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Abstract

Privacy-aware search of outsourced data ensures relevant data access in the untrusted
domain of a public cloud service provider. Subscriber of a public cloud storage service
can determine the presence or absence of a particular keyword by submitting search
query in the form of a trapdoor. However, these trapdoor-based search queries are
limited in functionality and cannot be used to identify secure outsourced data which
contains semantically equivalent information. In addition, trapdoor-based
methodologies are confined to pre-defined trapdoors and prevent subscribers from
searching outsourced data with arbitrarily defined search criteria. To solve the problem
of relevant data access, we have proposed an index-based privacy-aware search
methodology that ensures semantic retrieval of data from an untrusted domain. This
method ensures oblivious execution of a search query and leverages authorized
subscribers to model conjunctive search queries without relying on predefined trapdoors.
A security analysis of our proposed methodology shows that, in a conspired attack,
unauthorized subscribers and untrusted cloud service providers cannot deduce any
information that can lead to the potential loss of data privacy. A computational time
analysis on commodity hardware demonstrates that our proposed methodology requires
moderate computational resources to model a privacy-aware search query and for its
oblivious evaluation on a cloud service provider.

Introduction 1

We are living through a post-PC era in which computing facilities are regarded as the 2

fifth utility [1]. These facilities, which are primarily related to computational and 3

storage services, are provisioned to subscribers on a pay-as-you-go basis. This new 4
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service provisioning model is known as cloud computing [2]. Advances in virtualization 5

technologies and the availability of high-speed Internet have fostered this on-demand 6

computing paradigm. It provides an abstraction of unlimited computational and storage 7

facilities to its subscribers, enabling them to dynamically scale services or applications 8

according to their specific requirements [3]. These on-demand and virtualized services 9

are provisioned by a cloud service provider (CSP). The underlying cloud infrastructure 10

(processing power, storage capacity, and networking facility) is owned, managed, and 11

operated by a CSP. Subscribers do not need to take care of the cloud infrastructure, the 12

assurance related to uninterrupted service provisioning is delineated in a service 13

contract that is signed between the CSP and its subscribers. 14

Cloud-based storage service is a generalization of cloud-enabled data sharing, 15

archiving, collaboration, and synchronization services [4]. These services leverage their 16

subscribers to store their data for much a longer duration without the concerns of data 17

availability and accessibility from varied devices, i.e., desktop computers, laptops, and 18

smartphones. As lucrative as it sounds, there are data privacy concerns when 19

confidential and personal data are outsourced to cloud-based storage services owned and 20

managed by a CSP [5], [6], [7], [8]. Since these services are provisioned beyond the 21

federated domain of subscribers over which they do not have any control, the CSP is 22

considered to be an untrusted entity [9]. The most obvious solution to ensure data 23

confidentiality in untrusted domain is to encrypt personal and confidential data before 24

it can be outsourced to a cloud-based storage service. Since these services are 25

provisioned on a pay-as-you-go basis, each data access request is charged according to 26

the amount of data transferred between the subscriber and the CSP. Thus, the 27

capability of a subscriber to access relevant encrypted data is very important. It ensures 28

data privacy and can also increase the utility of the cloud-based storage services. 29

To access relevant data within the untrusted domain of a CSP, two main 30

methodologies are employed, namely a search over encrypted data [10], [11], [12] and an 31

index-based data search [13], [14], [15]. A search over encrypted data exploits the 32

mathematical properties (trapdoors) of the cryptographic protocol to identify encrypted 33

data that contain a particular keyword. These methodologies ensure the privacy of the 34

outsourced data and the search query, preventing the CSP from deducing any 35

information about the outsourced data that can lead to a potential loss of privacy. An 36

index-based data search employs a different methodology than an encrypted data search. 37

Instead of executing a search query over encrypted data, the search query is evaluated 38

for the index (inverted index) associated with the outsourced data. Trusted entities can 39

be employed to persist the index and evaluating the search query. In contrast to that, 40

index can be stored in cloud storage in encrypted form along with the outsourced data 41

and concealed search queries can be used to search the cloud. 42

The aforementioned methodologies provide accessibility to relevant data and also 43

ensure data privacy. However, these methodologies are fairly limited in their 44

functionality and greatly affect the utility of cloud-based storage services. A search over 45

encrypted data can only search for predefined keywords for which trapdoors are defined, 46

and in the case of data sharing and collaborative services, these trapdoors are shared 47

among subscribers. In an index-based data search, where the index is used by a trusted 48

entity, the cloud storage is underutilized for only the outsourced data, whereas the 49

search queries that are handled by a trusted entity can only retrieve the data that have 50

an exact match between the search criterion and index entries. Similarly, when the 51

index is outsourced to cloud storage, the CSP can learn the access patterns of 52

subscribers and can deduce confidential information about the outsourced data and 53

subscribers. For instance, if the outsourced data of a patient is searched by a medical 54

doctor specializing in diabetes mellitus, this leads to a possibility that either the 55

outsourced data contains information regarding diabetes mellitus or that the patient is 56
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suffering from diabetes mellitus. 57

Considering the limitations of conventional methodologies to efficiently retrieve 58

outsourced data taking data privacy into consideration, there is a need for a searching 59

methodology that can achieve semantic data retrieval and for an oblivious data search. 60

Semantic data retrieval will ensure that relevant data can be discovered even if there is 61

no exact match between the outsourced data and the search criteria defined by a 62

subscriber. This will greatly increase the efficacy of the searching methodology in data 63

sharing and collaboration services where the exact contents of the outsourced data are 64

not known to participating subscribers, and only abstract ideas/concepts are 65

communicated between them. For example, the employees of an insurance company who 66

are collaborating on a task to define premium rates for next year’s insurance policy, do 67

not know the actual contents of the survey reports shared by their colleagues. However, 68

they want to determine if there are any surveys on viral diseases in a certain vicinity. 69

An oblivious search will lead to maximized utilization of the cloud infrastructure 70

without relying on a trusted third party and will enable the CSP to evaluate the 71

encrypted search queries. 72

In this research, we propose an privacy-aware content discovery methodology that 73

enables subscribers of a cloud storage service to locate relevant data contents without 74

using actual keywords from the outsourced data. It is an index-based privacy-aware 75

data searching methodology that does not rely on a trusted third party to evaluate the 76

search query. It realizes privacy-aware content discovery, which ensures that only 77

authorized subscribers are able to search the outsourced data. It also prevents the CSP 78

and unauthorized subscribers from learning the presence or absence of any keywords 79

and deducing information that can lead to a potential loss of privacy, encompassing the 80

outsourced data and the subscribers’ personal information. 81

With the proposed methodology of privacy-aware content discovery, we make the 82

following contributions in the area of cloud-based storage services: 83

• Privacy-aware search for encrypted data by utilizing semantic information to 84

identify similarities between search criteria and outsourced data. The search 85

criteria defined by a subscriber need not be exactly the same as in the outsourced 86

data. If there exists a semantic relation between the search criteria and 87

outsourced data, the relevant data contents can be retrieved; 88

• Privacy-aware data search without the need to share trapdoor information, and 89

authorized subscribers can define their own search criteria. Their ability to access 90

relevant data is not restricted to the information communicated by the data owner 91

who outsources the data to the cloud storage; 92

• Maximized utilization of cloud storage services by persisting encrypted index and 93

evaluated encrypted search queries within the domain of untrusted CSP; and 94

• Index and search query expansion by using semantic technologies to realize an 95

encrypted data search similar to data contents for searching over the Internet. 96

The rest of this paper is organized as follows: Section 2 presents the related work. 97

Section 3 defines the system design goals and the architectural and security model along 98

with the assumptions. Section 4 is dedicated to the descriptive details of the proposed 99

methodology. Section 5 discusses the implementation details, followed by evaluation of 100

the results in Section 6. Section 7 presents the discussion on security, and Section 8 101

concludes the paper and discusses future directions. 102
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Related Work 103

In this section, we present methodologies to search encrypted data within an untrusted 104

domain. Throughout this section, we mainly focus on cryptosystems, which exploit the 105

mathematical properties of underlying cryptographic primitives to search encrypted 106

data (i.e., trapdoor functions), and enterprise products, which define their protocols to 107

match encrypted search queries and data. We mainly discuss the effects of these 108

conventional methodologies on the efficacy and utility of cloud-based storage services 109

within the context of data sharing and collaboration services. 110

Symmetric key cryptography (SKC) enables a search over encrypted data [10] by 111

utilizing a trapdoor defined for a particular key only to identify a match between a 112

search query (trapdoor function) and encrypted data. SKC has been used in various 113

schemes for searching over encrypted data, in which trapdoors are used to identify a 114

match between the index of encrypted keywords instead of encrypted 115

data [13], [14], [15]. However, the basic principles of the trapdoor’s definition and the 116

matching remain the same. A trapdoor-based search for public key cryptography (PKC) 117

was proposed by Boneh et al. [11]. It leverages an untrusted server to search encrypted 118

data using a public key, without the need to decipher concealed data. Schemes to search 119

encrypted data that are based on SKC and PKC are limited in functionality because 120

encrypted data can only be searched for keywords having corresponding trapdoors that 121

are defined by the data owner who encrypts the data. Also, these trapdoors must be 122

transmitted to authorized users, enabling them to access relevant data using search 123

queries. Thus, methodologies relying on trapdoor-based cryptography assume 124

guaranteed availability of the data owner or a trusted third party (TTP) to transmit a 125

trapdoor to authorized users according to their access privileges. 126

To search confidential personal healthcare records, Li et al. proposed the Authorized 127

Private Keyword Search (APKS) [12]. APKS utilizes Hierarchical Predicate Encryption 128

(HPE) to realize a search over encrypted data [16] and employs a TTP to distribute 129

capabilities (trapdoors) to authorized users according to their access privileges. These 130

capabilities are then submitted to the CSP to evaluate the search query. Wang et al. 131

proposed a methodology to rank search results according to their relevance with the 132

selection criteria (trapdoor) [17]. However, it only supports a single trapdoor-based 133

search query, greatly reducing its efficacy in defining the complex selection criterion and 134

lacking the realism to search a large amount of data. A Searchable Cryptographic Cloud 135

Storage System (CS2) focusing on dynamic data updates also provides a search over 136

encrypted data [18]. Instead of searching the entire encrypted data repository, CS2 137

utilized the inverted index. However, CS2 is limited to cloud-based storage services and 138

is not applied for cloud-based data sharing and collaboration services. Recently, Wenhai 139

Sun et al. presented a privacy-preserving multi-keyword text search (MTS) with 140

similarity-based ranking [19]. MTS utilizes tree-based indexing with adaption methods 141

for a multi-dimensional algorithm. It ensures the confidentiality of the search query and 142

the index data structure. However, it assumes that the user searching the cloud storage 143

always behaves honestly, whereas the cloud server is honest but curious. This 144

assumption can greatly affect the practicality of MTS for cloud-based storage services, 145

focusing on data sharing and collaboration, in which users can behave maliciously to 146

determine the presence or absence of a particular keyword(s). Oblivious Term Matching 147

(OTM) realizes an encrypted index search, where the index is computed over encrypted 148

outsourced data. OTM obliviously evaluates encrypted search queries, where it does not 149

consider relevant data access with consideration of semantic enrichment of the 150

encrypted index or search queries [20]. The proposed methodology of semantic data 151

search uses OTM to identify similarities between search criteria and outsourced data. 152

To achieve efficient data retrieval over large data contents, enterprises rely on search 153

products that are customized to their specific needs and requirements. The Google 154
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search appliance [21] and Windows enterprise search products [22] offer such search 155

solutions. These products create a searchable centralized enterprise-wide index that is 156

used within the enterprise’s data center or can be configured to use cloud repositories. 157

The search queries are evaluated and the results are filtered according to the access 158

privileges of a user. Since these products evaluate access privileges after the execution of 159

a search query, they require search services to be hosted within the federated domain of 160

an enterprise. Thus, these search services retrain the migration of an enterprise-to-cloud 161

ecosystem as it has to engage its own dedicated computation and storage resources for 162

customizable search services. The authors in [23] have shown that, by carefully modeling 163

search queries, malicious users can deduce confidential information from the centralized 164

index, even if their access privileges do not allow them to access encrypted data. 165

The aforementioned methodologies for searching encrypted data focus on the 166

confidentiality of the search query and the outsourced data. However, these 167

methodologies do not consider the privacy of the query evaluation process that is 168

employed to identify the relevant data contents. It can be exploited by a malicious CSP 169

to deduce information that can lead to a potential loss of privacy. In cloud-based data 170

sharing services, if multiple users are searching for a similar keyword, the CSP can 171

effortlessly identify the importance of the outsourced data and can concentrate its 172

malicious intents to deduce confidential information from the data. For instance, if the 173

employees from the accounts and planning departments of an organization are searching 174

data that has been outsourced to a folder called projected income statements, the CSP 175

can determine the irregularity in access patterns and consequently affect the highly 176

sensitive stock market, thereby disrupting the stock prices. Thus, a methodology that 177

can obliviously search cloud-based repositories is of great importance, as it restrains the 178

capability of a CSP to deduce or infer confidential information. 179

Fig 1 highlights the important features of existing methodologies for encrypted data 180

search i.e., availability requirement for involved entities, entity responsible for evaluating 181

the search query, and capability of a user to define arbitrary search queries. Although 182

these methodologies realize encrypted data search, however their functionality is limited 183

to exact matching between the search query and encrypted data i.e., trapdoors and 184

encrypted index. Also these methodologies restrain authorized users to define their own 185

search queries. In the subsequent sections, relevant data access with semantically 186

enriched search queries is presented. The proposed methodology realizes semantic 187

search enabling authorized users to define their own conjunctive search queries without 188

compromising privacy of the outsourced data and search queries as well. 189

Design Goals, System and Security Model, Main 190

Idea, Assumptions and Notations 191

System Design Goals 192

A data search within a cloud storage service allows subscribers to locate the required 193

data contents. However, when data is outsourced to an untrusted domain of a public 194

cloud service provider in encrypted form, standard search queries do not work, as the 195

search criteria cannot be mapped to encrypted data. These search queries can also 196

reveal confidential information about the outsourced data and the data owner. The 197

design goal of our proposed system is to allow the subscribers of a public cloud storage 198

service to search encrypted data in a similar way as contents are discovered over the 199

Internet. However, search queries should not reveal any information to the cloud service 200

provider, which can lead to the potential loss of privacy, affecting the outsourced data 201

and personal information. 202
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Fig 1. Features of conventional encrypted data search methodologies.
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System Model 203

To search encrypted data similar to content discovery works over the Internet, the 204

public cloud storage service provider, repository owner, and content contributor are 205

considered as the involved entities. For the sake of simplicity in the subsequent 206

descriptive details, we refer to these entities as the cloud server, owner, and subscriber, 207

respectively. The cloud server owns the cloud infrastructure (i.e., storage, computation, 208

and network) and provisions its access on a subscription basis. The owner is a cloud 209

storage subscriber who creates a shared repository that is accessible to other authorized 210

subscribers. Subscribers contribute to the shared repository by outsourcing data 211

contents. The owner and authorized subscribers search the cloud storage (shared 212

repository) by submitting search queries to the cloud server. Search queries are 213

obliviously evaluated by the cloud server, and the search results are provided to the 214

respective entity according to its access privileges. 215

Security Model 216

We consider the cloud server to be an untrusted entity that can collude with 217

unauthorized subscribers to compromise the privacy of the outsourced data. It can 218

assist unauthorized subscribers to search the outsourced data. Since the search query is 219

evaluated by the cloud server, its result can be exploited to deduce confidential 220

information about the outsourced data. To ensure the confidentiality of the outsourced 221

data, only encrypted data is outsourced to the cloud server. In addition, to prevent the 222

cloud server from inferring confidential information about the outsourced data, the 223

encrypted search query is obliviously evaluated. This restrains the cloud server and 224

unauthorized subscribers from learning of the presence or absence of a particular word 225

or concept in the outsourced data. 226
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Main Idea 227

Suppose the Daily News is a nationwide newspaper that provides coverage of national 228

and international events. Alice is a subeditor working for the Daily News. She oversees 229

the department that focuses on financial corruption. At any particular point in time, 230

she is working on multiple cases. She has assigned evidence collection and report 231

compilation tasks to her subordinate journalists. To deal with the problem of content 232

accessibility on her office and mobile devices, she has subscribed to a public cloud 233

storage service that is provisioned by Eve. Since her subordinate journalists share 234

confidential information with her, she does not want Eve to learn or deduce any 235

information about the outsourced data. To ensure the privacy of the data, each 236

journalist outsources encrypted data to the repository shared by Alice. 237

Bob and Mallory are Daily News journalists who work with Alice. Bob is an expert 238

at retrieving information from online resources. Mallory’s expertise is in finding the 239

ground truth by contacting the concerned authorities. Both are directed to submit their 240

findings on a financial scam that was recently exposed by the Fraud and Financial 241

Crime Division of the State. Alice has provisioned access to both Bob and Mallory to a 242

cloud-based shared repository. Bob retrieves all of the related information from online 243

resources, whereas Mallory compiles her report using the information she has collected 244

from the appropriate authorities. Before outsourcing their findings to a shared 245

repository, they index the information. The index is then further enhanced by 246

augmenting it with missing relevant information. After that, the findings and the 247

enhanced index are encrypted and outsourced to the shared repository. 248

Whenever Alice needs to search for a file containing particular information, she 249

defines a search criterion. The search criterion is then enriched by adding missing 250

relevant information. The augmented search criterion is then encrypted with the secret 251

key, and after that, Alice models an oblivious search query using the encrypted search 252

criterion. The oblivious query is then submitted to the cloud server, which replies with 253

the response. 254

Alice processes the cloud server response and determines the presence / absence of 255

keywords that were defined in the search criterion. From the processes of query 256

formation, evaluation, and post-processing of the result, the cloud server learns nothing 257

about the outsourced data or the search query; the search evaluation is oblivious to the 258

cloud server. If an unauthorized subscriber tries to search the repository, the proposed 259

system generates a randomized response. Fig 2 illustrates the conceptual model of our 260

proposed system for searching encrypted data in an untrusted domain. 261

Assumptions and Notations 262

The proposed system focuses on semantic search for encrypted data. We assume that 263

the owner has shared a symmetric encryption key with the authorized subscribers. The 264

data that is outsourced to a shared repository is always encrypted with that key. In the 265

subsequent descriptive details of the proposed system, the specifics of sharing data 266

within an untrusted domain are intentionally neglected for the sake of simplicity. 267

Readers can refer to [24] and [25] for descriptions of efficient and secure data sharing 268

within public cloud storage services. The proposed system address the problem of 269

privacy-aware relevant data access in untrusted cloud storage services. Ensuring data 270

integrity and correctness is beyond the scope of research undertaken in this work; 271

interested reader can refer to [26] for more details on public auditing. 272

Table 1 presents the notations used in the descriptive details of our proposed system 273

to semantically search the encrypted data. F represents a file that is outsourced to 274

cloud storage. I stands for an index computed over F that contains the keywords and 275

their respective frequencies i.e., I = {〈kw0, f0〉 . . . 〈kwn, fn〉}, where n is the size of the 276
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Fig 2. Semantic search over encrypted data - conceptual model

index. Is represents a semantic index that is generated by identifying synonyms and the 277

root word for each kw0...n : kwi ∈ I i.e., 278

Is = {〈kw0, syn00...ν , rw0, f0〉 . . . 〈kwn, synn0...ν
, rwn, fn〉}, where syni0...ν is the list of 279

synonyms of kwi, and rwi is its root word. H is an encoding function that is publicly 280

known and encodes variable sized keywords into integer values of fixed length. EH and 281

DH are homomorphic encryption algorithms. σpk and σsk are public and secret keys 282

respectively, that are used by homomorphic encryption algorithms. These algorithms 283

enable the processing of encrypted values (search query and encrypted index) without 284

the need to decrypt them. ES and DS are symmetric encryption algorithms with a 285

secret key k. F and Is are encrypted with symmetric encryption algorithms before they 286

can be outsourced to a cloud server. EA and DA are asymmetric encryption algorithms 287

associated with kpub and kpri public and private keys, respectively. α0...n represents a 288

list of polynomial coefficients that are used to formulate an oblivious search query. 289

∆y0...n is a list of oblivious values that are obtained as a result of the oblivious search 290

query execution by the cloud server. 291

Proposed System 292

The proposed methodology of encrypted data search based on semantically enriched 293

index and search queries is presented in this section. It is divided into five cohesive 294

steps: indexing, data outsourcing, query formulation, query execution, and 295

post-processing of results. 296
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Table 1. Notations used in the descriptive detail of semantically enriched encrypted
data search.
Notation Description
F File outsourced to a shared repository.
I = {〈kw0, f0〉 . . . 〈kwn, fn〉} Index file that contains n keywords.
Is = {〈kw0, syn00...ν , rw0, f0〉 . . .
〈kwn, synn0...ν , rwn, fn〉}

Semantic index - an enriched form of I. kw is a keyword
from I, syn0...ν is a list of its synonyms and rw is its
root/parent word.

H Publicly known encoding function that transforms an
arbitrary-sized string to an integer value of q modulo,
where q is a large prime.

EH , DH Homomorphic encryption and decryption algorithms.
σpk, σsk Public and secret key pair for homomorphic encryption

algorithms.
EA, DA Asymmetric encryption and decryption algorithms.
kpub, kpri Public and private key pair for asymmetric encryption

algorithms.
ES , DS Symmetric encryption and decryption algorithms.
k Secret key of symmetric encryption algorithms. It is shared

with authorized users only.
α0...n List of coefficients of a polynomial P which defines a search

query.
∆y0...n List of oblivious values generated as a result of query

execution by the cloud server.

Indexing 297

A semantic search over encrypted data is achieved by evaluating search queries for an 298

enriched inverted index (Is) associated with the outsourced data (F). Since, we want 299

subscribers to search outsourced data using search queries that are semantically 300

equivalent, the inverted index (I) is augmented with extra information. This extra 301

information enables us to identify outsourced data that contains relevant information 302

instead of finding an exact match between the search query and the keywords extracted 303

from the outsourced data. 304

To achieve this, the indexing is further divided into two phases. In the first phase, 305

for each F that needs to be stored in cloud storage, I is generated. It contains all of the 306

keywords (kw0 . . . kwn) that appear in F , along with their respective frequencies i.e, 307

I = {〈kw0, f0〉, . . . 〈kwn, fn〉}. After that I is further processed to augment it with 308

semantic information. For that, kw0...n : kwi ∈ I are searched in a lexical database. 309

This enables us to identify synonyms (syn0...ν) of kwi that do not exist in I but where 310

syni0...ν and kwi semantically equivalent. Further root word (rwi) of each kwi is also 311

extracted from the lexical database. rw assists us in finding the keywords that share the 312

same root word, consequently identifying the relevancy between the search query and 313

the encrypted outsourced data. Once syn0...ν and rw are identified, I is augmented 314

with this extra information and is transformed into semantic index i.e., 315⊎
(I, syn0...ν , rw)→ Is; where

⊎
(·) is a function that appends syn0...ν and rw to I 316

removing any duplicate values, where 317

Is = {〈kw0, syn00...ν , rw0, f0〉 . . . 〈kwn, synn0...ν
, rwn, fn〉}. 318

Data Outsourcing 319

To ensure that the cloud server cannot exploit Is by deducing confidential information 320

about the outsourced data. Is is concealed using a symmetric encryption algorithm 321

before it can be outsourced to a cloud server. The secret key (k) for the symmetric 322

encryption algorithm is shared among all of the authorized subscribers by the owner 323

who having ownership rights over the shared cloud based repository. The scope of this 324

paper is limited to encrypted data search, readers may refer to [27] for more details 325
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Fig 3. Encoding semantically enriched index and securing its confidentiality through
symmetric encryption.

secret key sharing and user revocation in untrusted domain. 326

In order to ensure that the search query can be obliviously evaluated by the cloud 327

server, the owner encodes each keyword (kwi ∈ Is) using a publiclly known encoding 328

function H(Is)→ Îs. Îs is then encrypted using a symmetric encryption algorithm 329

ES(Îs, k)→ Îks . Once the confidentiality of Is is ensured, Îks along with Fk are 330

outsourced to the cloud server. Since, k is only shared among the authorized subscribers 331

and the owner, unauthorized subscribers cannot deduce any information about the 332

outsourced data, even if they conspire with the cloud server. Fig 3 illustrates the entire 333

process of securing inverted index with symmetric encryption. 334

Query Formulation 335

To search encrypted data, a subscriber defines a search criterion (Ckw0...j ), which 336

consists of a set of keywords (kw0...j) that are used to search the relevant encrypted 337

outsourced data. Since, we want to realize a semantic search over encrypted data, the 338

search criteria defined by the subscriber is further enriched by identifying synonyms of 339

kw0...j : kwi ∈ Ckw0...j
. Once the relevant keywords (syn0...ν) are identified Ckw0...j

is 340

enriched by adding syn0...ν to Ckw0...j
i.e.,

⊎
(Ckw0...j

, syn0...ν)→ Ckw0...l
, where j < l, 341

and
⊎

(·) is a function that appends syn0...ν to Ckw0...j . 342

Since, search queries are evaluated by the cloud server, there is a need to conceal 343

Ckw0...l
using an appropriate symmetric encryption algorithm. To prevent the cloud 344

server from deducing any information about the encrypted outsourced data, the owner 345

encodes Ckw0...l
using a publicly known encoding function. For example, 346

H(Ckw0...l
)→ Ĉkw0...j

- H(·) must be the same encoding function as that used in the 347

data outsourcing; otherwise, an oblivious search query cannot be successfully evaluated. 348

After that Ĉkw0...l
is encrypted with the symmetric encryption i.e., 349

ES(Ĉkw0...l
, k)→ Ĉkkw0...l

, where k is a shared symmetric encryption key, which is the 350

same as that used in the data outsourcing to conceal Îkw0...n . 351

To this stage, Ĉkw0...l
has been concealed, however in order to realize an oblivious 352

query evaluation there is a need to further process Ĉkkw0...l
. A polynomial (P (x)) is 353
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Fig 4. Encoding semantically enriched search criteria and modeling search query for
oblivious computation.

defined such that the concealed kw0...n : kwi ∈ Ĉkkw0...l
are the root of P (x) i.e., 354

P (x ∈ Ĉkkw0...l
) =

∑l
i=0 αix

i = 0, where α0...l are the coefficients of P (x). 355

Once the polynomial P (x) has been defined, a homomorphic encryption key pair 356

(σpk, σsk) is initialized. Homomorphic encryption enables the cloud server to process the 357

encrypted search query and also restrains its ability to learn the result of the query 358

evaluation. After that, α0...l are encrypted i.e., EH(α0...l, σsk)→ ασsk0...l, α
σsk
0...l along with 359

σpk are transfered to the cloud server. ασsk0...l are used as the encrypted search query 360

whereas σpk enables the evaluation of an encrypted search query without the need to 361

decipher Îks and ασsk0...l. Fig 4 describes the entire process of query formation. 362

Query Execution 363

To semantically identify the encrypted data, the search query is obliviously executed by 364

the cloud server. ασsk0...l, which is submitted by a subscriber, is evaluated for Îks . By 365

using σpk, for kw0...n : kwi ∈ Îks , the cloud sever computes the oblivious value i.e., 366

∆y0...n = r.P (yi ∈ Îks ), where yi = kwi ∈ Îks and r is a random number. The 367

computation of the oblivious value ensures that the owner can identify the match 368

between ασsk0...l and Îks . Fig 4 describes the oblivious query execution process. 369

Since, we are employing homomorphic encryption, the cloud server cannot learn 370

whether kwi ∈ Îks is a root of ασsk0...l. Thus, it cannot identify a match between the 371

encrypted search criterion and the encrypted index. Once ∆y0...n = r.P (y0...n) are 372

computed, the cloud server transfers the result of the search query evaluation to the 373

subscriber. 374

Post-processing of results 375

The oblivious values that the subscriber receives from the cloud server can only be 376

deciphered using the valid homormophic key, which is the secret key, σsk. This ensures 377
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that the cloud server cannot collude with malicious subscribers to exploit the oblivious 378

query evaluation process. On receiving the cloud server’s response, the subscriber 379

deciphers ∆y0...n i.e., DH(∆0...n, σsk) = ψ0...n, where ψi can be a zero or non-zero 380

randomized value. 381

Since, the search query ασsk0...l submitted by the subscriber is constituted of root 382

values from Ĉkkw0...l
the decryption of ψi turns out to be zero for all those yi = kwi ∈ Îks 383

that are equal to the root value of P (yi), i.e., kwi ∈ Ĉkkw0...l
∧ kwj ∈ Îkkw0...n

where 384

kwj = kwi. For all other values where kwj 6= kwi, ψi would turn out to be a random 385

value (see the equation 1). 386

P (y) =

l∑
i=0

αiy
i

{
= 0 if y is root of P (y).

6= 0 a random value r for all other index entries.
(1)

Thus, only by deciphering ∆y0...n with valid σsk owner can learn the result of 387

encrypted search query. However, for the cloud server the evaluation of the search query 388

will remain oblivious. 389

Implementation 390

The proposed methodology for a semantically enabled search of encrypted data is 391

realized using jdk 1.7. We implemented a Java based desktop application and web 392

service. The desktop application performs keyword extraction, indexing and search 393

query augmentation, and post-processing of the result, whereas the web service is solely 394

responsible for the oblivious evaluation of the encrypted search queries. Fig 5 illustrates 395

the core functionalities of desktop application (data owner and authorized users) and 396

web service. 397

In desktop application for data owner we generates an inverted index from the plain 398

text, i.e., the data that needs to be outsourced to cloud storage. For this, we employ 399

Apache Lucene API [28], which is a fully-featured text search engine that is focused on 400

high performance. Apache Lucene enables us to extract all keywords, avoiding indexing 401

of the stop word and repeated keywords. Once the keywords are extracted from the 402

plain text in the form of the inverted index, we augment them with semantic 403

information, i.e., synonyms and root words, using WordNet [29]. To use the augmented 404

keywords to search the encrypted data, a hash of the individual keywords is computed 405

using the SHA-512 hashing algorithm. The hashed keywords are then encoded into 406

BigInteger values of arbitrary size. Once encoded, the inverted index entries are 407

encrypted with the symmetric encryption algorithm and are outsourced to the web 408

service. 409

User desktop application authorized users model their search query in the form of a 410

polynomial and learn the semantic map between their search criteria and the outsourced 411

encrypted index. The search criteria defined by a user is augmented and encoded in a 412

similar way, as discussed for the inverted index. To evaluate the encrypted search query, 413

we utilize the Pascal Paillier cryptosystem [30]. The secret key of Pascal Paillier is used 414

to conceal the search criteria, whereas a public key is used by the cloud server to 415

evaluate the search query. For each encrypted keyword in the encrypted index, the 416

search is evaluated and the result is transmitted back to the user. 417

Evaluation 418

The proposed methodology for the encrypted data search was evaluated on a 2.60 GHz 419

Windows 7 PC with 2.0 GB of main memory. We opted for a relatively low-end 420
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Fig 5. Core functionalities - desktop application and web service.

machine to demonstrate that the proposed methodology can be realized for any public 421

cloud-based storage service, since it does not have any special computational 422

requirements. 423

In the subsequent section, we first present the computational complexity of the 424

semantic search for encrypted data. We then discuss the computational analysis of 425

augmenting the inverted index and the search criteria with the semantic information. In 426

the last section, we show the computational load of the oblivious query evaluation, 427

where the search query is composed of multiple search criteria. 428

Complexity Analysis 429

The computational complexity and the amount of data transmitted between the entities 430

are analyzed in order to illustrate the efficacy of our proposed encrypted data search. 431

Both of these parameters are directly proportional to the size of the encrypted index 432

outsourced to the cloud storage and the size of the encrypted search query. Table 2 433

shows the set of operations performed in each step of our proposed methodology, along 434

with the input size and the amount of transmitted data. For the sake of simplicity, we 435

regarded the cryptographic and hashing operations as constant time operations, because 436

the proposed methodology is not confined to any particular encryption or hashing 437

algorithm. 438

Indexing: To extract keywords and to identify the semantically equivalent words for 439

each extracted keyword, we utilize freely available libraries, such as Apache Lucene and 440
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Table 2. Complexity analysis of semantic search for encrypted data

Steps Operations Input Size Computational
Complexity

Transmitted
Values

Indexing Public encoding &
Symmetric encryp-
tion

N O(N) –

Data outsourcing – N O(N) N
Query formulation Asymmetric encryp-

tion & Polynomial
modeling

n O(n3) n+ 2

Query execution Polynomial evalua-
tion

(n+ 1)N O(n2.N) N

Post-processing of
results

Asymmetric decryp-
tion

N depends on n depends on n

Wordnet. Since these libraries complement our proposed system, we consider their 441

execution at a constant time. Thus, the computational complexity of the index is O(N), 442

where N is the size of the augmented index containing both the synonym and the root 443

word. 444

Data outsourcing: We regard the computational complexity of the data outsourcing 445

to be O(N), where N is the size of the augmented index. In total, N values are 446

transmitted to the cloud server. 447

Query formulation: The query formation is comprised of two steps. In the first 448

step, the user defines the search criteria, which is then expanded with semantic 449

information and finally encoded into a fixed length integer value using a hashing 450

algorithm. In the second step, encoded values are used to model a polynomial, which is 451

then concealed using the Pascal Paillier homomorphic encryption algorithm. Since the 452

retrieval of the synonyms and root word and the encoding of the expanded search 453

criteria are regarded as constant time operations, the computational complexity of the 454

first step is O(n), where n is the size of the expanded search criteria. For the second 455

step, the first individual encoded search criterion is modeled as a polynomial (where the 456

search criterion is a root of the polynomial), the individual polynomials are multiplied 457

together, and the coefficients of the resultant polynomial are concealed with the private 458

key of the homomorphic encryption algorithm. Since the encrypted search query is 459

modeled in three steps, its computational complexity is O(n3), where n is the size of the 460

encoded search criteria. In total, n+ 2 values are transmitted to the cloud server, where 461

n+ 1 is the number of coefficients, and there is one public key of the homomorphic 462

encryption algorithm. 463

Query execution: The encrypted search query is evaluated for each encrypted entry 464

in the index outsourced to a cloud server. The computation complexity of the query 465

execution depends on two factors: the size of the index, N , and the size of the 466

polynomial that models the search query, n+ 1. Thus, the computational complexity of 467

an oblivious search query evaluation in terms of the Big-O notation can be expressed as 468

O(n2N). The size of search query results is also directly proportional to the size of the 469

index. In total, N values are transmitted to the user as a result of the search query 470

execution. 471
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Table 3. Computational time analysis of semantic search for encrypted data

Query Size
(No. of keywords)

Query formulation (ms) Query execution (ms)

2 238 245
4 411 791
6 590 1169
8 778 2811
10 982 4230
12 1187 6018
14 1405 8796

Post-processing of results: Post-processing of the results is relatively a simple 472

process, and it only deciphers the number of oblivious values, N , sent by the cloud 473

server. Since we consider the computational load of the cryptographic operations as a 474

constant, the computational complexity of the post-processing of the result can be 475

regarded as O(N). The computational time required to post-process an individual 476

oblivious record depends on size of search query i.e., number of keywords used to model 477

conjunctive search query. 478

Computational Analysis 479

The computational time required to enrich the inverted index and the search query with 480

semantic information is presented along with the amount of time required to model an 481

encrypted search query. We studied the computational time of conjunctive search 482

queries and presented the time required to evaluate those encrypted search queries over 483

the enriched inverted index. Table 3 shows the average computational time of the 484

aforementioned steps computed over 100 iterations. To measure computational time we 485

used Java time logging mechanism. System time to the precision of nanoseconds was 486

logged at the beginning and end of the process, difference between logged timestamps 487

was regarded as the time required to completely execute the process. 488

Synonym identification: The index and search query expansion are two important 489

steps which enable a semantic search over encrypted data. For the computational 490

analysis, we evaluated Wordnet API over a batch of 50 words. These words can be 491

regarded as keyword entries in the inverted index and search criteria defined by 492

authorized subscribers. For a batch, the total number of synonyms and the execution 493

time are noted first, and we extracted 872 synonyms in 408 ms. This total number of 494

synonyms is then divided by 50 to calculate the average number of synonyms per word, 495

which is approximately 18 synonyms per word. Finally, the time required to extract 496

these average synonyms per word is calculated as the total execution time divided by 497

the total time multiplied by the average number of synonyms per word, i.e., 498

(408/872) ∗ 18 = 8.42 ms, which represents the average execution time per word. This 499

exercise is repeated over 10 batches of different word sets for a more realistic time 500

calculation. For the evaluation, we selected the standard implementation of WordNet 501

and did not consider an optimization strategy. 502

Query formulation: The query formulation is comprised of the polynomial modeling 503

and the asymmetric encryption of polynomial coefficients. As discussed in the 504

complexity analysis, the computational cost of the query formulation depends upon the 505

size of the search criteria that constitutes the encrypted search query. Unlike the 506

conventional methodology, the proposed method supports a conjunctive search query, 507
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allowing authorized subscribers to set multiple search filters instead of relying on a 508

single search criterion. Table 3 shows the average computational cost to model an 509

encrypted search query with multiple search criteria. 510

Query execution: For each index entry (encrypted keyword), the cloud server 511

evaluates the search query. The query evaluation is merely a process of polynomial 512

evaluation at a certain value, and that value happens to be an individual keyword in the 513

outsourced enhanced index. The computational time of the query execution depends on 514

the size of the enhanced index and the encrypted search query. The entire process of 515

query execution utilizes the homomorphic property of the Pascal Paillier cryptosystem. 516

The result of the query execution is oblivious to the cloud server. The computational 517

time of the encrypted search query comprises a range of two to ten search criteria, as 518

shown in Table 3, which shows how the increase in the number of search criteria affects 519

the computational time required to obliviously execute a search query. 520

Security Analysis 521

In this section, we present the security analysis of our proposed methodology. 522

Particularly, we focus on the capabilities of malicious entities to learn the encrypted 523

search query and to deduce confidential information about the encrypted outsourced 524

data. We examine the advantage of an untrusted cloud service provider to learn the 525

result of the search query evaluation and to deduce information that can lead to a 526

potential loss of privacy. We then discuss the scenario in which an unauthorized 527

subscriber attempts to search encrypted data to which it does not have access. 528

The proposed methodology utilizes a number of cryptographic primitives to ensure 529

execution of the encrypted search queries and to restrain malicious entities from 530

deducing information that assists them in compromising the privacy of the outsourced 531

data. As illustrated in the descriptive details of our proposed methodology, the inverted 532

index is encrypted with symmetric encryption. To ensure oblivious evaluation of the 533

search queries, homomorphic encryption is utilized along with a private matching 534

protocol [31]. For the security analysis of these cryptographic primitives, readers can 535

refer to [30] and [32]. In the subsequent sections, we examine the capabilities of 536

malicious entities to deduce confidential information within the context of a semantic 537

search over encrypted data. 538

Malicious Cloud Server 539

The proposed methodology for encrypted data search utilizes the computational power 540

and storage facility of a cloud server to execute search queries, instead of relying on a 541

trusted third party. The cloud server uses an encrypted index Îks , that is comprised of 542

encrypted keywords. To compromise the privacy of the outsourced data, the cloud 543

server either has to decipher the inverted index or deduce information from the 544

evaluation of the encrypted search queries. In addition, the search queries are submitted 545

in an encrypted format (ασsk0...l), and are evaluated by using a private matching protocol 546

i.e., (P (y0...n ∈ Îωukw0...n
) = ∆y0...n). Since, search queries are encrypted and the result of 547

query evaluation is oblivious to the cloud server, the cloud server cannot learn any 548

information about the keywords concealed in the search query. 549

In order to compromise the privacy of the outsourced data, the cloud server needs 550

access to the secret key, k, which is shared by the repository owner. Once the cloud 551

server has access to the secret key it can effortlessly decipher the keywords that 552

comprises the inverted index. However, only authorized subscribers have access to the 553

secret key as it is encrypted with their respective public key (ω
kpub
ui ). Thus, for a cloud 554
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server the computational complexity to compromise the privacy of the outsourced is 555

equivalent to that of asymmetric encryption. However, even if the cloud server manages 556

to gain access to the secret key it can only decipher the encrypted keywords that are 557

associated with the outsourced data - so that confidentialitly of the outsourced data is 558

preserved as it is encrypted with a symmetric encryption key, which is only 559

disseminated to authorized subscribers. Since our proposed methodology deals with the 560

encrypted data search, the topic of authorized data access is beyond its scope. 561

Malicious Subscriber 562

The proposed methodology of encrypted data search not only realizes encrypted search 563

in untrusted domain it also tackles the problem of unauthorized data search by 564

malicious users. It ensures that unauthorized subscribers are not able to deduce any 565

information about the encrypted outsourced data by simply learning the presence or 566

absence of keywords. It does provide protection against conspired attacks by 567

unauthorized subscribers and untrusted cloud server. Since, encrypted index is 568

concealed with secret key that is only shared amongst authorized collaborating 569

subscribers, malicious subscriber can not successfully evaluate their search query. 570

To search the encrypted data, the search criteria (Ckw0...l
) is concealed with a secret 571

key i.e., ES(Ĉkw0...l
, k) = Ĉkkw0...l

. Once concealed it is then used to the model search 572

query, which is comprised of the encrypted coefficients ασsk0...l, of polynomial 573

P (x ∈ Ĉkkw0...l
). 574

Since, only authorized subscribers have secret keys, search queries from unauthorized 575

subscribers cannot be evaluated successfully. Also, unauthorized subscribers cannot 576

intercept valid search query to modify the search criteria. This is because unauthorized 577

subscriber does have valid secret key to model new or a part of valid search request. 578

The concealed search criteria are only comparable with the encrypted index if the 579

search criteria are also encrypted with the same key. Even if unauthorized subscribers 580

collude with the cloud server, the execution of unauthorized search queries cannot assist 581

them in learning any useful information. The search criterion encrypted with the 582

arbitrary secret key is not compatible with the concealed inverted index, i.e., 583

Ĉk?kw0...l
/∈ Îkkw0...n

. Thus, for unauthorized subscribers, it is computationally infeasible to 584

deduce any information that can lead to the potential loss of data privacy. 585

Conclusion and Future Directions 586

This paper addresses the problem of privacy-aware data search within the untrusted 587

domain of a cloud service provider. It proposes an index-based privacy-aware data 588

search methodology which can identify a semantic match between encrypted data and 589

search criteria. Unlike the conventional methodology, the proposed privacy-aware data 590

search leverages authorized subscribers to access relevant data by defining conjunctive 591

search queries without relying on any trapdoors defined by the data owner. It realizes 592

an oblivious data search, which ensures that the cloud service provider can only assist in 593

the execution of encrypted search queries; however, the CSP can not learn or deduce 594

confidential information from the execution of the search query, which can lead to the 595

potential loss of data privacy. The security analysis demonstrated that, for malicious 596

subscribers and untrusted cloud service providers, the proposed methodology always 597

generates a randomized response that restrains them from learning of the presence or 598

absence of a particular keyword in the outsourced encrypted data. Since the proposed 599

methodology is an index-based data search, it does not have a requirement to encrypt 600

the outsourced data with a particular encryption algorithm. The encryption of 601

outsourced data with an arbitrary encryption algorithm does not affect the operation of 602

PLOS 17/20



the proposed methodology. The computational analysis shows that the proposed 603

methodology exerts a reasonable computational load on authorized subscribers to model 604

their encrypted search queries. 605

So far, the proposed methodology can only identify exact matches between the 606

extended search criteria and the inverted index. In the future, we plan to include 607

wildcard-enabled search queries, which can be used to match a substring while ensuring 608

oblivious execution and privacy-awareness of search queries. 609
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8. Hacigümüş H, Iyer B, Li C, Mehrotra S. Executing SQL over encrypted data in 645

the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD 646

international conference on Management of data. SIGMOD ’02. New York, NY, 647

USA: ACM; 2002. p. 216–227. Available from: 648

http://doi.acm.org/10.1145/564691.564717. 649

9. Zhou M, Mu Y, Susilo W, Yan J, Dong L. Privacy enhanced data outsourcing in 650

the cloud. Journal of Network and Computer Applications. 2012;35(4):1367 – 651

1373. Available from: 652

http://www.sciencedirect.com/science/article/pii/S1084804512000367. 653

10. Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted 654

data. In: Security and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE 655

Symposium on; 2000. p. 44 –55. 656

11. Boneh D, Crescenzo GD, Ostrovsky R, Persiano G. Public Key Encryption with 657

Keyword Search. In: EUROCRYPT; 2004. p. 506–522. 658

12. Li M, Yu S, Cao N, Lou W. Authorized Private Keyword Search over Encrypted 659

Data in Cloud Computing. In: Distributed Computing Systems (ICDCS), 2011 660

31st International Conference on; 2011. p. 383 –392. 661

13. cheng Chang Y, Mitzenmacher M. Privacy Preserving Keyword Searches on 662

Remote Encrypted Data. In: In Proc. of 3rd Applied Cryptography and Network 663

Security Conference (ACNS; 2005. p. 442–455. 664

14. Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable Symmetric 665

Encryption: Improved Definitions and Efficient Constructions; 2006. 666

15. Yang Z, Zhong S, Wright RN. Privacy-Preserving Queries on Encrypted Data. In: 667

In Proc. of 11th European Symposium On Research In Computer Security 668

(Esorics); 2006. p. 479–495. 669

16. Okamoto T, Takashima K. Hierarchical Predicate Encryption for Inner-Products. 670

In: Matsui M, editor. Advances in Cryptology – ASIACRYPT 2009. vol. 5912 of 671

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2009. p. 214–231. 672

Available from: http://dx.doi.org/10.1007/978-3-642-10366-7_13. 673

17. Wang C, Cao N, Li J, Ren K, Lou W. Secure Ranked Keyword Search over 674

Encrypted Cloud Data. In: Distributed Computing Systems (ICDCS), 2010 675

IEEE 30th International Conference on; 2010. p. 253 –262. 676

18. Kamara S, Papamanthou C, Roeder T. CS2: A Searchable Cryptographic Cloud 677

Storage System. Microsoft Research; 2011. MSR-TR-2011-58. Available from: 678

http://research.microsoft.com/apps/pubs/default.aspx?id=148632. 679

19. Sun W, Wang B, Cao N, Li M, Lou W, Hou YT, et al. Privacy-preserving 680

multi-keyword text search in the cloud supporting similarity-based ranking. In: 681

Proceedings of the 8th ACM SIGSAC symposium on Information, computer and 682

communications security. ASIA CCS ’13. New York, NY, USA: ACM; 2013. p. 683

71–82. Available from: http://doi.acm.org/10.1145/2484313.2484322. 684

20. Pervez Z, Awan A, Khattak A, Lee S, Huh EN. Privacy-aware searching with 685

oblivious term matching for cloud storage. vol. 63. Springer US; 2013. p. 538–560. 686

Available from: http://dx.doi.org/10.1007/s11227-012-0829-z. 687

21. Google Search Appliance.; 2013. Available from: 688

http://www.google.co.uk/enterprise/search/gsa.html. 689

PLOS 19/20

http://doi.acm.org/10.1145/564691.564717
http://www.sciencedirect.com/science/article/pii/S1084804512000367
http://dx.doi.org/10.1007/978-3-642-10366-7_13
http://research.microsoft.com/apps/pubs/default.aspx?id=148632
http://doi.acm.org/10.1145/2484313.2484322
http://dx.doi.org/10.1007/s11227-012-0829-z
http://www.google.co.uk/enterprise/search/gsa.html


22. Enterprise Search Server Solutions.; 2013. http://sharepoint.microsoft.com/ 690

en-us/product/capabilities/search/Pages/Search-Server.aspx. 691

23. Singh A, Srivatsa M, Liu L. Search-as-a-service: Outsourced search over 692

outsourced storage. ACM Trans Web. 2009 September;3:13:1–13:33. 693

24. Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for 694

fine-grained access control of encrypted data. In: Proceedings of the 13th ACM 695

conference on Computer and communications security. CCS ’06. New York, NY, 696

USA: ACM; 2006. p. 89–98. Available from: 697

http://doi.acm.org/10.1145/1180405.1180418. 698

25. Kamara S, Lauter K. Cryptographic Cloud Storage. In: Financial Cryptography 699

and Data Security. vol. 6054 of Lecture Notes in Computer Science; 2010. p. 700

136–149. 701

26. Wang C, Wang Q, Ren K, Lou W. Privacy-Preserving Public Auditing for Data 702

Storage Security in Cloud Computing. In: INFOCOM, 2010 Proceedings IEEE; 703

2010. p. 1–9. 704

27. Pervez Z, Khattak AM, Lee S, Lee YK. SAPDS: self-healing attribute-based 705

privacy aware data sharing in cloud. The Journal of Supercomputing. 706

2012;62(1):431–460. 707

28. Lucene. Apache Lucene Core; 2013. http://lucene.apache.org/core/. 708

29. WordNet. About WordNet - a large lexical database of English; 2013. 709

http://wordnet.princeton.edu/wordnet/. 710

30. Paillier P. Public key cryptosystems based on composite degree residuosity 711

classes. In: Proceedings of the 17th international conference on Theory and 712

application of cryptographic techniques. EUROCRYPT’99. Berlin, Heidelberg: 713

Springer-Verlag; 1999. p. 223–238. 714

31. Freedman M, Nissim K, Pinkas B. Efficient Private Matching and Set 715

Intersection. Springer-Verlag; 2004. p. 1–19. 716

32. Goldreich O, Israel R, Dana T. Foundations of Cryptography; 1995. 717

PLOS 20/20

http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Search-Server.aspx
http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Search-Server.aspx
http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Search-Server.aspx
http://doi.acm.org/10.1145/1180405.1180418
http://lucene.apache.org/core/
http://wordnet.princeton.edu/wordnet/

