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ABSTRACT: 

Modified diamond-like carbon (DLC) coatings were deposited onto 25 mm diameter 316 stainless steel 

discs by pulsed (direct current) hollow cathode plasma enhanced chemical vapour deposition (HC-

PECVD). Multilayer films of total thickness 1 – 2 µm were deposited, both with and without 

germanium dopant. Characterisation of the coatings was performed by SEM/EDX, surface 

energy/contact angle analysis, and assessment of possible biofilm-inhibiting properties. Both modified 

DLC and germanium-doped DLC (Ge-DLC) coatings showed a significant anti-biofouling effect on 

P. aeruginosa, a Gram-negative bacterium. A 90% reduction in P. aeruginosa biomass was observed 

compared to control for both DLC and Ge-DLC, however this effect could not be attributed to 

germanium incorporation alone. Neither modified DLC nor Ge-DLC showed a significant inhibitory 

effect on S. aureus, a Gram-positive bacterium. Scanning electron microscopy of P. aeruginosa 

biofilms on Ge-DLC coated 316 stainless steel clearly displayed disruption of the cellular wall, as well 

as leakage of cellular components; this effect was not observed with modified DLC coating. This 

suggests that germanium-doped DLC coatings may potentially exhibit a cidal mode of action versus 

P. aeruginosa biofilms.  

 

KEYWORDS: Modified diamond like carbon, microbial biofilm prevention, anti-biofouling 
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1. Introduction 

Microbial biofilms are ubiquitous in aqueous environments, including but not limited to pipelines, food 

& beverage industry, ship hulls and heat exchangers; in fact, biofouling may occur on virtually any 

surface in contact with water [1, 2]. With biofilm formation on such surfaces there are significant 

implications. For example, internal diameter is reduced in pipes, leading to reduced flow rates; 

microbial influenced corrosion of metals [3], leading to damage and subsequently necessitating the 

replacement of pipelines; and increased drag of ships, leading to higher fuel consumption with the 

associated environmental impacts [4]. Notably, microbial biofilms have the potential to act as 

reservoirs of infection in potable and washing water systems, which can have a devastating impact on 

community [5, 6] and healthcare related environments [7]. 

 

A biofilm can briefly be described as a consortium of cells, encapsulated within an extracellular 

polymeric substance (EPS) [8, 9]. The EPS provides them with a high degree of hydration, and strong 

attachment to a surface when compared to the initial planktonic cell attachments preceding biofilm 

formation; and, in turn, increased resistance to removal via cleaning [10]. For example, chlorine may 

prove to be ineffective in treating established biofilms [11, 12]. 

 

Methods to prevent microbial attachment, through the development of antimicrobial coatings for 

industrial and clinical settings, are highly sought after in order to combat the increasing costs and 

morbidity/mortality that can be associated with biofilms. Diamond-like carbons (DLCs) have found 

utility in a wide range of applications, perhaps most notably as protective coatings for metals against 

corrosion [13-16]. DLCs represent a class of amorphous carbon materials; the main subtypes being 

amorphous hydrogen-carbon alloy (a-C:H), hydrogen-free amorphous carbons (a-C) and tetrahedrally-

structured amorphous carbons and their hydrogenated analogues (ta-C and ta-C:H), which can contain 

in excess of 90% C-C sp3 bonding. Previous research into silicon-doped DLC has shown reduction in 
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biofouling, with the common Gram-negative bacteria Pseudomonas aeruginosa and Gram-positive 

bacteria S. aureus and S. epidermidis [17, 18]. Doping of DLC with known antimicrobial metals such 

as copper [19], silver, and platinum [20], has been undertaken, but this often involves the incorporation 

of metallic nanoparticles in and on the upper layer of the DLC. Recent research has demonstrated that 

nanoparticles (NPs) have even greater cytotoxicity than non-nanoparticle forms of such metals [21-24], 

potentially precluding their use in healthcare and environmental applications, if a suitable concentration 

window cannot be achieved. Research has also shown that ion release from NPs incorporated into DLC 

coatings is dependent on nanoparticle size, with increasing ion release being related to decreasing NP 

size, which allows tailoring of the antibacterial and toxicity windows for medical implants [25]. An 

additional problem highlighted in prior literature on the anti-biofouling effects of doped DLC is the 

common use of colony-forming unit (CFU) tests to test the coatings’ properties. These tests are often 

performed by dropping small quantities of an inoculum onto a surface, either in sterile water or 

phosphate buffered saline (PBS) solution. However, the planktonic minimum inhibitory concentrations 

(MIC) can differ markedly versus the minimum biofilm eradication concentration (MBEC). This is 

clearly evidenced in the clinical setting [26], with antimicrobial drugs often having MBECs that can be 

up to 100 times greater than the MIC; in some cases, they are completely ineffective. This observation 

is not limited to conventional antimicrobials, with concentrations of silver required to eradicate mature 

P. aeruginosa biofilms being 10-100 times greater than the MIC of planktonic cultures [27]. 

Germanium is a metalloid from the carbon group, and is chemically similar to silicon. Elemental 

germanium in suspension has been shown to have antimicrobial properties versus P. aeruginosa and 

Staphylococcus aureus in both planktonic (MIC = 6.25 mg/ml) and biofilm (MBEC 25 & 50 mg/ml 

respectively) [28]. In this work, a  hollow cathode plasma enhanced chemical vapour deposition (HC-

PECVD) system (Sub-One Systems, Tucson, AZ), specifically designed for coating interior pipe 

surfaces, was used to deposit multi-layer modified DLC coatings and germanium-doped multi-layer 
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DLC (Ge-DLC) coatings; the optimized DLC and Ge- DLC were then evaluated  

to assess for any biofilm-inhibiting and antimicrobial properties. 

 

 

 

2. Materials and methods 

2.1 Preparation of DLC and Ge-DLC 

Multilayer modified DLC and Ge-DLC coatings were deposited onto 25 mm diameter 316 stainless 

steel discs by pulsed-DC hollow cathode plasma enhanced vapour deposition (HC-PECVD) deposition 

as previously described elsewhere [29, 30]. However, in this current work, an aluminium stage (Figure 

1) was fabricated; designed to conform to the interior of a 4” pipe (cathode) and to accommodate 

planar substrates. This stage ensured that the substrates remained in electrical contact with the cathode; 

this was necessary to enable film deposition on the stainless steel discs. SS316 and silicon wafer 

witness substrates were initially cleaned with acetone and lint free cloth to ensure a contaminant-free 

surface and a base pressure of 1x10-3 Torr was attained in the chamber prior to deposition. A hydrogen 

and argon plasma substrate pre-heating step was performed, followed by an argon-only sputter etch, 

which has previously been shown to enhance adhesion of multilayer DLC [2, 31, 32]. 

Both the DLC and Ge-DLC coatings were 5-layer graded designs deposited with argon as the working 

gas, and using tetramethylsilane (TMS, Si(CH3)4), acetylene (C2H2) and, in the case of the Ge-doped 

coating, finally tetramethylgermane (TMGe, Ge(CH3)4) in the top layer. These coatings were deposited 

in a multi-stage process, beginning with TMS, which results in deposition of an amorphous SiC:H 

adhesion layer; with increasing fraction of acetylene and decreasing fraction of TMS in the following 

layer steps, terminating with either an a-C:H or Ge-doped a-C:H top layer. 

The deposition processes are summarized in table 1. 
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Table 1. Summary of deposition processes 

Step Ar 
(sccm) 

H2 

(sccm) 
C2H2 

(sccm) 
TMS TMGe Pressure 

(mTorr) 
Anode 
Power 

(W) 

Cathode 
Power 

(W) 

Time 
(min. 

:s) 

1 50 100 - - - 70 35 180 0:30 

2 50 100 - - - 70 40 200 10:00 

3 100 - - - - 70 40 200 30:00 

4 100 - - - - 70 40 200 0:20 

5 90 - - 70 - 120 40 144 0:54 

6 60 - 20 60 - 70 40 216 0:54 

7 50 - 40 40 - 70 52 136 0:54 
8 50 - 80 20 - 70 52 136 0:54 

9 50 - 120 

(108) 

- 0 (12) 90 52 136 1:30 

10 85(+200 

N2) 

- - - - Purge - - 2:00 

Bold type indicates parameters during Ge-DLC coating deposition. 

 

2.2 Characterisation of DLC and Ge-DLC coatings 

2.2.1 SEM and EDX analysis 

Characterisation of the multilayer modified DLC and Ge-DLC coatings was performed by scanning 

electron microscope (SEM) analysis of both the surface and cross-section of coated silicon wafer 

witness pieces. Analysis was performed on a Hitachi S-4100 scanning electron microscope at 10 kV 

acceleration voltage. Composition of the upper layers of the DLC thin film was determined by energy 

dispersive x-ray (EDX) analysis of the witness piece on an Oxford instruments X-Max 80 detector at 

three acceleration voltages (10, 15 & 20 kV); this allows elemental composition to be determined at 

varying depths within the multilayer sample. 

 

2.2.2 Surface roughness characterisation 

Average surface roughness measurements were performed on a Dektak 3ST surface profilometer 

(Veeco, USA). Surface roughness scans were performed in triplicate on each sample, with the 

following measurement parameters: scan length 2000 µm (1000 data points over scan length), 30 mg 
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force. Analysis was performed in triplicate to determine the Ra (average roughness), Rp (maximum 

peak height) and Rv (maximum valley depth). 

 

2.2.3 Contact angle and surface energy 

Contact angle measurements were performed by the sessile drop method with a CAM200 contact angle 

goniometer and SFECAM software (KSV Instruments, UK). Surface free energy (SFE) was calculated 

by use of the Fowkes method [33], which requires the contact angle measurement of three solvents of 

known polar and dispersive surface tension components; deionised water, diiodomethane (Sigma-

Aldrich, UK) and ethylene glycol (Sigma-Aldrich, UK). 

 

2.3 Antimicrobial analysis 

2.3.1 Culture conditions and standardisation 

Pseudomonas aeruginosa type strain NCTC 10332 and S. aureus NCTC 8178 were used throughout 

this study. All working stocks of P. aeruginosa NCTC 10332 and S. aureus NCTC 8178 were 

maintained at 4°C on Luria Bertani agar (LB [Oxoid, Cambridge, UK]). P. aeruginosa NCTC 10332 

and S. aureus NCTC 8178 were propagated in Luria Bertani broth (LB [Oxoid, Cambridge, UK]). 

Uncoated SS316, DLC coated SS316 and Ge-DLC coated SS316 were each positioned in wells of a 6-

well plate. Prior to inoculation, substrates were disinfected by the addition of 2 ml 100% Ethanol 

(EtOH) to each well for 2 h. Following sterilisation, EtOH was aspirated, and the wells washed twice 

with deionised water (dH2O) and 1 ml of LB broth added to each well. Overnight cultures of P. 

aeruginosa NCTC 10332 and S. aureus NCTC 8178 were washed by centrifugation at 7000 x g for 5 

minutes, re-suspended in PBS and adjusted to an optical density (OD) at wavelength 570 nm of 0.3, 

which corresponds to 1x108 CFU/ml. A working inoculum was prepared to 1x105 CFU/ml. To each 

well, 1 ml of 1x105 CFU/ml inoculum was added to give a final inoculum per well of 5x104 CFU/ml. A 

sterile media control and sterile controls for uncoated and coated SS316 were included. Plates were 
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incubated for 24 h at 37°C, in air. Following incubation, spent growth media was aspirated and the 

resultant biofilms on substrates washed twice with 1x PBS and transferred to a clean 6-well plate for 

biomass analysis or fixing for SEM analysis. 

 

2.3.2 Microbial biofilm assay 

An adapted crystal violet (CV) biofilm assay for P. aeruginosa and S. aureus was performed [34]. To 

briefly summarise, filtered CV (Fisher, UK) was prepared to a 0.1% w/v solution in dH2O. At the 

experimental end time point the coated discs were removed from the 6 well plates. Media supernatants 

were aspirated and the biofilm was washed twice with PBS to remove non-adherent cells. Two 

millilitres of 0.1% w/v CV was added to each well containing a substrate disc, including the media-

only control discs. Samples were incubated at room temperature for 15 mins. Excess CV stain was 

removed by washing in dH2O until subsequent washes did not visually remove any further excess 

staining. To quantify the bound CV, 2 ml 80% v/v ethanol was added and samples gently rocked to 

allow full desaturation of the biofilm, and the destained solution transferred to a 96 well flat bottom 

plate (n=6). This procedure was repeated for all substrates, controls, media control and an ethanol-only 

control. The optical density for the plate was read at OD595nm
 using an Infinite F200 Pro plate reader 

(Tecan Group Ltd, Switzerland). 

 

 

 

2.3.3 SEM analysis of biofilms on modified DLC coatings 

Microbial biofilms of P. aeruginosa ATCC 10332 and S. aureus NCTC 8178 grown on SS316, DLC 

coated SS316 and Ge-DLC coated SS316 were prepared for SEM analysis as previously described 

[35]. Briefly, biofilms were fixed in a mixture of 2% paraformaldehyde, 2% glutaraldehyde, and 0.15% 

Alcian blue 8GX in 0.15 M sodium cacodylate buffer of pH 7.2 for 22 h. After primary fixation, 
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samples were washed three times in 0.15 M sodium cacodylate buffer for 15 minutes, then post fixed 

with 1% osmium tetroxide in 0.15 M sodium cacodylate buffer of pH 7.2 for 1 h.  Samples were 

washed with dH2O three times and negative counter-stained by addition of 0.5% uranyl acetate for 1 h. 

Fixed and stained substrates were dehydrated using an ascending ethanol dehydration process (30%, 

50%, 70%, 90%, absolute, dried absolute) twice for 15 minutes. Following dehydration, substrates 

were critically dried by addition of hexamethyldisilazane (HDMS) twice and stored in a desiccator 

overnight. Substrates were then coated with 5 nm of gold using an EMSscope SC500 sputter coater 

(EMS, UK). Examination of samples was performed in a Hitachi S-4100 scanning electron microscope 

under vacuum, operated at 10 kV. 

 

2.4 Statistical analysis 

Data were exported from the Infinite F200 Pro plate reader to Microsoft Excel (Microsoft, USA). 

Statistical analysis and graphing of data were performed in GraphPad Prism 6.0 (Graph Pad Software 

Inc, USA). The data were assessed for normality using column statistics analysis; statistical analysis 

was performed using the appropriate statistical test based on the assessment of the normality of the 

data. Statistical significance was achieved when p < 0.05. 

 

3. Results and discussion 

3.1 SEM and EDX evaluation of DLC and Ge-DLC 

Analysis of the cross sectional SEM images of multilayer DLC and germanium-doped multilayer DLC 

coatings showed no visible delamination of the base layer from the Si wafer; this is in keeping with 

previous findings demonstrating the use of Si-DLC as a base layer in multilayer DLC to prevent film 

delamination from the surface [31]. Total coating thicknesses of 967 nm (DLC) and 1450 nm (Ge-

DLC) (Figure 2A & 2B) were measured by SEM. It was noted that the top, or cap, layer of Ge-DLC 

was thicker than that of the DLC, indicating a faster film growth rate when TMGe is present in the 
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chamber. Composition of the top layer was determined by EDX analysis of the DLC and of the Ge-

DLC on silicon witness pieces. A cross-sectional tilted SEM image of the Ge-DLC coating is shown in 

figure 2C, with two EDX spectra taken from the same sample shown in Figure 2D. These correspond to 

the sub-cap layer and the Ge-DLC cap layer. As expected, a significant quantity of germanium is 

incorporated into the cap layer, along with carbon and silicon. (It should be noted that there is also a 

significant fraction of hydrogen within all layers of the coatings deposited; however, this is not 

detectable by EDX [2]). Save for hydrogen, the interlayers comprise only carbon and silicon, showing 

that germanium is restricted to the cap layer as expected. Results of EDX quantitative analysis at 

increasing acceleration voltage (10, 15, 20 kV) are shown in Table 2. By EDX at 10 kV, Ge-DLC is 

composed of 28.9% germanium, 64.2% carbon, 5% silicon and 2% oxygen; DLC, in contrast, is 

composed of 87.8% carbon and 12.2% silicon. It is worthy of note that, at higher acceleration voltages, 

a small percentage of chromium and iron was detected; this is  assumed to be due to sputtering and 

redeposition of constituents of the steel substrates during the early stages of the deposition process. 

Since all components of the chamber/pipe interior become coated with DLC during the deposition 

process, it is expected that these species are only present in the adhesion (first) coating layer; this is 

supported by EDX analysis, where the presence of chromium and iron is only detected at beam 

acceleration voltages >15kV, where the beam penetrates further into the sample. 
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Table 2. EDX compositional analysis of DLC and Ge -DLC 

  
Percentage (%) 

 
Voltage Carbon Silicon Germanium Chromium Iron Oxygen 

DLC 

10 kV 87.8 12.2 - - - - 

15 kV 83.9 15.6 - 0.2 0.2 - 

20 kV 84.4 15.2 - 0.2 0.2 - 

 

              

Ge-DLC 

10 kV 64.2 5 28.9 - - 2 

15 kV 67 15.2 14.9 0.6 0.5 1.7 

20 kV 68.1 19 9.3 0.6 0.7 2.1 

3.2 Physical characterisation 

The surface roughness of uncoated SS316, DLC coated SS316 and Ge-DLC coated SS316 was 

measured by surface profilometer, with the measured Ra (average surface roughness) being 30.4 ± 12.4, 

34.33 ± 10.2 and 21.47 ± 2.4 nm respectively.  No significant difference in roughness between DLC (p 

= 0.6928) and Ge-DLC (p = 0.2879) was measured, though Ge-DLC showed lower average roughness 

than both uncoated SS316 and DLC. Wettability of the surfaces was determined by contact angle 

measurement with 3 solvents and SFE calculated; resultant data are summarised in Table 3 with d, p 

and tot subscripts denoting dispersive component, polar component and total dispersive plus polar SFE, 

respectively.  

 

Table 3. Measurement of SFE components   

Fowkes  Sfe_d (mN/m) Sfe_p (mN/m) Sfe_tot (mN/m) 

SS316 30.25 ± 0.58 1.40 ± 0.17 31.63 ± 0.42 

DLC 39.56 ± 1.17 4.03 ± 0.66 43.59 ± 1.69 

Ge-DLC 24.93 ± 0.59 35.50 ± 1.56 60.42 ± 1.12 
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The contact angles and calculated surface free energy (SFE) for DLC were consistent with previously 

published values for a-C:H type DLC [36, 37]. A significant (p < 0.0001) increase in the polar 

component and concomitant decrease in the dispersive component of SFE was observed in the Ge-DLC 

coating; the overall surface energy is also approximately 40% greater than undoped modified DLC. 

This increase is solely linked to the incorporation of germanium in the cap layer; this, in turn, is 

explained by the relatively polar nature of the Ge-C bond, owing to a difference in electronegativity of 

0.54 between carbon and germanium. Undoped modified DLC coating, in contrast, displays higher 

dispersive and lower polar SFE components, as is expected for a material dominated by carbon-carbon 

covalent bonding. The higher surface energy (and lower contact angle) of both DLC and Ge-DLC 

resulted in an increase in the wettability of the surface with respect to uncoated SS316. While protein 

adsorption and biofilm attachment are complex processes influenced by a host of factors including 

surface chemistry, physical topography and environmental conditions, other workers have shown that 

increased surface wettability may correlate with increased resistance to protein adsorption and 

biofouling. For example, with S. epidermis and C. marina, protein adsorption on hexa(ethylene glycol) 

terminated self-assembled monolayer (SAM) coatings is reported to increase with decreasing SFE [38]. 

Similarly, crosslinked PEG acrylate coatings have been reported to inhibit the attachment of BSA 

proteins, with higher wettability correlating with increased fouling resistance [39]. Such resistance 

corresponds to the high surface energy region of the Baier curve [40]. Additionally, it is also reported 

that increased presence of polar groups in alkylthiol-modified amorphous carbons also leads to 

decreased protein attachment and hence improved biofouling resistance [41]. This is particularly 

relevant given that Ge-DLC films prepared in this work exhibited significantly higher polar SFE 

component than DLC. 
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3.3 Antimicrobial analysis 

Formation of biofilms by P. aeruginosa and S. aureus was observed on uncoated SS316, DLC coated 

SS316 and Ge-DLC coated SS316, indicating that total inhibition of biofilm formation by these 

coatings did not occur. Measured biomass showed no significant reduction in the biofilm formation of 

S. aureus by either modified DLC or by Ge-DLC, with the control biomass being measured at 

OD570nm = 0.45 ± 0.19, DLC OD570nm = 0.44 ± 0.14 and Ge-DLC OD570nm = 0.32 ± 0.16 (Figure 3). 

However, significant reduction in P. aeruginosa biofilm formation was observed on both DLC 

(OD570nm = 0.16 ±0.02, 54.4% reduction) and Ge-DLC (OD570nm = 0.137 ± 0.01, 62.6% reduction), 

when compared to the uncoated control (OD570nm = 0.37 ± 0.19). The small difference in biomass 

reduction (11.2%) between DLC and Ge-DLC was not statistically significant (p > 0.05); however, it 

was decided to investigate the biofilm formed using SEM to determine any structural effect on the 

biofilm and cells. In keeping with the results showing no significant reduction in biofilm formation of 

S. aureus, biofilms were confluent with no cellular disruption noted (Figure 4D-F). In contrast, 

P. aeruginosa biofilms were sparse on all substrates; there was no evidence of disruption of the cells on 

DLC (Figures 4A & 4B). However, P. aeruginosa cells on Ge-DLC (Figure 4C) showed visible 

disruption to the outer cell wall and leakage of cellular components. P. aeruginosa cell disruption was 

only observed with those biofilms grown on Ge-DLC surfaces, indicating that incorporation of 

germanium into the carbon matrix may be responsible for this effect; with the caveat that further 

studies are needed in order to more fully elucidate the point. 

 

The primary mechanism of action of most metals and metal nanoparticles is the disruption of the cell 

wall and of other cellular components [42]. There is, however, still uncertainty in the exact 

mechanisms. For example, opinion is divided on the mechanism of action of silver, with its 

antimicrobial capacity being attributed to depletion of ATP levels [43] or the blockage of microbial 

DNA replication [44]. It is as of yet unclear whether the mechanism of action of metal doped DLC 
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films are the same as those of the elemental metals or if they are altered. Tributyltin (TBT) was, until 

relatively recently, widely employed as a biocide and marine antifouling agent, though has latterly been 

largely withdrawn due to environmental concerns. TBT itself is a cytotoxic compound, whose 

mechanism of action is apoptosis via elevation of calcium concentration and generation of reactive 

oxygen species in mitochondria [45]. It may be speculated that the cap layer coating, being chemically 

somewhat similar to an organogermanium compound, is operating by a similar mechanism with regard 

to Gram-negative bacteria. There is some evidence, however, that P. aeruginosa has developed 

resistance to TBTs [46, 47]; indeed, there are TBT-resistant bacteria from several Gram-negative and 

Gram-positive species, including Staphylococcus spp. and Pseudomonas spp. [45]. 

 

Other workers have reported that organogermanium compounds, particularly lactones containing 

organogermanium, exhibit a highly selective antibacterial effect against Gram-negative bacilli [48]. 

This agrees well with our results; these suggest that Ge-DLC may exhibit an antibacterial effect with 

respect to P. aeruginosa. However, the mechanism by which Ge-DLC appears to precipitate the 

disruption of the cell requires further research, and further studies with regard to Ge doping level are 

required to gain a more comprehensive understanding of this effect 

 

4. Conclusion 

Modified multilayer DLC was deposited on SS316 discs by pulsed-DC hollow cathode plasma 

enhanced chemical vapour deposition (PECVD). In the case of Ge-DLC, germanium was incorporated 

in the cap layer only. The surface energy of multilayer DLC and Ge-DLC exhibited a significantly 

increased total surface energy and resultant wettability when compared to modified DLC; additionally, 

the polar component of surface energy for Ge-DLC is significantly larger. 

No significant reduction in biofilm formation was observed with S. aureus biofilms, this likely due to 

differences between the cell wall thickness and composition of Gram-positive (S. aureus) and Gram-
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negative (P. aeruginosa) bacteria. P. aeruginosa biofilm formation was significantly reduced with both 

DLC and Ge-DLC, compared to uncoated SS316. SEM analysis of P. aeruginosa cells on Ge-DLC 

showed disruption of the cell wall and possible indication of the inhibition of cell separation; this effect 

was not apparent with modified DLC. Further investigations of this apparent antimicrobial effect are 

planned; as well as of the role, and concentration dependence, of germanium doping in Ge-DLC, in 

terms of possible antimicrobial activity. 
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List of Captions 

Figure 1. Sample arrangement in chamber and schematic of deposition system 
An aluminium stage was fabricated to conform to the internal diameter of a 4” pipe. Left image shows 
substrates (SS316 with Si witness piece) loaded on the aluminium stage and aluminium foil lining of 
the pipe chamber. Gas entry head anode is visible in background. Right image shows  

simplified schematic of deposition apparatus. 
 

Figure 2. Characterisation of DLC and Ge-DLC on silicon 
SEM cross sectional analysis of total thickness (A) Five layer modified DLC on silicon wafer (B) Five 

layer Ge-DLC  on silicon wafer (C) Tilted cross section of Ge-DLC on silicon wafer, indicated 
sampling points for EDX marked (D) EDX spectra of Ge-DLC cap layer (yellow) and the interlayer 
composed of carbon and silicon (no fill black line). 
 

Figure. 3. Effect of DLC and Ge-DLC on 24 h biofilm formation of P. aeruginosa and S. aureus. 
Comparison of biofilm formation on uncoated SS316, DLC coated SS316 and germanium doped DLC 
coated SS316 with P. aeruginosa and S. aureus. Data are mean ± Standard deviation. n = 3, *** p  < 
0.001, ** p < 0.01 

 

Figure 4. SEM analysis of microbial biofilms on substrates  
(A) P. aeruginosa on SS316 (B) P. aeruginosa on DLC (C) P. aeruginosa on Ge-DLC (D) S. aureus 
on SS316 (E) S. aureus on DLC (F) S. aureus on Ge-DLC. Scale bar = 5 µm 
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