
 

UWS Academic Portal

Resource dependency processing in web scaling frameworks

Fankhauser, Thomas; Wang, Qi; Gerlicher, Ansgar; Grecos, Christos

Published in:
IEEE Transactions on Services Computing

DOI:
10.1109/TSC.2016.2561934

Published: 03/05/2016

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Fankhauser, T., Wang, Q., Gerlicher, A., & Grecos, C. (2016). Resource dependency processing in web scaling
frameworks. IEEE Transactions on Services Computing, PP(99), 1-14.
https://doi.org/10.1109/TSC.2016.2561934

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

https://doi.org/10.1109/TSC.2016.2561934
https://uws.pure.elsevier.com/en/publications/64e56903-97ae-4349-86fc-6a1d9fb7160f


IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 1

Resource Dependency Processing
in Web Scaling Frameworks

Thomas Fankhauser, Student Member, IEEE, Qi Wang, Member, IEEE,
Ansgar Gerlicher, Member, IEEE, and Christos Grecos, Senior Member, IEEE

Abstract—The upsurge of mobile devices paired with highly interactive social web applications generates enormous amounts of
requests web services have to deal with. Consequently in our previous work, a novel request flow scheme with scalable components
was proposed for storing interdependent, permanently updated resources in a database. The major challenge is to process
dependencies in an optimal fashion while maintaining dependency constraints. In this work, three research objectives are evaluated by
examining resource dependencies and their key graph measurements. An all-sources longest-path algorithm is presented for efficient
processing and dependencies are analysed to find correlations between performance and graph measures. Two algorithms basing
their parameters on six real-world web service structures, e.g. Facebook Graph API are developed to generate dependency graphs
and a model is developed to estimate performance based on resource parameters. An evaluation of four graph series discusses
performance effects of different graph structures. The results of an evaluation of 2000 web services with over 850 thousand resources
and 6 million requests indicate that resource dependency processing can be up to a factor of two faster compared to a traditional
processing approach while an average model fit of 97% allows an accurate prediction.

Index Terms—scalability, web service, cloud computing, graph processing, job scheduling, dynamic programming, reactive processing

F

1 INTRODUCTION

MODERN web applications such as social networks and
services for the Internet of Things are highly interac-

tive. They provide a continuous experience across multiple
mobile devices such as smart phones, smart watches, tablets
and cars. The data sent and received by billions of devices
is mined and analysed by big data algorithms and used
for intelligent content creation. For all live traffic reports,
pandemic and epidemic disease prognosis, live weather and
global movie trends enormous amounts of requests are ex-
changed and processed. This puts high demands on modern
web services. Requests have to be distributed to multiple
servers, while the optimal number of necessary servers has
to be adapted to the encountered load continuously by
scaling up and down. Simultaneously, the high throughput
of requests needs to be ensured with minimal processing
delays in order to minimise waiting times for the users.

1.1 Background
As the creation of web services handling both logic and
scaling is a very complex matter, we proposed Web Scaling
Frameworks (WSFs) in our recent work [1], [2]. WSFs take
over the responsibilities of scaling by embedding existing
Web Application Frameworks (WAFs) in a larger system.
By storing all requestable resources in a Resource Database
(RDB), we were able to apply a novel request flow rout-
ing mechanism minimising the expensive processing of

• T. Fankhauser and Q. Wang are with the School of Engineering and
Computing, University of the West of Scotland
E-mail: {Thomas.Fankhauser, Qi.Wang}@uws.ac.uk

• C. Grecos is with the Sohar University
E-mail: grecoschristos@gmail.com

• A. Gerlicher and T. Fankhauser are with the Stuttgart Media University
E-mail: {gerlicher, fankhauser}@hdm-stuttgart.de

requests. To enable the novel request flow, workers pro-
cessing requests need to ensure the RDB is kept up to
date by processing the resources with their dependencies. A
resource has a dependency on an other resource, if the other
resource needs to be updated with the original resource.
This declaration enables to calculate an optimal subset of
resources that have to be updated when an other resource
is changed. Our previous mathematical model allows cal-
culating the maximum time available for the dependency
processing where the novel request flow approach remains
faster than the traditional WAF approach.

1.2 Motivation and Objectives
Finding an efficient resource dependency processing mech-
anism is a key requirement for building a scalable web
service architecture with optimised request routing. With a
slow processing performance, only read-driven applications
can benefit from the RDB which limits the field of appli-
cations for WSFs. The first major objective of this work is
to gain further knowledge of how dependencies between
resources in web applications can be measured, stored and
generated to fit existing application structures. Therefore,
we identify a graph as the structure for expressing resource
dependencies and relate known graph measures to describe
significant dependency structures. To generate dependency
graphs, we develop a service based graph algorithm using
the APIs of six real-world applications and a fuzzy graph
algorithm creating applications based on random graph
measures. The second major objective is to find existing and
novel algorithms that qualify for optimisation of processing
performance and evaluate their performance compared to a
typical traditional processing approach. Therefore, multiple
graph algorithms in the area of job and workflow process-
ing are evaluated. A novel algorithm using a topological

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 2

sort with dynamic programming is proposed to efficiently
compute a forest of valid processing trees alongside a
model to calculate the tree processing durations. We conduct
a comprehensive performance evaluation between a de-
pendency processing approach and a traditional approach
with over 2000 applications, 1 million resources and 18
million requests to find improved performances of up to
factor two. The third and final objective is to model the
dependency processing duration and analyse the effects of
graph measures on the performance. Therefore, a simplified
approximation model is developed and evaluated allowing
for precise and cost-efficient computation of the process-
ing duration, the duration delta and relative performance
improvement compared to traditional methods. Further, a
linear correlation of the processing duration with the de-
pendency depth and the cluster size is found, evaluated and
analysed for its influence on the processing performance.

The remainder of the paper is organised as follows:
Section 2 summarises the results of the literature review of
related work. Section 3 identifies the structure and measures
of resources and dependencies. Section 4 evaluates suitable
graph processing algorithms, whilst Section 5 finds corre-
lations between the processing duration and other graph
measures. Section 6 introduces dependency graph and traf-
fic generation algorithms and Section 7 develops the models
for the approximation model. Section 8 evaluates both the
empirical performance and model fits with a cloud cluster
and analyses different graph structures. Section 9 outlines
the results and conclusions and gives a perspective on future
research.

2 RELATED WORK

We reviewed and classified related work with respect to
our three major objectives as presented in Table 1. Work in
the Dependency Structure and Generation category deals with
caching policies and graph processing. In the Algorithms and
Evaluation category we study work related to scheduling
algorithms and reactive programming. Finally, work in the
Modelling and Analysis category deals with measures and al-
gorithms for self-similar traffic and web resource modelling.

2.1 Dependency Structure and Generation

Traditional web services employ cache eviction approaches
based on policies to select optimal cache contents. Evictions
can be based on the distance between objects such as in
the SACS system [3], recommendations systems analysing
proxy access logs [4], or enhanced traditional eviction
policies [5] such as Least Frequently Used (LFU) or the
Weighting Replacement Policy (WRP). In contrast to the
aforementioned approaches, we propose to explicitly de-
clare all dependencies between service resources and store
all requestable web objects in a persistent resource database
instead of a volatile cache. Instead of cache eviction, our
approach requires a precise update mechanism to keep the
resource database in sync with the data. The work in [6],
[7], [8] presents a comprehensive survey over implemented
algorithms, usability, performance and scalability of multi-
ple large scale graph processing platforms such as GraphChi,
Apache Giraph, GPS, GraphLab, GraphX, Neo4j, Apache Hadoop,

TABLE 1
Categorisation of related work

Structure and Generation (2.1) References
Caching Policies [3], [4], [5]
Graph Processing [6], [7], [8]
Algorithms and Evaluation (2.2) References
Scheduling Algorithms [9], [10], [11], [12], [13], [14],

[15], [16], [17], [18]
Reactive Processing [19], [20], [21]
Modelling and Analysis (2.3) References
Service Measures [22], [23], [24], [25], [26], [27]
Traffic Modelling [28], [29], [30], [31], [32], [33],

[34]

YARN and Stratosphere. We propose to store the dependency
graph in one of the aforementioned large scale graph pro-
cessing platforms and use the algorithms we develop in this
work to extract a forest of individual dependency trees for
each resource. Unfortunately, we can not use the datasets
from [6], [7], [8] as they describe relationships between data
entities, e.g. users but not service resources as required for
this work. Hence we need to create our own service datasets.

2.2 Scheduling Algorithms and Evaluation

We identified the processing of dependencies as an op-
timisation problem in the domain of job and workflow
scheduling. Job scheduling has a long history in the project
management context [9], where critical path planning and
scheduling [10] was developed to find a sequence of de-
pendent jobs that determines the maximum duration of a
project. Applications for job scheduling have been found
and transferred to QoS-based scheduling in grid computing
[11] and network activity times [12]. In the domain of
workflow scheduling, the authors in [13] present a com-
prehensive survey and analysis of scheduling schemes in
cloud computing, where a scheduling scheme tries to map
the workflow tasks to multiple virtual machines based on
different functional and non-functional requirements. The
authors in [14] present a scheduling strategy that maps
workflow tasks to multiple clusters and clouds with opti-
mised balancing. In our work, we transfer and apply the
critical path problem from the project management context
to dependency processing of web resources. The process-
ing of dependencies are the activities and the critical path
duration is the maximum dependency processing duration.
From workflow scheduling, we use basic structures such
as a Directed Acyclic Graph (DAG) to declare dependent
tasks. Our major objective however, is not to distribute work
to multiple virtual machines as presented by [13], [14], but
find an optimal forest of processing trees from a dependency
graph. The trees are then used to process dependencies in
an optimised fashion and calculate the maximum processing
duration as critical path. In [15], [16], [17] the authors show
that a topological sorting of jobs for correct orderly schedul-
ing can be calculated in linear time. The dynamic program-
ming method [18] solves complex problems by breaking
them down into a collection of simpler subproblems if the

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 3

TABLE 2
Conceptual distinction of dependency related graph types

Resource
Graph

All resources of a web service. Nesting of re-
sources determines edges.

Dependency
Graph

Dependencies between resources only. No re-
sources that have no dependencies.

Structure
Graph

Logical resource structure with unexpanded enti-
ties. Can be expanded to a resource graph.

Processing
Tree

Tree that considers processing precedence con-
straints for a single resource as root.

subproblems have an optimal substructure and are over-
lapping. Our proposed approach combines both topological
sorting with dynamic programming on a DAG structure
to determine the critical paths of processing. The reactive
programming paradigm [19], [20], [21] is oriented around
data flows and the propagation of changes and thereby fits
the requirements for dependency processing. In this work
we use and apply reactive programming with eventual
consistency to automatically update resource dependencies
with a middleware approach observing incoming changes
through requests.

2.3 Service Modelling and Analysis
The authors in [22], [23] improve the cache Hit-Miss Ratio
(HMR) with machine learning approaches and define typi-
cal values between 0.35 and 0.75. In [24], [25] the processing
time of web applications is characterised as a Hyper-Erlang,
Weibull, generalised Pareto or Lomax distribution. Work
in [26], [27] classifies the graph structure in the web to
be heavy-tailed and studies the in-degree and out-degree
distributions of a large web crawls. In this work we model
the cache hit/miss ratio and processing duration according
to [22], [23], [24], [25], [26], [27]. However, the work on graph
structures on the web studies the dependencies between
multiple web services, where our work considers the re-
source dependencies within a single web service. Hence, we
analyse existing service structures in Section 6. The authors
in [28], [29], [30], [31], [32] find that request arrival times
exhibit self-similarity and use the following random pro-
cesses for modelling: Fractionally Autoregressive Integrated
Moving-Average (FARIMA), Fractional Brownian Motion
(FBM), Poisson Pareto Burst (PPB), Poisson Lomax Burst
(PLB) and Circulant Markov-Modulated Poisson (CMMP).
For resource popularity [33], [34] the popularity distribution
can be modelled using a Zipf distribution with parameter
ranges between 0.64 and 0.84. In this work, we use all
the proposed random processes (FARIMA, FBM, PPB, PLB,
CMMP) for modelling the request arrival times and the Zipf
distribution for modelling the selection of resources.

3 RESOURCE DEPENDENCIES

In order to minimise the expensive processing of requests,
we presuppose the declaration of resource dependencies
that have to be processed for each request modifying data
on the server. Table 2 presents the conceptual distinction
of dependency related graph types, where the required
dependency declaration extracts a dependency graph from a
resource graph. Beforehand declaration of dependencies can

Fig. 1. A resource graph representing all service resources with an
extracted dependency graph showing dependent resources. Resources
in the resource graph are either read (a) or processing (b) resources.
Dependencies in the dependency graph are either synchronous (c)
or asynchronous (d). Clusters (e) highlight disconnected groups of re-
sources.

be fully automated as dependency constraints are implicitly
contained in the web service’s view layer code. The code
used to render a resource explicitly defines which data
is used to create the view, e.g. an HTML page. Thus, all
resources that use the same data have a dependency on each
other. Resulting from the dependency processing, resources
are stored in a distributed, cloud based resource database.

3.1 Resource Vertices and Dependency Edges
A web service exposes multiple routes delivering different
resources such as markup, structured data, images or videos
to the consumer. The resource graph in Fig. 1 presents all
resources of a web service. Resources can be addressed by
traversing through the graph, e.g. /A/D/H. Each resource is
either a read resource (HTTP GET or HEAD) or a processing
resource (all other HTTP methods). This distinction is used
to apply optimised request routing mechanisms, where read
resources and processing resources can be handled by sepa-
rate, individually scalable subsystems. In the dependency
graph in Fig. 1, an edge expresses that after update of
resource B, resource A has to be updated as well. Thus,
following job and workflow scheduling methodology as in
[9], [10], [13], [14], we can model our resource dependencies
as DAG. The dependency graph does not contain resource
contents, but only the edges between dependent resource
URLs and thereby can efficiently be stored as sparse matrix.
To store resource contents a distributed storage solution
is needed as presented in [1], [2], where mechanisms to
synchronise data between machines are reflected in an in-
creased lookup delay. By design however, the lookup delay
only influences the read subsystem. Resource dependencies
are further categorised to be synchronous or asynchronous.
For synchronous dependencies (Fig. 1 (c)), the response to
the original request is delayed until all dependencies are
finished processing. This guarantees that on response the
resource database is updated with all changes triggered by
the original request. For asynchronous dependencies (Fig. 1
(d)), the response returns immediately while the dependen-
cies are processed in background. This guarantees that the
resource database will be updated eventually. Web sites not
caching state on the client mainly use synchronous depen-
dencies as subsequent requests need to reflect all changes
from previous requests. Web applications in contrast, cache
state and present changes directly to the user which allows
dependencies to be processed in the background.

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 4

TABLE 3
Interpretation of dependency related graph measures

Depth Mean length of longest-paths from all vertices
Degree Mean outgoing number of edges from all vertices
Cluster Count Number of independent vertex clusters
Cluster Size Mean number of connected vertices in a cluster
Sparsity Number of edges divided by number of vertices

3.2 Interpretation of Dependency Graph Measures
In addition to simple graph measures such as vertex and
edge counts, there exist more complex measures as pre-
sented in Table 3. A further interpretation in the context
of dependency processing helps to classify their influence
on the structure of web services and performance of pro-
cessing. The mean dependency depth denotes the average
number of steps required for dependency processing and is
further detailed in Section 4. It is used in the approximation
model in Section 7 to calculate the average processing steps
needed. The mean dependency degree is used to estimate
the portion of parallel processing, as all children of a vertex
can be computed in parallel without collisions. The cluster
count and size generally give an indication on the structure
of a web service where a low number of clusters and a large
cluster size indicate a deeply joint application structure.
Based on data in Section 6, dependency graphs are sparse
graphs. A low sparsity generally expresses a low amount of
dependencies resulting in faster processing.

4 PROCESSING ALGORITHMS

For the efficient processing of dependencies we formulate
the problem as follows: Given a vertex from a dependency
graph, how long does it take to process all dependencies of
the vertex while ensuring correct processing order. The key
metric to optimise is the dependency processing duration,
which refers to a makespan optimisation in [9], [10], [13],
[14]. Consequently, the scheduling of dependencies is dis-
tinct from scheduling in an OS, where the major objective is
to fairly balance computing resources between long-running
processes that appear to be running in parallel. Additionally,
it is distinct from scheduling jobs onto a cluster, where the
major goals are an optimal distribution of the pieces of work
with a high resource utilisation. The bottlenecks in schedul-
ing resource dependencies are the processing durations of
individual resource updates that need to be processed in the
correct order. Thus, we transform the problem into a DAG
structure as used in job and workflow scheduling [9], [10],
[13], [14].

4.1 Evaluation
To find and evaluate suitable algorithms, we generate 1000
random dependency graphs with a custom created Incre-
mental Edge Add (IEA) graph generation algorithm. The
IEA generation algorithm starts with 1000 completely dis-
connected resource vertices in the first generation graph. In
each next generation, it adds a random, directed edge to
the previous generation graph while ensuring no cycles are
created. We build 1000 generations of the graph with a max-
imum number of 1000 edges and give each resource vertex

Fig. 2. Dependency processing scheduling problem presented with a
shortest-path tree and a longest-path tree approach. (a) highlights multi-
ple processing paths where the performance of (b) is superseded by the
performance of (c). However, the shortest-path approach at (d) does not
guarantee the correct job order enforced by the longest-path approach
at (f). Processing trees depend on their root vertex, e.g. starting at C (g)
leads to a different tree than starting at A (f).

a processing delay of 100ms. The algorithms presented in
the next sections are evaluated with a model of the applied
algorithm and an empirical data collection from our Rasp-
berry Pi computing cluster which consists of 42 machines.
We implement the dependency processing algorithms using
the Go programming language and create one million HTTP
requests to measure the dependency processing duration.

4.2 Shortest and Longest-Path Approaches

As Fig. 2 (a) shows, a dependency graph defines multiple
contingent processing paths. The resource vertex E can
be reached via the path (A,B,E) and (A,C,E). Optional
dependencies are not possible as E either contains content
from B (B has a dependency on E), or it does not. The
dependency graph states both B and C need to be finished
processing before E can be processed as it contains changes
from both B and C . Hence, an algorithm is needed to cal-
culate the fastest and sequentially correct processing path.
Our approach to calculate the processing path and thereby
the duration is to weight the edges of the dependency graph
with the mean processing delay introduced by the vertex
the edge points to. From Fig. 2 (d-e), our collected test data
and work in the job and workflow scheduling domain [13],
[14], [35], [36], [37] follows that a shortest-path approach
is not feasible for dependency processing as it violates
precedence constraints. Longest-path algorithms guarantee
the precedence constraints, however finding a longest-path
in a directed graph is a NP-hard problem which can not
be solved efficiently for large datasets. From the domain
of workflow scheduling [13], [14] follows that constraining
the problem to DAGs enables the application of efficient
algorithms. Fig. 2 presents such a DAG, where the longest-
path tree for A is shown at (f) and the processing duration
is determined by the critical path at Fig. 2 (h).

4.3 A Forest of Processing Trees

Fig. 2 (g) additionally shows that processing trees are dis-
tinct for each resource vertex. The longest-path tree in Fig. 2

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 5

provides the solution for resource vertex A. Resource vertex
C can not use the same solution as A, as it has no dependen-
cies in the processing tree for A. The correct processing tree
for C is C,E, F, J . In conclusion, for each resource vertex
there exists an individual processing tree thus leading to
a forest of processing trees. This forest has to be respected
in the calculation of the algorithm time complexity. Using
an adjacency matrix, a dependency graph with maximum
edges can be constructed by filling either the upper or the
lower triangular part of the matrix excluding the diagonal
with edges where a 1 marks the presence of an edge E
between two vertices V :

Emax(V ) =
1

2
· (−1 + V ) · V (1)

Using each vertex as a root for a subgraph of a DAG, the
maximum number of vertices Vsub,max in each subgraph
must decrease by at least one to ensure no cycles are present:

Vsub,max(V ) =
V∑

r=0

V − r =
V∑

r=1

r (2)

4.4 Forest of Processing Trees Extraction Algorithms
We evaluate two algorithms to extract all longest-path trees
efficiently: A version of Bellman-Ford that uses negated
edge weights and an algorithm we propose that is based
on a topological sort and uses dynamic programming. The
authors in [35] prove the longest-path problem in edge-
weighted directed acyclic graphs to be solvable by finding
the shortest-paths in a graph where all edge weights are
negated. The Bellman-Ford algorithm can deal with nega-
tive edge weights and takes time proportional to E · V . The
algorithm needs to be executed for every resource subgraph
of the dependency graph, so from (1) and (2) follows that:

V∑
v=1

Emax(v) · v (3)

Albeit suitable, we do not use the Bellman-Ford algorithm
to extract the forest of processing trees as a faster and more
efficient algorithm exists. By topologically sorting a DAG,
a linear ordering of vertices is generated guaranteeing a
vertex v1 to come before a vertex v2 if an edge v1 → v2
exists. The work in [35] proposes an algorithm able to find
a longest-path tree from a root vertex in linear-time. The
proposed algorithm however only calculates a single-source
longest-path tree. For dependency processing a forest of
processing trees needs to be extracted, so an all-sources
longest-path tree algorithm is needed. For the further mod-
elling of the processing duration, knowledge of the length
of the critical path is required for all trees in the forest.
Therefore, we extend the single-source algorithm in [35]
with a dynamic programming approach so the computed
result returns a forest of processing trees and the processing
durations of all critical paths:

1: delays← processing delays of vertices of DG
2: order ← topologically sorted vertices of DG
3: forest← subgraphs for all v out components
4: durations← 0 for all vertices of DG
5: for all vertices v in DG do
6: suborder ← intersection of v in forest and order

7: distances← −∞ to each vertex t in forest
8: distances[v] = delays[v]
9: for all vertices s in suborder do

10: for all children c of s do
11: d = distances[s] + delays[c]
12: if distances[c] < d then
13: distances[c] = d
14: if durations[v] < d then
15: durations[v] = d
16: end if
17: end if
18: end for
19: parents← parents of vertex forest[v][s]
20: if length of parents > 1 then
21: max← maximum distances of parents
22: for all vertices p in parents do
23: if distances[p] < max then
24: delete edge p→ s from forest[v][s]
25: end if
26: end for
27: end if
28: end for
29: end for
30: return [forest, durations]

Our proposed Forest of Processing Tree Extraction (FPTE)
algorithm applies dynamic programming by calculating the
topological order only once for the entire set of vertices. A
subproblem is defined as finding a single-source longest-
path tree based on the total order. The original algorithm
[35] calculates only a single longest-path tree for a selected
vertex. Further, in our algorithm the calculation of the
critical path durations is injected into the original single-
source algorithm’s relaxation step to reduce the runtime
(line 14-16). In detail, the FPTE algorithm initialises its data
structures (line 1-4), calculates the topological order of all
vertices and creates arrays for the distances and durations
for each root vertex v. For each vertex, subgraphs are
generated (line 3) from where the algorithm step-by-step
removes the shortest-path edges. Using each vertex once as
root vertex (line 6), the vertices of the subgraph are extracted
in suborder. The distance to each vertex in the subgraph is
set to −∞ on line 7, where the distance of a node to itself is
the processing delay as shown on line 8. Next, the vertices
are traversed in this suborder and each child is expanded
(line 9-10). As a next step, the edges are relaxed by checking
if the currently stored distance to the child is smaller then
the current path (line 11-12). If so, a new longest-path is
found to the child and stored as new longest distance and
duration (line 13-16). By line 18, the maximum distance to
the vertex s is known. If multiple edges point to s, then
the edges from the parents with the lowest distance can
be removed to keep only longest-paths. At the end of the
loop for v (line 28), the subgraph is fully converted to a
longest-path tree. The single-source longest-path algorithm
from [35] takes time proportional to E + V as it visits each
vertex and each node exactly once. Following (1) and (2),
our all-sources and critical path durations extension to the

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 6

Fig. 3. Longest-path tree evaluation of 1000 dependency graphs with
an increasing number of edges. Starting with a low slope at (a), with
an increasing number of edges the slope increases as well at (b). The
implemented model using the FPTE algorithm matches to 99.4% with
the collected data.

algorithm takes time proportional to:

V∑
v=1

Emax(v) + v (4)

Hence, it is faster than the Bellman-Ford algorithm.

4.5 Results

Fig. 3 shows the results from the evaluation of our all-
sources longest-path trees algorithm with empirical data.
The processing duration starts with a low slope at Fig. 3 (a)
and then increases in a non-linear fashion towards Fig. 3 (b)
with the number of edges as paths get longer. The durations
we calculate with the FPTE algorithm match to 99.4% with
the empirical data collected on our computing cluster. To
further understand the most influential graph measures of
dependency processing, we analyse the processing duration
correlations in detail in the following section.

5 DEPENDENCY ANALYSIS

In this section, we analyse the correlations of the processing
duration with the edge count, dependency depth, depen-
dency degree, cluster count and cluster size in detail. Each
generation of the analysed dependency graph contains one
more edge than the previous one. The number of vertices
is kept constant to prevent a skewing of the dependency
analysis. If more vertices would be added throughout the
evaluation, the correlation metrics would change based on
the number of vertices, where we are interested in changes
of edges.

5.1 Correlations with Processing Duration

Fig. 4 shows the normalised correlations of all dependency
measures with the processing duration. For the analysis,
we calculate the Pearson product-moment correlation coef-
ficient R and the coefficient of determination R2 to evaluate
if a linear correlation between the measure and the process-
ing duration exists. Additionally, we calculate a linear and
nonlinear model for each measure and determine the Root-
mean-square errorRMSE and Fit. Fit is determined using
the normalised version of the RMSE with 1−NRMSE to
denote the model fit. The best-fit functions along with the
determined correlation metrics are shown in Table 4.

Fig. 4. Normalised correlations of the processing duration with the num-
ber of edges, mean dependency degree, dependency depth, number
of clusters and mean cluster size. The mean dependency depth is
linear correlated with the dependency processing duration. The FPTE
regression determines the slope of this correlation and thereby allows to
estimate the processing performance efficiently.

TABLE 4
Correlations of dependency measures with the processing duration

Measure R R2 Function RMSE Fit

Edges 0.89 0.8 102 + 0.000405x2 32.35 0.93
Degree 0.89 0.8 102 + 405x2 32.35 0.93
Depth 1 1 113 + 0.1x 0 1

Clusters -0.84 0.72 25.12 + 83034/x 20.25 0.96
Cluster Size 0.98 0.97 25.12 + 83.034x 20.25 0.96

5.1.1 Edge Count
From our model fit in Table 4, we find the number of edges
to have a quadratic effect on the processing duration shown
in Fig. 4. This stems from the fact that the probability to
connect multiple vertices by adding a new edge is lower
for initial generations of the graph, where many vertices are
connected by a single edge only. With an increasing number
of edges, the probability to connect multiple other edges
with a new edge increases in a quadratic fashion. Thereby
longer paths are created, thus increasing the processing
duration.

5.1.2 Dependency Degree
In the same way as the number of edges, the dependency
degree is a measure directly related to the probability of
a vertex connecting to other vertices. The mean vertex
degree increases along with the number of edges as the
probability that a new edge connects a vertex to a longer
path also increases in a quadratic fashion (Table 4). Hence,
the normalised correlation of the dependency degree shown
in Fig. 4 matches the normalised correlation of the number
of edges.

5.1.3 Dependency Depth
Concluding from the correlation of the edge count and the
vertex degree, the mean dependency depth has a linear
influence on the processing duration as it directly reflects
the average length of the longest-paths. Fig. 4 shows this
linear correlation along with Table 4, where the slope of the
function matches the mean processing delay for each vertex.

5.1.4 Cluster Count
The cluster count expresses how many unconnected clusters
of vertices exist. Fig. 4 illustrates how more clusters lead to

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 7

shorter processing paths and thereby influence the process-
ing duration inversely as shown in Table 4.

5.1.5 Cluster Size
The cluster size signifies the mean length of connected com-
ponents and thereby dictates the maximum length for the
longest-paths. As shown in Table 4, the processing duration
increases linearly with the cluster size. In Fig. 4 however, the
duration stays below a perfect linearity for the majority of
the time and then jumps above the line close to the end. For
a graph without edges, all vertices are disconnected from
each other. Thus, the number of clusters equals the number
of vertices with a cluster size of exactly 1. By adding some
edges, small groups of vertices become connected forming
clusters of small sizes, e.g. 2-3. With the further addition
of more edges, small clusters become connected to other
small clusters forming clusters of larger sizes, e.g. 30-40. This
continues until eventually all clusters are connected to one
single cluster. As a result, the cluster size jumps whenever
multiple clusters join to a single cluster until finally the size
equals the number of vertices.

5.2 Regressions for Processing Duration
Based on the results from the correlation analysis, we
build two regression models in order to approximate the
processing duration for a given dependency graph. Both
models base their duration calculation on the mean pro-
cessing delay dp. Variable processing times for dynamic
resources are implicitly hidden in the variance of the mean
processing delay dp. For example an addToBasket action in
an e-commerce website will process longer if 50 items are
put into the basket instead of just 1. However, the variance
introduced by dynamic actions is not considered in our
modelling as we found using the mean processing delay
only provides sufficient accuracy. Two measures exhibit a
linear correlation with the processing duration: the cluster
size and the dependency depth.

5.2.1 Cluster Size Based
We find for sparse graphs with a sparsity S / 1 the
cluster size CS is steady and can be used to estimate the
processing duration. Using the mean processing delay dp
and the network delay dn from the previous work [2] we
model:

dreg,CS = CS · dp + dn if S / 1 (5)

Fig. 4 shows the cluster size regression with a model fit of
0.96. The cluster size can be calculated very efficiently for
the whole dependency graph through its weakly connected
components, however with an increasing sparsity S the
approximation results deteriorate.

5.2.2 Depth Based
A more exact approximation of the processing duration
can be performed using the processing depth if there are
more edges than vertices in the graph. However, it is more
expensive to calculate the processing depths using a depth-
first search algorithm, as the depth has to be computed
for every starting vertex. Equation (1) and (2) denote the
maximum number of edges and vertices for a DAG, where

TABLE 5
Graph and traffic parameters with distributions used to generate

evaluation data for the performance comparison

Graph Based Param Distribution
Vertices V Uniform(100, 1000)
Edges E Based on clusters C and CS

Read/Processing RPR Uniform(0, 1)
Read Request RR Bernoulli(RPR)
Cache Hit/Miss HMR Uniform(0, 0.7)
Processing Delay dp HyperErlang(Uniform(1,10))

Weibull(Uniform(0.1, 10), 1)
Pareto(0.001, Uniform(1, 10))
Lomax(0.001, Uniform(1, 10, 0))

Clusters CC Uniform(10, 100)
Cluster Size CS Uniform(3, 10)
Traffic Based Param Distribution
Duration D Const(20)
Requests R Uniform(1000, 4000)
Path P Zipf(V , Uniform(10−6, 0.1))
Offset O FARIMA(R,D)

CMMPP(R,D)
FractionalBrownianMotion(R,D)
PoissonParetoBurstProcess(R,D)

the runtime for a depth-first search generally is limited to
V +E. Using the depth ddep, the regression can be modelled
as follows:

dreg,ddep = dp + dp · ddep+ dn (6)

Fig. 4 shows the depth regression with a model fit of 1
as the processing delays for the evaluation are normally
distributed around 0.1 (Table 4). The error of the regression
is distributed exactly as the mean processing delay serving
as regression slope.

6 SERVICE GENERATION

To compare the performance of resource dependency pro-
cessing with a traditional cache-eviction approach, we gen-
erate web services consisting of dependency graphs and
traffic traces. Existing web services do not declare resource
dependencies explicitly, hence no data is available and the
graphs must be generated. For the generation, we develop
two algorithms. The first algorithm bases its parameters on
extracted values of six social network application APIs and
the second algorithm selects its parameters at random.

6.1 Parameters
For the generation, we identify the parameters listed in
Table 5.

6.1.1 Dependency Graph Based
The number of vertices V for each graph is distributed
uniformly between 100 and 1000. The read/processing ratio
RPR identifies the fraction of all resources that are read
only. A RPR = 0.3 means that 30% of all vertices are read
only. For each vertex in the graph, we determine whether it
is a read or processing vertex using a Bernoulli distribution
distributed by the read/processing ratio. The cache hit/miss
ratio HMR determines how many vertices of the whole

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 8

Fig. 5. API structure of the six inspected services with read and processing vertices. At (a) the Facebook structure graph is strongly connected with
the central vertex representing a user’s feed. (b) shows multiple sub-resources of a Tumblr post that are updated with the post and (c) highlights
weakly connected clusters with sparse dependencies of the Twitter API.

graph are marked as cached. This parameter is only used
by the traditional cache-eviction approach. Based on work
in [24], [25] the processing delay dp for each vertex is
calculated by uniformly choosing one of the distributions
listed in Table 5 for each graph. The HyperErlang(n) distri-
bution uses a probability vector of length n and the other
distributions follow the standard signatures Weibull(α, β),
Pareto(k, α) and Lomax(k, α, µ) where α is shape, β is scale,
µ is location and k is a minimum value parameter. The
number of clusters and the cluster size is uniformly selected
for each graph.

6.1.2 Traffic Based

For each graph, we generate traffic for the duration D
with a uniformly selected number of requests R. Based
on the work in [33], [34] the resource popularity P can be
modelled using a Zipf(n, ρ) distribution where n is the range
and ρ is the Zipf parameter. The offset O determines the
arrival time of each request. We model the self-similar offset
following work in [28], [29], [30], [31], [32] by using a Frac-
tionally Autoregressive Integrated Moving-Average process
FARIMA(R,D), a Circulant Markov-Modulated Poisson
process CMMPP(R,D), FractionalBrownianMotion(R,D)
and a PoissonParetoBurstProcess(R,D) whereR is the num-
ber of arrivals and D is the arrival interval. For FARIMA we
use 0.99 as AR coefficients, a random uniformly distributed
MA coefficient between 0 and 0.49 and a white noise vari-
ance of 1. For the CMMPP we use the superposition of four
two-state arrival rate vectors with a maximal arrival rate of
500. This rate is based on the maximum throughput of a sin-
gle node in our evaluation cluster. The Fractional Brownian
Motion uses a uniformly distributed hurst index between
0.5 and 0.99 in order to ensure self-similarity and the λ
parameter of the Exponential distribution for the Poisson
Pareto Burst process limits the maximum arrival rate to 500.
We randomly select one of the models to generate the offset
for each graph.

6.2 Service Based Graph Generation

In order to generate random dependency graphs exhibiting
real-world properties, we develop an algorithm extracting
parameters from six social network services: The Facebook
Graph API v2.2, the Twitter API v1.1, the Tumblr API v1,
the Instagram API v1, the Google Plus API v1 and the
SoundCloud API v1.

TABLE 6
Key figures of the extracted service parameters

Measure Param Min Max Mean Var
Read/Processing RPR 0.58 0.85 0.71 0.014
Processing Delay dp 0.004 0.18 0.09 2.52

Cluster Size CS 14 235 81 6642
Dependency Depth ddep 0 4 0.38 0.71

Dependency Degree ddeg 0 14 0.57 2.79

6.2.1 Service Structure Graphs

For each service, we extract all API resources as vertices
and the dependencies of the resources as edges into an API
structure graph. Dependencies are not declared in the API
specifications, hence we analyse the effects of a request to a
resource by comparing changes in all resources before and
after a request. The changed vertices have a dependency
on the initially requested vertex and need to be added as
dependency edges. Fig. 5 illustrates all extracted service
structure graphs. At Fig. 5 (a) the Facebook structure graph
is strongly connected with the central vertex representing
a user’s feed. Fig. 5 (b) shows multiple sub-resources of
a tumbler post that are updated with the post and Fig. 5
(c) highlights weakly connected clusters with sparse depen-
dencies of the Twitter API. For detailed inspection of all
graphs we provide the full evaluation dataset as download
available at [38].

6.2.2 Parameter Extraction

From the service structure graphs we extract parameter
ranges to be used for the generation of random depen-
dency graphs. The results are presented in Table 6. Using
a goodness-of-fit hypothesis test, our measured parameters
do not follow a distribution. Hence, our algorithm selects
random elements uniformly from all captured parameter
data.

6.2.3 Algorithm

We develop the Service based dependency graph (SDG)
algorithm by superposing and manipulating multiple ad-
jacency matrices. The steps are as follows:

1) Create a sequencer function for the dependency
depth that returns continuous sequences of 1s fol-
lowed by a terminating 0, where the length of the

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 9

sequence is drawn randomly from all service struc-
ture graph depths, e.g. 111011011110 . . . for 3, 2, 4.

2) Create a sequencer function for the dependency
degree in the same fashion as the depth sequencer
function.

3) Create a N×N matrix, where N is drawn randomly
from all service structure cluster sizes and fill it with
0s.

4) Fill the matrix diagonal above or below the main
diagonal with a sequence from the depth sequencer
function.

5) Fill the matrix columns until the diagonal above or
below the main diagonal with sequences from the
degree sequencer function.

6) Create another matrix of size N and fill it with
random samples of a Bernoulli distribution where
the probability equals a random read/processing
ratio.

7) Multiply the read/processing matrix with the
depth/degree matrix.

8) Repeat 3-7 and concatenate the resulting cluster
matrices until the desired number of vertices is
reached.

By strictly manipulating either the upper or lower triangular
portion of an adjacency matrix, the directed acyclic graph
property of the resulting matrix is ensured. In addition, for
each vertex a processing delay is drawn randomly from the
service data. Furthermore, each vertex is marked as cache-
hit or miss based on the distribution in Table 5. The only
input parameter to the algorithm is the number of maximum
vertices to be used as termination criteria.

6.3 Fuzzy Graph Generation
As the service based graph generator strictly uses parameter
values drawn from the analysis of the service structure
graphs, we develop a supplementary Fuzzy dependency
graph (FDG) algorithm creating graphs with a wider range
of parameters. This ensures the evaluation is not overfitted
to the analysed service structure graphs. The steps are as
follows:

1) Create C adjacency matrices with size V/C and
randomly distribute a total of E edges in the upper
or lower triangular portion.

2) Multiply the columns with a sequence of 1 and 0
distributed by the read processing ratio.

3) Concatenate all resulting cluster matrices.

The distributions used for the parameters are listed in Ta-
ble 5. As the service based algorithm, the fuzzy generation
algorithm additionally determines a processing delay and
cache-hit for each vertex. The input parameters to the fuzzy
generation algorithm are the number of vertices V , the
number of edges E and the number of clusters C .

7 PERFORMANCE MODELLING

For the performance evaluation, we develop a model which
calculates the processing duration for both a resource de-
pendency processing and a traditional approach. The pa-
rameters serving as input to the model can be calculated

from the structure of an application as shown in Section 3.
Furthermore, the model allows to compare the performance
of both approaches in order to find the approach best suited
for a specific application.

7.1 Processing Duration

We extend the processing duration of our previous work by
replacing the dP constant with an equation explicitly cal-
culating the processing duration based on the dependency
graph.

7.1.1 Traditional Processing
We model dP for the traditional processing (TP) approach
where a web service directly receives every request but can
only serve a fraction of the resources defined by the cache
hit/miss ratio HMR from a cache as:

dP,TP = HMR · dl + dn + (1−HMR) · dp (7)

The lookup delay dl describes the time it takes to lookup an
item in the cache and the network delay dn is modelled as
linear or quadratic variable [2].

7.1.2 Resource Dependency Processing
The resource dependency processing (RDP) approach is
based on the linear correlation between the cluster size CS
and the processing depth ddep as analysed in Section 5. If
the sparsity is S / 1 we model the processing duration as
follows:

dP,RDP = (dn + CS · dp) · (1−RPR) if S / 1 (8)

If the sparsity S � 1 we use the more expensive to
determine dependency depth ddep:

dP,RDP = (dn + dp + ddep · dp) · (1−RPR) (9)

In contrast to the traditional processing approach, the re-
source dependency processing approach receives only a
fraction of all requests defined by the read/processing ratio.
All other resources are served directly from the resource
database and do not influence the processing duration.

7.2 Processing Duration Delta

In order to compare both processing approaches, the pro-
cessing duration delta can be modelled as:

∆dP = dP,RDP − dP,TP (10)

Fig. 6 illustrates the influence of all model parameters on the
duration deltas where each parameter is plotted in the range
of 0 to 1 while all other parameters remain constant with val-
ues given in the figure caption. For negative duration deltas
the resource dependency processing approach is faster than
a traditional processing approach. A greater absolute slope
in Fig. 6 means that the analysed parameter has a greater
influence on the processing duration. Consequently, the
read/processing ratio has the greatest influence on the pro-
cessing duration as it directly affects the number of requests
that need to be processed. It is followed by the hit/miss
ratio which determines the amount of cached resources in
the traditional processing approach. The processing delay,

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 10

Fig. 6. Analysis of the influence and break-points of all model param-
eters to the duration deltas where each parameter is plotted in the x-
axis range of 0 to 1, while all other parameters remain constant with
default parameters RPR = 0.45, HMR = 0.5, dl = 0.01, dp = 0.5,
ddep = 0.5, CS = 0.5 and dn = 0.1. For negative duration deltas the
resource dependency processing approach is faster than a traditional
processing approach.

the dependency depth and the cluster size have equal in-
fluences on both approaches. In the traditional approach,
a greater lookup delay negatively influences the caching
performance and the network delay is applied to every
request. The resource dependency processing approach uses
the processing tree, thus the network delay only applies to
the initial request and its response.

7.3 Relative Performance Improvement

To calculate the factor of improvement the resource depen-
dency processing exhibits over the traditional processing,
we define:

RPI =
dP,TP

dP,RDP
− 1 (11)

For example, a positive RPI of 2.3 shows that the perfor-
mance using resource dependency processing is 2.3 times
better than the traditional processing performance. Sim-
ilarly, a negative RPI means that traditional processing
approach is faster.

7.4 Break-Even Points for Processing Duration

A break-even point calculation allows to determine the exact
value of a parameter where the processing duration of
both the traditional processing and the resource dependency
processing are equal. The break-even point based on the
dependency depth ddep can be calculated as follows:

ddep =
−dl ·HMR+ dp ·HMR− dn ·RPR− dp ·RPR

dp · (−1 +RPR)
(12)

Based on the cluster size CS, we calculate the break-even
point as:

CS =
−dp − dl ·HMR+ dp ·HMR− dn ·RPR

dp · (−1 +RPR)
(13)

Fig. 6 illustrates the break-even points for all model param-
eters where ∆dP is zero.

TABLE 7
Key figures of the generated evaluation data

Service Based Param Min Max Mean SD
Vertices V 100. 1000. 537.6 265.2

Edges E 18. 2127. 408.82 332.45
Sparsity S 0.15 2.89 0.77 0.48
Clusters C 41. 807. 338.62 188.7

Cluster Size CS 1.16 3.06 1.68 0.38
Dependency Depth ddep 0.15 1.69 0.58 0.29

Dependency Degree ddeg 0.14 0.93 0.43 0.17
Processing Delay dp 0. 0.13 0.04 0.03
Cache Hit/Miss HMR 0. 0.7 0.35 0.2

Traffic Param Min Max Mean SD
Requests R 1002. 4000. 2496.89 867.48

Read/Processing RPR 0. 1. 0.49 0.29
SD Path Popularity P 22.56 229.64 121.19 57.66

SD Offset O 4.2 7.34 5.83 0.34
Fuzzy Param Min Max Mean SD

Vertices V 30. 1000. 347.11 215.46
Edges E 0. 4095. 320.45 488.07

Sparsity S 0. 4.18 0.82 0.82
Clusters C 10. 872. 188.84 153.95

Cluster Size CS 1. 10. 2.49 1.78
Dependency Depth ddep 0. 4.05 0.72 0.72

Dependency Degree ddeg 0. 4.04 0.71 0.72
Processing Delay dp 0. 0.22 0.07 0.05
Cache Hit/Miss HMR 0. 0.7 0.36 0.2

Traffic Param Min Max Mean SD
Requests R 1000. 3994. 2488.43 870.15

Read/Processing RPR 0. 1. 0.5 0.3
SD Path Popularity P 7.68 227. 79.86 47.61

SD Offset O 4.35 7.32 5.82 0.34

8 PERFORMANCE EVALUATION

Finally, we use the service based and fuzzy graph generation
algorithms to compare the performance of the resource de-
pendency processing approach with a traditional processing
approach in an aggregated combined case, best case, worst
case and average case scenario and evaluate the fit of the
performance models. We further create four series of graphs
with increasing graph measures to evaluate the influence of
different structures on the performance and map the results
to structures observed in real-world APIs.

8.1 Aggregated Performance Results

For the aggregated evaluation, we generate 1000 web ser-
vices using the service based graph algorithm and 1000
web services using the fuzzy graph algorithm. For each of
the 2000 web services, we generate a distinct traffic trace
following the distributions from Table 5. The full evaluation
dataset is available at [38], where Table 7 lists the key fig-
ures. The evaluation is executed with machine pairs on our
Raspberry Pi cluster, where one machine generates traffic
and the other implements the web service. In addition to the
traditional and resource dependency processing implemen-
tation, we evaluate a third asynchronous resource depen-
dency processing (ARDP) implementation that processes all

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 11

Fig. 7. Relative performance improvements for service based graphs,
fuzzy graphs and all graphs in the combined case, best case, worst
case, and average case when using resource dependency processing
over traditional processing. Due to the greater range of fuzzy graph
parameters, the quartiles at (a) do not vary as much with the cases
as the quartiles in (b).

dependencies but the first level dependencies in the back-
ground. This is done to respect modern web applications
with increased client-side logic. For this type of applications,
state changes can instantly be presented to the user so a
web service guaranteeing eventual consistency is sufficient.
We further evaluate each graph in both requester mode
(RM) using the generated traffic and sequencer mode (SM)
requesting each resource exactly once. We do this in order
to measure the influence of the traffic on the performance.
Using all three implementations in both modes, we measure
over 850 thousand resources with over 6 million requests
in 2000 web services. We further calculate the processing
durations and relative performance improvements with the
models developed in this work. The results are presented in
four aggregated cases, where each case individually limits
the range of the read/processing ratio and hit/miss ratio.

8.1.1 Combined Case

In the combined case, we present the results of all aggre-
gated graphs. Fig. 7 shows the quantiles of the relative per-
formance improvement where the size of the boxes around
the median divide the results in equal parts regarding the
first quartile and the third quartile. As the minimum and
maximum relative performance improvement factors have a
high variance, we intentionally left out the whiskers in Fig. 7
to be able to visualise quantiles in a meaningful way. In total,
59% of all combined case services are faster using resource
dependency processing rather than traditional processing.

8.1.2 Best Case

From Fig. 6 follows, that for all read/processing and
hit/miss ratios between 0.0 and 0.3 the resource depen-
dency processing is faster than the traditional processing.
Consequently, for the best case aggregation both ratios are
restricted to be within the 0.0-0.3 range. Fig. 7 illustrates me-
dian performance improvements of a factor higher than four
for the service based graphs, 25% for the fuzzy based graphs
and a factor of almost two for the combination of both. In
total, 79% of all best case services are faster using resource
dependency processing rather than traditional processing.

8.1.3 Worst Case
The worst case aggregates results in the ranges where
in Fig. 6 the traditional processing is faster. Thus, the
read/processing ratio is limited to the range between 0.6
and 1.0. The hit/miss ratio is limited to the range between
0.5 and 0.7 as this is the maximum evaluated hit/miss
ratio (Table 7). The median performance improvements il-
lustrated in Fig. 7 are -34% for the service based graphs, 5.4%
for the fuzzy based graphs and -21% for the combination of
both. In total, 37% of all worst case services are faster us-
ing resource dependency processing rather than traditional
processing.

8.1.4 Average Case
For the average case aggregation we select results in the
ranges where in Fig. 6 both approaches exhibit similar
performance. Consequently, we use a read/processing ratio
in the range between 0.3 and 0.6 and a hit/miss ratio in the
range between 0.3 and 0.5. Further, we confirm the selected
ranges to be within typical ranges as presented by [22], [23].
As shown in Fig. 7 the median performance improvements
are 25% for the service based graphs, 9.4% for the fuzzy
based graphs and 20% for the combination of both. In total,
62% of all average case services are faster using resource
dependency processing rather than traditional processing.

8.2 Model Fits

We calculate the processing duration delta for all 8000 evalu-
ations and compare the values to the empirical performance
results. The residuals of all evaluations have a root-mean
square error of 30.4. Using the normalised root-mean square
error to put the errors in relation to the observed values
(Section 5) we calculate the Fit as 1 − NRMSE. The
mean fit for the cluster size based model is FitCS = 0.96
and the mean fit for the dependency depth based model
is Fitddep = 0.98. This implies that both duration delta
models have very good fits. We can further observe that
the cluster size based model is cheaper to compute while
the dependency depth model is more accurate.

8.3 Structure Based Performance Results

The structure based evaluation is performed to analyse
the effects of different graph structures on the perfor-
mance. Therefore, four series of graphs with increasing
graph measures are created and performance tested with
our resource dependency processing and a traditional pro-
cessing approach. As presented in Fig. 6, the major per-
formance influencing parameters are the read/processing
ratio and the cache hit/miss ratio. In order to analyse the
effects of the graph structures only, for all series both the
read/processing ratio and the hit/miss ratio are set to their
calculated performance break-even points RPRBEP = 0.58
and HMRBEP = 0.44. A series of five graphs is created for
an increasing dependency depth in Fig. 8 (a-e), dependency
degree in Fig. 8 (f-j), cluster size in Fig. 8 (k-o) and number
of clusters in Fig. 8 (p-t). The processing delay for each
resource is set to 0.2 seconds and for presentation issues,
all graphs have a total of 50 vertices. Each series starts with
a low value of the measure that increases in five steps to a

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 12

Fig. 8. Structure based results of four series of increasing graph measures: Dependency Depth (a-e), Dependency Degree (f-j), Cluster Size (k-o)
and Clusters (p-t). A negative processing duration delta means our proposed RDP approach is faster than a traditional approach.

maximum measure as detailed in Table 8. The graphs are
created using a special version of our fuzzy dependency
graph generator, where we set the desired graph measure
(depth, degree, cluster size and count) instead of letting the
algorithm choose a random value.

8.3.1 Performance Results
The performance is calculated using the processing duration
delta model from this work, where negative values indicate
a better performance when using our proposed resource de-
pendency processing approach. The results are presented in
Fig. 8 and Table 8. From all 20 graphs, the performance using
our proposed resource dependency approach is better for 13
structures (a-b,f-h,k-n,q-t). The increasing depth in the depth
series (a-e) has a major influence on the performance as the
length of the chains as seen in (d-e) massively increases the
processing duration. An increasing degree (f-j) has a minor
influence on the performance as most dependencies can be
processed in parallel. The growing mean cluster size series
in (k-o) has an effect on both the depth and the degree,
where a lower cluster size results in lower maximal depths.
Finally, the increasing total number of clusters series (p-t)
is tightly inversely related to the mean cluster size. Thus,
with many clusters the performance is better as the maximal
depth is reduced.

8.3.2 Mapping to Real-World Structures
When searching for resemblance between graphs in Fig. 5
and Fig. 8, it is noteworthy that Fig. 5 presents structure
graphs, where Fig. 8 presents full resource graphs (for
distinction see Table 2). To extract resource graphs from
structure graphs as presented in Fig. 5, variables for the

TABLE 8
Structure based performance results for Fig. 8

Measure Param Dependency Depth Series (a-e)
Depth ddep 0.5 2. 3.4 4.7 6.

Degree ddeg 0.5 0.8 0.86 0.9 0.92
Cluster Size CS 2. 5. 7.1 10. 13.

Clusters C 25 10 7 5 4
Proc. Delta ∆dP -0.16 -0.034 0.081 0.19 0.3

Measure Param Dependency Degree Series (f-j)
Depth ddep 0.5 1.5 2.5 3.5 4.5

Degree ddeg 0.5 1.5 2.5 3.5 4.5
Cluster Size CS 2. 4. 6. 8. 10.

Clusters C 26 13 9 7 6
Proc. Delta ∆dP -0.17 -0.083 -0.0064 0.071 0.14

Measure Param Cluster Size Series (k-o)
Depth ddep 0. 2.6 2.9 3. 6.4

Degree ddeg 0. 1.9 2.6 2.7 4.2
Cluster Size CS 1. 16. 31. 46. 61.

Clusters C 50 4 2 2 1
Proc. Delta ∆dP -0.2 -0.035 -0.0044 -0.099 0.3

Measure Param Number of Clusters Series (p-t)
Depth ddep 4.8 1.6 1. 0.81 0.55

Degree ddeg 3.2 1.4 0.96 0.79 0.67
Cluster Size CS 50. 9. 5. 4. 3.

Clusters C 1 6 10 13 17
Proc. Delta ∆dP 0.2 -0.078 -0.12 -0.14 -0.16

number of users, posts, comments, photos etc. majorly
influence the measures of the resulting resource graph.
Thus, we suggest similarities must be compared with care.

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 13

Facebook’s rather centralised structure can be extracted to
graphs similar to Fig. 8 (l-m) as the centralised structure is
based around clusters of users. A single user in Instagram,
Google Plus or Tumblr has a smaller cluster of resources
leading to structures more similar to Fig. 8 (g-h,s). This
leads to an increased processing duration with Facebook’s
structure compared to more decentralised structures such
as Twitter’s, Instagram’s or Tumblr’s. However, we suggest
that this stems from the massively higher range of functions
Facebook offers compared to the other platforms.

9 CONCLUSION AND FUTURE WORK

In this work, we proposed an efficient resource database
update mechanism that allows to build scalable web service
architectures with optimised request routing, such as the
novel request flow we presented in [1], [2]. For the first ma-
jor research objective, we showed that resource dependen-
cies can be stored as directed acyclic graphs, where vertices
represent resources and edges dependencies. We further
identified dependency depth, dependency degree, cluster
count, cluster size and sparsity as the most influential graph
measures and related them to existing graph measures. To
generate random dependency graphs, we based the gen-
eration on service structures where the parameters were
extracted from six real-world social applications and a fuzzy
algorithm with random parameters. For the second major
research objective, we found the optimisation problem to be
in the domain of job and workflow scheduling, where the
longest-path is the critical path for performance. As typical
algorithms only compute a single-source longest-path tree,
we extended an existing topological sort algorithm with a
dynamic programming approach which is able to determine
the processing order in linear time. Further, the evaluation
of 2000 web services with 850 thousand resources and
over 6 million requests showed the resource dependency
processing approach to be up to a factor of two faster
than a traditional processing approach. For the third and
final objective, we found that the dependency depth and
cluster size have a linear correlation with the processing
duration. The evaluation of four series of different graph
structures further highlighted the correlations with major
graph measures. We found the processing duration to be
adequately modelled based on both measures, where the
accuracy depends on the sparsity of the graph. Both models
allowed us to replace the constant post-processing delay
from our previous work. The cluster size based model had
an overall model fit of 96% and was cheap to compute,
where the dependency depth based model had a model fit
of 98%, thus being more accurate but also more expensive
to determine.

The focus of our future work will be on further opti-
misation of the dependency processing algorithm. We will
conduct research to find algorithms that update the depen-
dency graph and forest of processing trees in an incremental
fashion. Additionally, we will develop algorithms to au-
tomatically extract dependency graphs from web services.
Furthermore, we will search for hot processing spots where
a resource vertex is updated frequently and apply strategies
to reduce and minimise the number of updates. We will also
develop assistive systems that point out critical dependency

depths, dependency degrees and clusters and provide an
optimal solution that helps decoupling affected resources.

REFERENCES

[1] T. Fankhauser, Q. Wang, A. Gerlicher, C. Grecos, and X. Wang,
“Web scaling frameworks: A novel class of frameworks for scal-
able web services in cloud environments,” in Proc. IEEE Int. Conf.
on Commun. (ICC14), June 2014, pp. 1414–1418.

[2] T. Fankhauser, Q. Wang, A. Gerlicher, C. Grecos, and Wang, X.,
“Web scaling frameworks for web services in the cloud,” Trans. on
Serv. Comp., IEEE, pp. 1–1, 2015.

[3] A. Negro, C. Roque, P. Ferreira, and L. Veiga, “An adaptive
semantics-aware replacement algorithm for web caching,” Journal
of Int. Serv. and App., 2015.

[4] P. Bangar and K. Singh, “Investigation and performance improve-
ment of web cache recommender system,” in Proc. IEEE Int. Conf.
on Fut. Trends on Comp. Anal. (ABLAZE15), Feb 2015, pp. 585–589.

[5] A. Sarhan, A. Elmogy, and S. Ali, “New web cache replacement
approaches based on internal requests factor,” in Proc. IEEE Int.
Conf. on Comp. Eng. Sys. (ICCES14), Dec 2014, pp. 383–389.

[6] O. Batarfi, R. Shawi, A. Fayoumi, R. Nouri, S.-M.-R. Beheshti,
A. Barnawi, and S. Sakr, “Large scale graph processing sys-
tems: survey and an experimental evaluation,” Cluster Computing,
vol. 18, no. 3, pp. 1189–1213, 2015.

[7] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukr-
ishnan, “One trillion edges: Graph processing at facebook-scale,”
Proc. VLDB Endow., vol. 8, no. 12, pp. 1804–1815, Aug. 2015.

[8] Y. Guo, M. Biczak, A. Varbanescu, A. Iosup, C. Martella, and
T. Willke, “How well do graph-processing platforms perform? an
empirical performance evaluation and analysis,” in Para. and Dist.
Proc. Symp., IEEE, May 2014, pp. 395–404.

[9] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar, “Ap-
plication of a technique for research and development program
evaluation,” INFORMS Operations Research, vol. 7, no. 5, pp. 646–
669, 1959.

[10] J. E. Kelley, Jr and M. R. Walker, “Critical-path planning and
scheduling,” in ACM IRE-AIEE Comp. Conf. ACM, 1959, pp. 160–
173.

[11] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven
scheduling of grid workflows using partial critical paths,” Trans.
on Para. and Dist. Sys., IEEE, vol. 23, no. 8, pp. 1400–1414, Aug
2012.

[12] S. Chanas and P. Zieliski, “Critical path analysis in the network
with fuzzy activity times,” Fuzzy Sets and Systems, vol. 122, no. 2,
pp. 195 – 204, 2001.

[13] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards
workflow scheduling in cloud computing: A comprehensive anal-
ysis,” Journal of Net. and Comp. App., 2016.

[14] K. Maheshwari, E.-S. Jung, J. Meng, V. Morozov, V. Vishwanath,
and R. Kettimuthu, “Workflow performance improvement using
model-based scheduling over multiple clusters and clouds,” Fut.
Gen. Comp. Sys., vol. 54, pp. 206–218, 2016.

[15] C. Pang, J. Wang, Y. Cheng, H. Zhang, and T. Li, “Topological sorts
on {DAGs},” Information Processing Letters, vol. 115, no. 2, pp. 298
– 301, 2015.

[16] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan,
“Incremental cycle detection, topological ordering, and strong
component maintenance,” ACM Trans. Algorithms, vol. 8, no. 1,
pp. 3:1–3:33, Jan. 2012.

[17] D. Ajwani and T. Friedrich, “Average-case analysis of incremental
topological ordering,” Discrete Applied Mathematics, vol. 158, no. 4,
pp. 240 – 250, 2010.

[18] R. Bellman, “The theory of dynamic programming,” RAND Corp,
Santa Monica, 1954.

[19] G. Salvaneschi and M. Mezini, “Towards reactive programming
for object-oriented applications,” in Trans. on Asp.-Or. Soft. Dev. XI.
Springer Berlin Heidelberg, 2014, pp. 227–261.

[20] A. Margara and G. Salvaneschi, “We have a dream: Distributed
reactive programming with consistency guarantees,” in ACM Proc.
of Int. Conf. on Dist. Event-Based Sys., (DEBS14), 2014, pp. 142–153.

[21] G. Salvaneschi, A. Margara, and G. Tamburrelli, “Reactive pro-
gramming: A walkthrough,” in IEEE Int. Conf. on Soft. Eng.
(ICSE15), vol. 2, May 2015, pp. 953–954.

[22] C. Du and S. Wang, “Research on mobile web cache prefetching
technology based on user interest degree,” in LISS 2013. Springer
Berlin Heidelberg, 2015, pp. 1253–1258.

qi-wan
矩形



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2016 14

[23] A. Songwattana, T. Theeramunkong, and P. C. Vinh, “A learning-
based approach for web cache management,” Mobile Networks and
Applications, vol. 19, no. 2, pp. 258–271, 2014.

[24] A. Rajabi and J. W. Wong, “Provisioning of computing resources
for web applications under time-varying traffic,” in IEEE Int. Sym.
on. Mod., Anal. & Sim. of Comp. and Tel. Sys. IEEE, 2014, pp. 152–
157.

[25] N. Poggi, D. Carrera, R. Gavalda, E. Ayguadé, and J. Torres,
“A methodology for the evaluation of high response time on e-
commerce users and sales,” Information Systems Frontiers, vol. 16,
no. 5, pp. 867–885, 2014.

[26] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Graph structure
in the web—revisited: a trick of the heavy tail,” in Proc. of the Int.
Con. on World wide web Comp., 2014, pp. 427–432.

[27] A. Ramachandran, Y. Kim, and A. Chaintreau, “I knew they
clicked when i saw them with their friends: identifying your silent
web visitors on social media,” in ACM Proc. of the Conf. on Online
social netw., 2014, pp. 239–246.

[28] S. Dick, O. Yazdanbaksh, X. Tang, T. Huynh, and J. Miller, “An em-
pirical investigation of web session workloads: Can self-similarity
be explained by deterministic chaos?” Information Processing &
Management, vol. 50, no. 1, pp. 41–53, 2014.

[29] S. Chen, M. Ghorbani, Y. Wang, P. Bogdan, and M. Pedram, “Trace-
based analysis and prediction of cloud computing user behavior
using the fractal modeling technique,” in IEEE Int. Cong. on Big
Data. IEEE, 2014, pp. 733–739.

[30] M. Zukerman, T. D. Neame, and R. G. Addie, “Internet traffic
modeling and future technology implications,” in IEEE Joint Conf.
of. Comp. and Comm. Soc. (INFOCOM2003), vol. 1. IEEE, 2003, pp.
587–596.

[31] J. Chen, R. G. Addie, M. Zukerman, and T. D. Neame, “Per-
formance evaluation of a queue fed by a poisson lomax burst
process,” IEEE Comm. Lett., vol. 19, no. 3, pp. 367–370, 2015.

[32] R. Donthi, R. Renikunta, R. Dasari, and M. R. Perati, “Self-similar
network traffic modeling using circulant markov modulated pois-
son process,” in Fractals, Wavelets, and their Applications. Springer,
2014, pp. 437–444.

[33] K. V. Katsaros, G. Xylomenos, and G. C. Polyzos, “Globetraff:
a traffic workload generator for the performance evaluation of
future internet architectures,” in IEEE Int. Conf. on New Tech., Mob.
and Secu. (NTMS12). IEEE, 2012, pp. 1–5.

[34] K. Visala, A. Keating, and R. H. Khan, “Models and tools for
the high-level simulation of a name-based interdomain routing
architecture,” in IEEE Conf. on Comp. Comm. Works. (INFOCOM
WKSHPS14). IEEE, 2014, pp. 55–60.

[35] R. Sedgewick, Algorithms II. Addison-Wesley Professional, 2014.
[36] S. S. Ray, Graph Theory with Algorithms and Its Applications.

Springer, India, 2013.
[37] T. H. Cormen, Introduction to Algorithms. MIT press, 2009.
[38] (2016) Resource Dependency Processing Dataset. [Online].

Available: http://webscalingframeworks.org/graphs

Thomas Fankhauser (SM13) received his
Bachelor and Master degree in computer sci-
ence from Stuttgart Media University, Germany.
He is currently pursuing a PhD degree at the
University of the West of Scotland while working
as an academic research assistant at Stuttgart
Media University. His research interests include
the scalability of web services, software archi-
tectures and frameworks in cloud computing en-
vironments. Since 2013 he is a student member
of the IEEE Consumer Electronics Society. He

was a Best Poster Award Winner of UWS ICTAC 2013, has published at
the IEEE flagship conference ICC 2014 in Sydney and the IEEE Trans-
actions on Services Computing in 2015. He is author of a book on social
phenomena in social networking services. Previously, he worked as a
software architect and developer in social web and mobile advertising
industries for several years.

Qi Wang (S02M06) is a Professor in Net-
works and Video Communications at UWS, UK,
and a Board Member of EU 5GPPP (Public
Private Partnership) Technology Board. He is
the Technical CoManager of the EU Horizon
2020 5GPPP project SELFNET, and Principal
Investigator of UK EPSRC project ”Enabler for
NextGeneration Mobile Video Applications” and
a number of other funded projects. His cur-
rent research interests include video processing
and transmission, 5G wireless/mobile networks,

cloud computing and softwaredefined networking. He has published
over 80 peerreviewed papers in related areas. He was a Best Paper
Award Winner of several international conferences. He received his PhD
degree in Mobile Networking from the University of Plymouth, UK.

Ansgar Gerlicher (M06) is a Professor in Mobile
Applications and Director of Research in Mobile
Applications & Security with the Institute of Ap-
plied Science, Stuttgart Media University, Ger-
many. Previously, he worked for several years
as a Software Architect and Project Manager
in the Telecommunication and Automotive In-
dustries. He is on the programme committee of
the Apps To Automotive Conference, Stuttgart,
TCP member of multiple international confer-
ences and guest editor of the Journal on Mobile

Information Systems. He published several papers in international top-
tier conference proceedings, journals and in the Springer Lecture Notes
in Computer Science. He is co-author of several books on mobile soft-
ware development and computer science and media in Germany. His
research interests include integration of consumer electronic devices in
vehicles and mobile and embedded software architectures, frameworks
and mobile security. He received his PhD degree in real-time collabo-
ration systems from the London College of Communication, UArts, UK.
Since 2012 he is a member of the IEEE Consumer Electronics Society
and the Communications Society.

Christos Grecos (SM IEEE 06, SM SPIE
2008) is the Dean of the Faculty of Computing
and Information Technology in Sohar University,
Oman. He worked as a Professor in Visual Com-
munications Standards, and Head of School of
Computing in the University of the West of Scot-
land and previously in the Universities of Central
Lancashire and Loughborough, all in UK. He has
also worked as an Independent Imaging Con-
sultant for many years. His research interests
include image/video compression standards, im-

age/video processing and analysis, image/video networking and com-
puter vision. He has published over 165 research papers in top-tier
international publications including a number of IEEE transactions on
these topics. He is on the editorial board or served as guest editor for
many international journals, and he has been invited to give talks in
various international conferences. He has obtained significant funding
for his research as the Principal Investigator for several national or
international projects funded by UK EPSRC or EU. He received his
PhD degree in Image/Video Coding Algorithms from the University of
Glamorgan, UK.

qi-wan
矩形


