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ABSTRACT 
Using Floquet-Bloch theory, we find incipient bands (vanishing gaps) in the band structures of one-dimensional 

photonic crystals with a piece-wise constant profile of the refractive index, and in the band structures of 

continuously differentiable periodic potentials. The emphasis is on potentials that allow solutions in an exact 

analytical form.  

Keywords: Floquet-Bloch theory, band structure of periodic potentials, vanishing gaps (incipient bands). 

1. INTRODUCTION 

The mathematical description of many physical problems, involving periodic variations either in space or time, 

reduces to Hill’s differential equation in the form  

 
       dzQzQzzQ

dz

zd



,0

2

2

.    (1) 

This includes, for example, light propagation in a one-dimensional (1D) photonic crystal, or the motion of 

electrons in a 1D superlattice.  

According to Floquet-Bloch theory, see [1-3], among the fundamental systems of solutions of equation (1) 

there is a special one called the Floquet-Bloch system. This special fundamental system typically consists of two 

particular solutions  zF 2,1 , called Bloch waves, with the property under translation 

   zFdzF 2,12,12,1  ,      (2) 

where the constants 2,1 are non-zero, generally complex-valued numbers, called Floquet multipliers. They obey 

the relation  

121  ,       (3) 

In the allowed bands (regions of stability) both Bloch waves are bounded propagating functions. In the bandgaps 

(regions of instability) one Bloch wave decreases along the axis of propagation, while the other grows 

exponentially. That growing wave is an unphysical solution in case of an infinite periodic structure. Accordingly, 

in the bandgaps the multipliers 2,1  become real-valued numbers.  

On the boundaries (bandedges) between allowed bands and bandgaps, the two Bloch waves coincide, i.e. 

     zFzFzF  12 . The constants 2,1 also coincide, i.e.   21  and, in accordance with equation (3), 

either 1  or 1 . In the former case the function  zF  has a period d while in the latter case it has a 

period d2 . Then, to complete the fundamental system of equation (1) another particular solution is required. 

That particular solution is often taken in the form of a hybrid Floquet mode, with the property 

     zGdzGdzG   .     (4) 

In practice, Bloch waves, hybrid Floquet modes, Floquet multipliers are all expressed in terms of normalized 

solutions  zu  [     00',10  uu ] and  zv  [     10',00  vv ]. The structure of allowed bands and bandgaps is 

defined by the dispersion equation 

       2'cos dvdud  ,     (5) 

where  is the Bloch wave number related to the Floquet multipliers by  di  exp2,1 . One can see that in 

the allowed bands   1cos1  d , in the bandgaps   1cos d , and at the bandedges   1cos d . 

In the spectrum of Floquet-Bloch solutions, a case of special interest is so-called incipient bands (or vanishing 

gaps). Those are points of contact between distinct allowed bands (i.e. a special type of band crossing). 

Mathematically, in that case 121   , but the two Bloch waves are independent periodic functions, with 
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the same periodicity ( d  if 1 , or d2 if 1 ), accordingly at those points   1cos d and, in 

addition,   0d ,   0' du .  

It is known that vanishing gaps do not occur for the Dirac comb, nor the Mathieu potential, nor for a sawtooth 

potential [4, 5].  In this paper we summarize our recent findings on certain periodic potentials for which incipient 

bands do exist. This includes not only a well-known case of a binary photonic crystal (analogue of the Kronig-

Penney model in quantum mechanics) but also a small set of periodic potentials having a continuously-

differentiable function  zQ  in equation (1). 

2. VANISHING GAPS IN BINARY PHOTONIC CRYSTALS 

In this section, we illustrate existence of incipient bands in a spectrum of light impinging normally on a binary 

crystal, illustrated in Fig. 1, for the case 221 ddd   (basis layers of the same thickness). The dispersion 

equation (5) takes the form 

 
   
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where 2k  is the vacuum wavenumber of impinging light and     121221 nnnnr   is the amplitude 

Fresnel reflection coefficient on the boundary between the layers 2n and 1n . The results are shown in Fig. 2. The 

incipient bands are a set of points defined by either  
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where the Bloch waves have periodicity d , or by   
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where the Bloch waves have periodicity d2 . 

 

Fig. 1. Binary photonic crystal with the layers of 

refractive indices 1n , 2n  and thicknesses 1d , 2d , 

M is the number of periods.    

Fig. 2. Band structure of a binary crystal for 

 normal incidence for the case 221 ddd  , 

   121221 nnnnr  ,   ddndnn /1122 av . 

The above problem about light normally incident on a binary photonic crystal with layers of equal geometrical 

thicknesses  21 dd   is just one example of incipient bands (vanishing gaps) in the band structure of piece-wise 

constant periodic potentials. Other confirmed examples where incipient bands occur, include normal incidence of 

light on a binary crystal with layers of equal optical thicknesses  2211 dndn  , see [6], oblique incidence of light 

on an arbitrary binary crystal, see [7], etc. We should note that in all those problems the incipient bands 

(vanishing gaps) appear in the form of a discrete set of points. 

3. VANISHING GAPS IN CONTINUOUS PERIODIC POTENTIALS 

In this section we illustrate existence of incipient bands for three periodic potentials with continuously-

differentiable functions  zQ . The first example is the Casperson potential [8, 9], see Fig. 3, given by  

 
 

11,
2cos1

2cos4

2cos1
4







 q
zq

zq

zq

a
Qc .   (9) 
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For this potential the dispersion equation (5) takes the form 

 
  

















321
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q

a
d  ,     (10) 

where d  is the  period of the potential. The band structure is shown in Fig. 4. There is only one allowed 

band ( 0a ) separated by a bandedge ( 0a ) from a single bandgap ( 0a ). The incipient bands are curves 

defined by 

 
,4,3,2,1,

1

2

32



mm

q

a
,     (11) 

where the Bloch waves have periodicity d for ,4,2m , and 22 d for ,3,1m . 

Fig. 3. Casperson potential for 25.0q , 20.1a .

  

Fig. 4. Band structure of the Casperson potential, 

only the first six incipient bands are shown.

The next example is the Wu potential [9, 10], see Fig. 5, which is somewhat similar to the Casperson one. It is 

given by the function 

 
 

11,
2cos1

2cos2

2cos1
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2

22
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with the dispersion equation (5) taking the form 
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The band structure is shown in Fig. 6. Similar to the Casperson potential, there is a single allowed band ( 0a ) 

separated by a bandedge ( 0a ) from a single bandgap ( 0a ). The incipient bands are curves defined by 

,4,3,2,1,
1

2

2



mm

q

a
,     (14) 

where the Bloch waves have periodicity d for ,4,2m , and 22 d for ,3,1m . 

Fig. 5. Wu potential for 45.0q , 30.0a . 

    

Fig. 6. Band structure of the Wu potential, only the 

first six incipient bands are shown. 
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The final example is the Takayama potential [11, 12], see Fig. 7, given by the function 

 
 

11,
2cos1

1
1

2

2





 q

zq

qa
Qt ,    (15) 

with the dispersion equation (5)  

   1coscos  ad  .      (16) 

The band structure is shown in Fig. 8. An allowed band ( 1a ) is separated by a bandedge ( 1a ) from a 

single bandgap ( 1a ). The incipient bands are straight lines defined by 

,4,3,2,1,12  mma ,     (17) 

where the Bloch waves have periodicity d for ,4,2m , and 22 d for ,3,1m . 

Fig. 7. Takayama potential for 32q , 21a . 

    

Fig. 8. Band structure of the Takayama potential, 

only the first three incipient bands are shown. 

The above three continuous periodic potentials add to the set of exactly solvable Hill’s equations. The band 

structure of each potential features a single bandgap separated by a bandedge from a single allowed band, which 

is divided into pieces by incipient bands (vanishing gaps). Those incipient bands are a set of continuous curves, 

rather than a set of points as was observed for the piece-wise constant periodic potential.  

4. CONCLUSIONS 

We analysed the band structures of certain exactly solvable Hill’s equations with both piece-wise constant and 

continuously-differentiable periodic potentials. Particular attention was given to the incipient bands (vanishing 

gaps) where all solutions of Hill’s equation become periodic functions. A further logical step would be to obtain 

an analytical criterion for the existence of incipient bands in an arbitrary periodic potential.    
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