dense short lived plasma. In addition, the half-life is much longer than the 

plasma duration, thus allowing a detection of the delayed IC electrons against the background mainly 

created by the prompt plasma electrons. The low energy of this isomer enables such studies at moderate 

intensities of 10
16 

Wcm
-2 

- 10
17

 Wcm
-2

, and, the characteristic energy of the related hot conversion 

electrons amounts to a few keV which is well above a low energy background [6]. Moreover, it is also 

favorable that the 
181

Ta isotope is de-facto the only stable Ta isotope as its abundance is 99.88% in a 

natural sample, so no intruding signals from other Ta isotopes need to be accounted for. 

   

                

Figure 1. Energy level schemes for 
181

Ta (a) and 
184

W (b) isotopes. 

Figure 1a presents the low energy level scheme of 
181

Ta. Figure 2 shows calculated probabilities 

of the IC process for different atomic shells of the Ta atom as well as the deduced spectrum of IC 

electrons. The expected energy spectrum of IC electrons is comprised mostly by the IC process through 

the М- and N-shells of the Ta atom. The most probable electron energies are 3.5 keV –3.8 keV and 4 keV 

–4.5 keV [18]. The IC process is followed by the MNN-Auger process, giving rise to delayed Auger 

electrons with energies below 2.7 keV. Hence an experiment should be aimed at the detection of electrons 

delayed by 0.5 s -10 s with respect to the initial plasma formation which is assumed to be instantly.  

The energy range  of 3.5 keV-7 keV should be surveyed.  
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Figure 2 Partial probabilities  of the IC process through different atomic shells (a) and an expected 

energy spectrum of IC electrons emerging from the isomeric level  in 
181

Ta [18]. 

A tungsten target is used as a reference to estimate the influence of noise electrons. Tungsten 

consists of four stable isotopes, 
182

W, 
183

W, 
184

W and 
186

W with different abundances (see Table 1) all of 

which have almost the same atomic shell structure and atomic mass as 
181

Ta. This allows to presume that 

very similar plasma characteristics will apply in tungsten as in tantalum (see also experimental data 

below). Moreover, the first excited nuclear states of these isotopes are quite high in energy (see Table 1 

and sample data for the 
184

W isotope in Figure 1b); thus the probabilities for a population of all these W 

levels at moderate laser intensities are negligibly low. 

 

Table 1. Specific properties of the first excited nuclear states of stable W isotopes. 

W isotope 

atomic weight 

Natural 

abundance, % 

Level 

energy, keV 

Lifetime, ns Polarity  

182 26 100.1 1.38 E2 3.89 

183 14 46.48 

99.07 

0.188 

0.77 

M1+E2 

E2 

8.63 

4.12 

184 30 111.2 1.25 E2 2.57 

186 28 122.62 1.0 E2 1.81 

 

3. Experimental setup 

Experimental scheme is shown in Figure 3. It is similar to the scheme used previously [14], 

except for the lack of a secondary target and the electron spectrometer placing. We used femtosecond 

laser pulses from the Ti:Sa laser with a central wavelength of 795 nm, energy of 1.5 mJ, duration of 40 fs 

and repetition rate of 1 kHz. This laser system is a part of the unique scientific facility “Terawatt 

femtosecond laser complex” at the Joint Institute for High Temperatures of the Russian Academy of 

Sciences. The off-axis parabolic mirror (OAP, 2” in diameter, 3” focal length, 97% reflectivity) focused 

this radiation onto a flat target plate at 45
o
 inclination. The on-target intensity amounted to I ~10

17
 Wcm

-2 

with the focal spot diameter being ~5.5 m (FWHM). An instantaneously moving Lavsan film with a 
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thickness of 20 m prevented the sputtering of plasma debris onto the parabolic mirror. The polished Ta 

and W target plates had a thickness of 2 mm lateral dimensions of 25 mm x 25 mm. The plates were 

mounted on a 5-axis motorized optical stage system which allowed a steering of three linear and two 

angular axes. An optical visualization system checked the focusing quality of the laser beam. During 

experiments the target was translated with a linear speed of 5 mm.s
-1

 in the plane perpendicular to the 

laser beam axis. The vacuum in the interaction chamber was held at ~ 10
-8

 atm. 

 

 

 

Figure 3. Schematics of the experimental setup.  

 

We used scintillation detectors (NaI(Tl) 25 mm thick coupled with PMT) and an Amptek XR-

100T-Cd spectrometer to assess plasma X-ray radiation. The latter was used to measure X-ray spectra in a 

single quantum counting regime [19], so it was placed outside the vacuum chamber in air, 90 cm apart 

from the target and with a 400 µm aperture x-ray collimator in front of it. Spectra were measured over 30 

s (30,000 laser shots at 1 kHz). The electrostatic spectrometer was a semi-cylindrical analyzer with a 

spectral energy resolution of 10% equipped with a chevron Micro Channel Plate (MCP), which is 

described elsewhere in detail [20]. The spectrometer was used for energy and time-of-flight resolved 
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measurements of the ion and electrons particles which were emitted from the plasma. The spectrometer 

was placed in a special metallic grounded shield made from copper and lead to eliminate electronic noise. 

Moreover this grounding suppressed other induced intruding signals resulting e.g. from the plasma 

generated RF electromagnetic waves, X-rays or fast electrons. All cables which connected the 

spectrometer to the vacuum flange were also carefully shielded and grounded. We changed the deflecting 

voltage of the cylindrical analyzer to measure electron energy spectra within a 3 keV -15 keV range. The 

shielded spectrometer was placed 25 cm apart from the target along a normal to its surface. The solid 

angle of the input window of the spectrometer was determined by the input led aperture with a 2 mm in 

diameter and accounts to Ω ~ 6 x 10
-5

 sr. The digital multichannel oscilloscope Tektronix TDS7054 was 

used for the data acquisition from the spectrometer and the scintillation detectors. The temporal resolution 

of the spectrometer together with its acquisition system was only ~1 ns, thus well suited for decay studies 

in the μs regime.  

 

4. Experimental results  

The comparative plasma X-ray study of W and Ta targets was the principal part of our 

experiment. We measured total X-ray yield and X-ray spectra for both targets and confirmed that the 

plasma conditions were almost equal in terms of X-ray flux and spectrum. It is worth noting that the 

partial overlapping of interaction areas occurred for consecutive laser shots at the repetition rate of laser 

pulses ~1 kHz and translation speed of v=5 mm.s
-1

. This resulted in a groove pattern formation in the 

irradiated target surface, and even in the X-ray yield enhancement [21,22]. We checked this effect by 

changing the translation speed v of the target. The optimum speed was determined to be v =5 mm.s
-1

 as at 

this velocity the X-ray yield achieved maximal values. At this speed approximately 2-3 consecutive laser 

shots impinge almost within the same area on the target surface. Figure 4 shows that X-ray spectra of the 

Ta and W targets. Both spectra  have the same slope especially visible at the high energy tail. Also, the Ta 

and W X-ray spectra show the same amplitude. The only slight differences, as expected, are the spectral 

positions of the associated X-ray lines which are due to the tiny differences in the binding energies of L 

shell electrons for Ta and W. 
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Figure 4. X-ray spectra for Ta and W targets obtained at a translation speed of v =5 mm.s
-1

.  

The electrostatic spectrometer measured the flux of charged particles from the plasma. The deflection 

voltage applied to the semi-cylindrical analyzer allowed to determine the energy Ej per the elementary 

charge and the charge sign of a detected particle. The measurement of the particles time-of-flight was 

undertaken. An energy range between Ej =3-7 keV was surveyed. Each Ej value compromised 8000 

independent laser shots. A typical single shot record is shown in Figure 5 for Ej = 4.5 keV. The huge, 

noisy spike at zero time is due to detection of direct plasma emission such as X-rays and fast electrons, 

while fast negative short pulses at 0.669 s and 2.761 s were caused by single negatively charged 

particles.  
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Figure 5. A sample single shot record obtained with the Ta target for a particle energy of 4.5 keV. The 

inset magnifies the single particle event which appeared 2.761 µs after the initial laser pulse.  
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Further analysis of the data was done between 0.2 s to 4.5 s. The lower time limit was restricted 

by the huge direct plasma emission signal after the laser pulse, while the sample length of the Tektronix 

TDS7054 determined the maximum surveying time.  

To obtain energy spectra of delayed particles as well as temporal envelopes at all energies Ej the 

whole time interval was divided in time-bins of a length of 0.5 µs. Single spikes in each recorded spectra 

were counted for each energy Ej. These yielded a number of events Nij at the given energy Ej within the 

time bin interval of Δti. This procedure was applied for the Ta as well as for the W measurement.  

Surprisingly, all the dependencies Nij (Δti) showed non-monotonic behavior with two maxima, those 

positions changed from 2.5 to 0.8 s with Ej increasing from 3 keV to 7 keV. Knowing flight-path for 

these particles, their energy per charge and charge sign, we confirmed that these were negative ions of 

hydrogen (H
1-

) and oxygen (O
1-

). Negative ion production from a femtosecond plasma was first observed 

and explained in [23].  

Hence, we excluded events observed at time intervals corresponding to such ions’ arrival at the 

detector from further analysis. An interval center was calculated as time-of-flight of a specific negative 

ion at a given energy Ej, while its width – from the spectrometer energy resolution (the full width changed 

from 0.1  s to 0.35 s depending on the energy Ej). The data obtained after the exclusion procedure lost 

temporal dependence – the number of events Nij did not depend on time for all energies Ej, at least within 

the limits of the statistical error. This was due to the arbitrary short detection interval of 3.5 µs which is 

substantial shorter than the to the half-life of the 
181

Ta isomeric nuclear level (~6 µs).  

Figure 6a presents spectra of delayed events which were summed over the full detection time at a 

given energy Ej as described. Since the ejection of IC electrons as well as Auger processes are both quite 

fast processes  that happen within the µs time scale, we do expect that the spectrum observed within a 3.5 

µs interval is the same as the spectrum integrated over a few lifetimes of the 
181

Ta isomeric nuclear level. 

We split all the 8000 runs at a given energy in 16 groups, 500 runs each, and calculated the number of 

events in each group, with the mean value for 16 groups and its standard deviation σ. Each data point in 

Figure 6a corresponds to the mean value and  σ divided by the factor of 500 for normalisation. The 

spectrum in Figure 6b presents the difference between the Ta and W spectra. There are two spectra 

intervals where the number of events for the 
181

Ta target is reliably higher than that for the W. This 

intervals are between 3.5 keV - 4.7 keV and 5.7 keV - 6.2 keV.  

 



Direct detection of delayed high energy electrons from the 
181

Ta  

 

9 

 

3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0
0

2

4

6

8

10 Ta-181

 W

N
(e

le
c.

/(
p
u
ls

e 
sr

 k
eV

))

Energy (keV)
 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0

1

2

3

4

5

N
(e

le
c
./
(p

u
ls

e
 s

r 
k
e

V
))

Energy (keV)

0

5

10

15

20
N, a.u.

 

Figure 6. Spectra of delayed electrons from the Ta and W targets (a) and difference between these 

two spectra (b). In Figure 6b the calculated spectrum of IC electrons from the 6.237 keV isomeric level of 

181
Ta isotope is also shown by the open bars.  

5. Discussion & conclusions 

Figure 6b also contains the calculated spectrum of delayed electrons from IC of the 6.237 keV 

isomeric level of the 
181

Ta isotope. Note that the latter spectrum corresponds to the IC decay in a fully 

dressed Ta atom. Impact ionization in plasma almost certainly will influence the theoretical spectrum, 

especially if one accounts for the IC probabilities from the upper atomic shells [11]. It can be clearly seen 

from Figure 6b that for both intervals, 3.5 keV-4.7 keV and 5.7 keV - 6.2 keV, the differential spectrum 

has amplitudes well above zero. This, in turn could be linked to a group of certain IC processes from the 

Ta isomeric level. The prominent increase in the number of delayed electrons at energies Ej < 4 keV 

should be attributed to the secondary Auger process following the IC decay [13]. The number of excited 

Ta nuclei in a single shot can be estimated from the experimental data in Figure 6b at IC electron energies 

of around 4.5 keV and 5.9 keV. This yields 30±10 and 50±15 nuclei per shot, respectively. Assuming that 

the excitation volume is 7 x7 x 2 m
3
 and the absorption length of a 6 keV photon is ~2 µm, the 

excitation efficiency amounts to ~10
-11

. Certainly this estimate is very rough and does not take into 

account plasma expansion, finite length of an IC electron free path in plasma, etc.  

Still, this value is of such a high order of magnitude that it cannot be explained from the simple 

photoexcitation process by plasma x-rays or inelastic scattering by plasma electrons [9] and based on our 

current understanding, two possible scenarios may apply. Firstly, those peaks in the energy spectrum of 

delayed events are due to some specific process in atomic shells of a Ta atom, or, secondly,  the isomeric 

nuclear level excitation in our experimental conditions passes through a different, yet still unclear channel 

that certainly depends on an atomic shell structure. Joint efforts of theoreticians and experimentalists are 

needed to address these issues. Novel approaches for isomeric nuclear excitation in plasma, and more 

precise experiments with better yields leading to an enhancement of the statistical significance are 

demanded. 
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