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Exact analytical solutions of two Hill’s equations which have continuously dif-
ferentiable coefficients, are obtained in terms of the Floquet-Bloch fundamental
system. New features of the band structures of those equations are reported
and investigated.
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1. Introduction

Hill’s differential equation

d2Ψ(z)

dz2
+Q(z)Ψ(z) = 0 , Q(z) = Q(z + d) , (1)

governs the propagation of waves through a periodic sys-
tem, in various physical applications e.g. modeling the
motion of an electron in a 1D superlattice [1], or the
flow of light in a one-dimensional (1D) photonic crystal
[2] and in slabs with a time-periodic dielectric function
[3], or the scattering properties of particles subject to a
time-periodic Hamiltonian [4].
Depending on the values of the parameters involved,

the solutions of Hill’s equation either remain bounded
for all z, or their amplitudes grow exponentially as z in-
creases/decreases. In the first case the solutions represent
allowed bands and in the second case, bandgaps. A de-
tailed analysis of Hill’s equation is provided by Floquet-
Bloch theory, see Refs. [5–8]. In particular, this theory
allows one to determine the band structure for any given
periodic function Q(z). In the case of quantum mechan-
ics, Q(z) = 2m

h̄2 [E − V (z)], is linearly related to the po-
tential energy V (z), so for brevity we will generally refer
to Q(z) as a “potential”.
For most functions Q(z), Hill’s equation can only be

solved using numerical or approximate analytical meth-
ods. The class of exactly solvable Hill’s equations in-
cludes those equations with a piecewise constant or
monomial function Q(z), and three cases discovered some
thirty years ago, see Refs. [9–11]. The latter are a special
set of equations with continuously differentiable functions

Q(z). However, the exact solutions obtained in Refs. [9–
11] were not sufficiently smooth (either they or their first
derivatives exhibit discontinuities, which are awkward for
their applications to physical problems). In Ref. [12],
smooth solutions were finally obtained and analyzed for
the Takayama potential [11].

The purpose of this paper is to find smooth and exact
analytical solutions for the Casperson [9] and Wu-Shih
[10] potentials. Then, using Floquet-Bloch theory, to ob-
tain and analyze the band structures of those potentials.
Special attention will be given to those regions of the
band structure where any solution of Hill’s equation be-
comes a periodic function.

2. Smooth Normalized Solutions for the Casper-

son and Wu-Shih Potentials

The periodic potential treated by Casperson in Ref. [9]
has the form

Qc(z) =
a

(1 + q cos 2z)4
+

4q cos 2z

1 + q cos 2z
, −1 < q < 1. (2)

The normalized solutions of Eq. (1) obtained in Ref. [9]
are

c1(z) =
1 + q cos 2z

1 + q
cosΦc(z, a, q),

c2(z) = − (1 + q)(1 + q cos 2z)√
a

sinΦc(z, a, q),

(3)

where



2

Φc(z, a, q) =

√
a

2(1− q2)





q sin 2z

1 + q cos 2z
−

2 arctan
(√

1−q

1+q
tan z

)

√

1− q2



 .

One can see that the potential Qc(z) is a continuously
differentiable function, while the solutions c1(z) and c2(z)
have singularities at the points zj = d/2+jd, j = 1, 2, . . .,
where d = π is the period of the potential Qc(z). At such
points the first derivative of the function c1(z) and the
function c2(z) itself have jump discontinuities.
Taking into account that the above solutions (3) are

continuously differentiable on the first half of the first
period, i.e for 0 ≤ z < d/2, we construct continuously

differentiable normalized solutions u(z) and v(z) within
each period j = 1, 2, . . . as follows

uj(z) =
1 + q cos 2z

1 + q
cosΦc(z, a, q, j),

vj(z) = − (1 + q)(1 + q cos 2z)√
a

sinΦc(z, a, q, j),

(4)

where

Φc(z, a, q, j) =

√
a

2(1− q2)





q sin 2z

1 + q cos 2z
−

2
(

(j − 1)π + arccot
(√

1+q

1−q
cot z

))

√

1− q2



 .

The results are shown in Fig. 1.

Fig. 1. Casperson potential Qc(z) (black line) and origi-
nal non-smooth Casperson solutions c1(z) and c2(z) (thin
black lines) compared with continuously differentiable
normalized solutions u(z) and v(z) (thick grey lines), for
q = −0.25 and a = 1.20 on the first four periods of the
Qc(z).

A similar periodic potential

Qw(z) =
a+ q2 sin2 2z

(1 + q cos 2z)
2
+

2 q cos 2z

1 + q cos 2z
, −1 < q < 1, (5)

was later treated in Ref. [10]. The normalized solutions
of Eq. (1) obtained there have the form

w1(z) =

√

1 + q cos 2z

1 + q
cosΦw(z, a, q),

w2(z) = sgn(a)

√

(1 + q)(1 + q cos 2z)

a
sinΦw(z, a, q),

(6)

where

Φw(z, a, q) =

√

a

1− q2
arctan

(
√

1− q

1 + q
tan z

)

.

In this paper we use the version of the step-function
sgn(a) defined as

sgn(a) =

{

1, a ≥ 0 ,
−1, a < 0 .

As was the case for the potential Qc(z), the poten-
tial Qw(z) is continuously differentiable, while the solu-
tions w1(z) and w2(z) have singularities [jump disconti-
nuities for the first derivative of the function w1(z) and
for the function w2(z) itself] at the points z = d/2 + jd,
j = 1, 2, . . ., where d = π is the period of the poten-
tial Qw(z). Again, taking into account that the solutions
(6) are continuously differentiable on the first half of the
first period, i.e for 0 ≤ z < d/2, we construct contin-
uously differentiable normalized solutions u(z) and v(z)
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within each period j = 1, 2, . . . as follows

uj(z) =

√

1 + q cos 2z

1 + q
cosΦw(z, a, q, j),

vj(z) =sgn(a)

√

(1 + q)(1 + q cos 2z)

a
sinΦw(z, a, q, j),

(7)

where

Φw(z, a, q, j) =

√

a

1− q2

×
[

(j − 1)π + arccot

(
√

1 + q

1− q
cot z

)]

.

These results are illustrated in Fig. 2.

Fig. 2. Wu-Shih potential Qw(z) (black line) and the
original non-smooth Wu-Shih solutions w1(z) and w2(z)
(thin black lines) compared to continuously differentiable
normalized solutions u(z) and v(z) (thick grey lines), for
q = 0.45 and a = 0.30 on the first four periods of Qw(z).

We should mention that both the Casperson and Wu-
Shih potentials have a period d = π. However, all deriva-
tions in this paper remain valid for Hill’s equations, with
modified Casperson and Wu-Shih potentials of arbitrary
period d, Qm

c,w = π2/d2 Qc,w, provided one substitutes
z → (π/d)z.

3. Floquet-Bloch Analysis

As mentioned in the Introduction, a detailed analysis
of Hill’s equation is provided by Floquet-Bloch theory,
which states that among the many fundamental systems
of solutions of Eq. (1) there is a special one called the
Floquet-Bloch system, see Refs. [5–8]. This special fun-
damental system contains at least one nontrivial partic-
ular solution, F1(z), of Eq. (1) with the property

F1(z) = P1(z) e
iξz, P1(z + d) = P1(z), (8)

where P1(z) is a periodic function of period d and ξ is the
Bloch wavenumber. Such a solution is commonly referred
to as a Bloch wave.

In most cases, the second solution of the Floquet-Bloch
fundamental system constitutes a second Bloch wave

F2(z) = P2(z) e
−iξz, P2(z + d) = P2(z). (9)

One can see that both Bloch waves obey the relation

Fj(z + d) = ρj Fj(z) , j = 1, 2 , (10)

where the constants ρj are non-zero, generally complex-
valued numbers, called Floquet multipliers. They satisfy
the relation

ρ1ρ2 = 1 (11)

and are related to the Bloch wavenumber via

ρ1,2 = e±iξd. (12)

In allowed bands (regions of stability) both Bloch waves
are bounded propagating functions. In the bandgaps (re-
gions of instability) one Bloch wave decreases along the
axis of propagation, while the other one grows exponen-
tially. That growing wave is an un-physical solution in
an infinite periodic structure.
On the boundaries between allowed bands and

bandgaps, the two Bloch waves coincide, i.e. F1(z) =
F2(z) ≡ F (z). The constants ρ1,2 also coincide, i.e.
ρ1 = ρ2 ≡ ρ and, in accordance with Eq. (11), either
ρ = 1 or ρ = −1. In the former case the function F (z)
has a period d, while in the latter case it has a period 2d.
These often overlooked special cases were treated in the
context of 1D superlattices in Ref. [13], and in the con-
text of 1D photonic crystals in Refs. [14, 15]. To complete
the fundamental system of Eq. (1) another particular so-
lution is required. A common approach, see Refs. [5, 6],
is to seek a second solution with the property

G(z) = eiξz[zP1(z) + P2(z)], (13)

which leads to

G(z + d) = ρG(z) + ρdF (z). (14)

In this instance the function G(z) is referred to as a hy-
brid Floquet mode.
Another case of special interest is a so-called incipient

band (or vanishing gap). In that case the constants ρ1,2
are equal, but the two Bloch waves are independent pe-
riodic functions, with the same periodicity (d if ρ = 1,
or 2d if ρ = −1). As a result, any linear combination,
ψ(z) = C1F1(z) + C2F2(z), is also a periodic solution of
Eq. (1).

A. Band Structure

Band structure analysis of a periodic potential is often
carried out using the dispersion relation

cos(ξd) =
u(d) + v′(d)

2
, (15)
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where the functions u(z) and v(z) are continuously dif-
ferentiable normalized solutions. Thus, for a real valued
potential Q(z) the function cos(ξd) is also real and satis-
fies the relation −1 < cos(ξd) < 1 in allowed bands and
| cos(ξd)| > 1 in bandgaps.

A well-known physical example of a periodic system is
a 1D photonic crystal, with the refractive index n(z) =
n(z + d). Let an optical wave of wavenumber k = ω/c,
where ω is the angular frequency of light and c is the light
velocity in vacuum, impinge on the crystal at angle θin.
The light is s-polarized when the electric field is normal
to the plane of incidence and is p-polarized when the
electric field lies in the plane of incidence. With the aid
of a parameter β, which is related to the refractive index
of the incident medium nin and the incident angle θin as
β = knin sin θin, the periodic potential Q(z) in Eq. (1)
for such a problem takes the form

QTE(z) = k2n2(z)− β2,

QTM(z) = k2n2(z)− β2 +
1

n(z)

d2n

dz2
− 2

n2(z)

(

dn

dz

)2

(16)

for TE and TM polarizations respectively.

The function Ψ(z) in Eq. (1) becomes the electric field
for TE polarized light, or the magnetic field divided by
n(z) for TM polarized light. The simplest 1D photonic
crystal is a binary crystal, formed by homogeneous alter-
nating layers of two low-loss dielectrics, as illustrated in
Fig. 3.

For a binary crystal the functions u(z) and v(z) can
easily be found analytically, see Refs. [14, 15]. The band
structure of a typical crystal is shown in Fig. 4. One can
see there examples of all the aforementioned features of
band structure, including incipient bands.

Fig. 3. Optical wave incident on a binary photonic crys-
tal {n1 n2}N ; n1 and n2 are the refractive indices of two
dielectric layers with thicknesses d1 and d2; N is the num-
ber of periods, nin and nex are the refractive indices of
the incident and exit media.

Fig. 4. Band structure of a binary photonic crystal, see
Fig. 3, with n1 = 1.5, n2 = 3.5, d1 = 40 nm, d2 = 15 nm.
The refractive index of the incident medium is nin = 2.5.
The allowed bands are shown in grey background, the
bandgaps are shown in white.

The band structure analysis based on the dispersion
relation (15) covers various physical periodic system in-
cluding single-negative (permittivity- or permeability-
negative) materials, see Ref. [16]. Using that relation
with u(z) and v(z) given by Eq. (4) or Eq. (7), re-
spectively, we now calculate the band structures of the
Casperson and Wu-Shih potentials. For those potentials
one has cos(ξd) = u(d) = v′(d) which leads to

cos(ξd) = cos

[

π

√

a

(1− q2)3

]

(Casperson),

cos(ξd) = cos

[

π

√

a

1− q2

]

(Wu− Shih).

(17)

Both these potentials have unusual band structures with
a bandedge at a = 0 separating a single allowed band
(a > 0) from a single bandgap (a < 0). Their incipient
bands are given by

a

(1− q2)3
= m2, m = 1, 2, 3 . . . (Casperson),

a

1− q2
= m2, m = 1, 2, 3 . . . (Wu− Shih).

(18)

In addition, each potential has an additional incipient
band at a > 0 in the degenerate case q = 0. As one can
see, all incipient bands of these two potentials are lines
rather than single points (as seen in a binary crystal).
The results are illustrated in Fig. 5 and Fig. 6.
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Fig. 5. Band structure of the Casperson potential. The
allowed band is shown in grey background, the bandgap
is shown in white. The nondegenerate incipient bands
(dark grey lines) are defined by the equation a/(1−q2)3 =
m2, a > 0; only the first six bands (m = 1, 2, 3, 4, 5, 6)
are shown. The degenerate incipient band is defined by
the equation q = 0, a > 0.

Fig. 6. Band structure of the Wu potential. The allowed
band is shown in grey background, the bandgap is shown
in white. The nondegenerate incipient bands (dark grey
lines) are defined by the equation a/(1−q2) = m2, a > 0;
only the first six bands (m = 1, 2, 3, 4, 5, 6) are shown.
The degenerate incipient band is defined by the equation
q = 0, a > 0.

B. Floquet-Bloch System for Allowed Bands and
Bandgaps

In the allowed bands and bandgaps the Floquet-Bloch
fundamental system consists of the two independent
Bloch waves which are expressed in terms of the nor-
malized solutions, see Refs. [12, 14, 15], as follows:

F1,2(z) = u(z) +
ρ1,2 − u(d)

v(d)
v(z), v(d) 6= 0. (19)

For the potentials at hand

v(d) =
(1 + q)2√

a
sin

[

π

√

a

(1− q2)3

]

(Casperson),

v(d) =
1 + q√
a

sin

[

π

√

a

1− q2

]

(Wu− Shih),

(20)

i.e. v(z) has a node at z = d only in the case of an
incipient band of the above potentials, see Eqs. (17, 18).
Subsequently, one can safely use Eq. (19) to build the
Floquet-Bloch fundamental system in the allowed bands
and bandgaps of either potential.
At this point it is worth noting that in principle it is

sufficient to obtain u(z) and v(z) on the first period only,
i.e. for 0 < z < d. Then, due to the property

F1,2(z + jd) = ρ j
1,2F1,2, j = 1, 2, . . . , (21)

it is possible to extend F1,2(z) throughout the entire pe-
riodic potential using Eq. (19) on the first period only.
As one should expect, the form of the Floquet-Bloch

solutions is markedly different in allowed bands as com-
pared to bandgaps. In the allowed bands they are
complex-valued functions with oscillating non-periodic
real and imaginary parts, related by ℜ[F1(z)] = ℜ[F2(z)]
and ℑ[F2(z)] = −ℑ[F1(z)], see Fig. 7 and Fig. 8.

Fig. 7. Floquet-Bloch waves F1(z) and F2(z) in the
allowed band of the Casperson potential Qc(z) (black
line) for q = −0.25 and a = 1.20. The real parts,
ℜ[F1(z)] = ℜ[F2(z)], are shown by a thick black line
and imaginary parts, ℑ[F2(z)] = −ℑ[F1(z)], are shown
by thick grey lines. Note that ℜ[F1,2(z)] = u(z).

Fig. 8. Floquet-Bloch waves F1(z) and F2(z) in the al-
lowed band of the Wu potentialQw(z) (black line) for q =
0.45 and a = 0.3. The real parts, ℜ[F1(z)] = ℜ[F2(z)],
are shown by a thick black line and imaginary parts,
ℑ[F2(z)] = −ℑ[F1(z)], are shown by thick grey lines.
Note that ℜ[F1,2(z)] = u(z).

This is in stark contrast to the form of the Floquet-
Bloch solutions in the bandgaps, where both are real
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functions, with one being rapidly suppressed along the
axis of propagation whilst the other one is rapidly di-
verging, see Fig. 9 and Fig. 10.

Fig. 9. Floquet-Bloch waves F1(z) and F2(z) in the
bandgap of the Casperson potential Qc(z) for q = −0.25
and a = −0.01.

Fig. 10. Floquet-Bloch waves F1(z) and F2(z) in the
bandgap of the Wu-Shih potential Qw(z) for q = 0.45
and a = −0.02.

C. Floquet-Bloch System at Bandedge Boundaries

Bandedge boundaries present a case of special interest as
at such points ρ1 = ρ2 ≡ ρ so that F1(z) ≡ F2(z) ≡ F (z),
see Eq. (19). Then, the hybrid Floquet mode G(z) of
Eq. (13) is required to complete the fundamental system.
In terms of the normalized solutions, u(z) and v(z), for
the case v(d) 6= 0, we find, see Refs. [12, 14, 15],

G(z) =
ρd

v(d)
v(z), (22)

where in accordance with Eq. (11), either ρ = 1 or ρ =
−1. Subsequently, see Eq. 21, the Floquet-Bloch wave
F (z) becomes periodic with periodicity d for ρ = 1 or 2d
for ρ = −1.

The only bandedge boundary for either potential oc-
curs when a = 0, see Section 3.1; then ρ1 ≡ ρ2 ≡ ρ =
u(d) = v′(d) = 1, and the periodic Floquet-Bloch wave
F (z) coincides with the normalized solution u(z)

F (z) = u(z) =
1 + q cos(2z)

1 + q
(Casperson),

F (z) = u(z) =

√

1 + q cos(2z)

1 + q
(Wu− Shih).

(23)

The second normalized solution v(z) is obtained by tak-
ing the limit a → 0 in Eq. (4) or Eq. (7) correspond-
ingly. As a result, the function v(z) within each period
j = 1, 2, . . . takes the form

vj(z) = −1

2

q sin 2z

1− q
+

(1 + q cos 2z)

(1− q)
√

1− q2

[

(j − 1)π + arccot

(
√

1 + q

1− q
cot z

)]

(Casperson),

vj(z) =

√

1 + q cos 2z

1− q

[

(j − 1)π + arccot

(
√

1 + q

1− q
cot z

)]

(Wu− Shih).

(24)

The hybrid Floquet mode G(z) is defined by Eq. (22),
where in accordance with Eq. (24),

v(d) =
π

1− q

√

1 + q

1− q
(Casperson),

v(d) = π

√

1 + q

1− q
(Wu− Shih).

(25)

The results are illustrated in Fig. 11 and Fig. 12.

Fig. 11. Periodic Floquet-Bloch wave F1(z) ≡ F2(z) ≡
F (z) and a hybrid Floquet mode G(z) at the boundary
(a = 0) between the allowed band and bandgap of the
Casperson potential Qc(z) for q = −0.25.
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Fig. 12. Periodic Floquet-Bloch wave F1(z) ≡ F2(z) ≡
F (z) and a hybrid Floquet mode G(z) at the boundary
(a = 0) between the allowed band and bandgap of the
Wu-Shih potential Qw(z) for q = 0.45.

D. Floquet-Bloch System for Incipient Bands

Incipient bands provide another case of special interest
as they support two periodic linearly-independent Bloch

waves, which coincide with the normalized solutions u(z)
and v(z), see Refs. [12, 14, 15]. In these regions, as with
bandedge boundaries, ρ1 = ρ2 ≡ ρ, and the periodicity
of the Bloch waves depends on the value of the Floquet
multiplier (d if ρ = 1, 2d if ρ = −1). The incipient bands
(vanishing gaps) of some physical periodic systems have
been studied in Refs. [17, 18].

Using the relationship, see Eqs. (18), between the pa-
rameters a and q in the incipient bands m = 1, 2, . . . of
the Casperson and Wu-Shih potentials, we obtain the an-
alytical expressions for the periodic Bloch waves within
each period j = 1, 2, . . . of the Casperson potential as

F1,j(z) =
1 + q cos 2z

1 + q
cosΦm

c (z, a, q, j),

F2,j(z) =− 1 + q cos 2z

m(1− q)
√

1− q2
sinΦm

c (z, a, q, j),
(26)

where

Φm
c (z, q, j) = m

[

q
√

1− q2 sin 2z

2(1 + q cos 2z)
− (j − 1)π − arccot

(
√

1 + q

1− q
cot z

)

]

,

and within each period j = 1, 2, . . . of the Wu-Shih po-
tential as

F1(z) =

√

1 + q cos 2z

1 + q
cosΦm

w (z, a, q, j),

F2(z) =
1

m

√

1 + q cos 2z

1− q
sinΦm

w (z, a, q, j),

(27)

where

Φm
w (z, q, j) = m

[

(j − 1)π + arccot

(
√

1 + q

1− q
cot z

)]

.

In Fig. 13 the periodic Floquet-Bloch waves with the
period d = 2π (ρ1 = ρ2 = −1) are shown in the third
incipient band (m = 3) of the Casperson potential for
q = −0.25.

Fig. 13. Periodic Floquet-Bloch waves F1(z) and F2(z)
in the third incipient band (m = 3) of the Casperson
potential for q = −0.25.

In Fig. 14 the periodic Floquet-Bloch waves with the
period d = π (ρ1 = ρ2 = 1) are shown in the fourth
incipient band (m = 4) of the Wu-Shih potential for q =
0.45.
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Fig. 14. Periodic Floquet-Bloch waves F1(z) and F2(z)
in the fourth incipient band (m = 4) of the Wu-Shih
potential for q = 0.45.

In the degenerate incipient band, q = 0 (a > 0), of
both potentials, the two periodic Bloch waves reduce to

u(z) = cos(
√
az), v(z) =

sin(
√
az)√
a

. (28)

4. Conclusion

Two analytically solvable Hill’s equations with continu-
ous potentials were investigated, using the Floquet-Bloch
method. In particular, the allowed bands and bandgaps
of those potentials were obtained by analysis of the ex-
act dispersion equation for the Bloch phase. The band
structure of either potential is shown to possess a band-
edge boundary separating a single bandgap from an al-
lowed band, the latter divided into pieces by incipient
bands (vanishing gaps). Those incipient bands are con-
tinuous second-order curves and thus they provide an
example of a new kind of incipient band for a periodic
potential (to date, incipient bands were reported only
in the form of points or in the form of straight lines).
The Floquet-Bloch solutions within each of the identi-
fied regions of band structure were then constructed and
analyzed. Certainly, to fabricate in practice pho-

tonic crystals or semiconductor superlattices with

the described incipient bands is hardly achiev-

able. However, our analysis concerning the in-

cipient bands could explain anomalously narrow

bandgaps should they be found in similar struc-

tures. Overall, the results add to a better understanding
of Floquet-Bloch theory and may provide further insight
into the behavior of light within photonic crystals, or
electrons in semiconductor superlattices.
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