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Abstract: The study investigated the effect of metatarsal strapping on vertical jump 

performance and evaluated the difference in lower limb kinematics and 

electromyographic signal (EMG) between different strapping force levels. Twelve 

male callisthenic athletes completed single vertical jump from a squat posture with 

hands on hips under three conditions as non-strapping (NS), moderate strapping (MS) 

and high strapping (HS) round metatarsals. Ground reaction force (GRF) was 

recorded with KISTLER force platform to calculate the vertical jump height. Angles 

of ankle, knee and hip were measured with VICON motion analysis system and EMG 

data were recorded with mega6000 system. Data showed that jump height was 

significantly higher under HS than NS condition. Compared with NS, ankle inversion 

decreased significantly during take-off and external rotation increased significantly 

during landing with MS. Significant difference was also found in the muscle activity 

of tibialis anterior between non-strapping and strapping conditions. 

 

Keywords: metatarsal strapping; lower limb kinematics; EMG; vertical jump 

performance 

 

 

1. Introduction  

Human body compression equipment has been widely used amongst athletes of all 

levels as a way to improve performance. For example, De Glanville et al. (2012) 

indicated that well-trained endurance athletes who wore full-leg-length compressive 

garment achieved a substantially higher average power output in the subsequent 

40-kM cycling time trial. Kraemer et al. (1998) noted that compression shorts 

effectively reduced the muscle oscillation upon impact during landing and increased 

joint position sense; consequently, the mean power output during repetitive maximal 

jump was enhanced. Single countermovement jump height of experienced athletes 

wearing thicker compressive shorts with additional elastic force increased 

significantly by 2.4cm than that of the control (Doan et al., 2003). Wearing 



below-knee compression stockings has shown to improve running performance of 

moderately trained athletes (Kemmler et al., 2009). Another work also reported that 

recreational athletes completed 5-km running race faster with elastic tights (30 mm 

Hg) at ankle by extending stride length (Chatard, 1998). 

 

All these works reported on compressive interventions were applied to lower limb 

joints as hip, knee and ankle; no systematic work has been conducted similar 

approach on the metatarsophalangeal joint (MTP), probably due to the difficulty with 

its smaller anatomical structure and muscle group around such as flexor digitorum 

longus or extensor digitorum longus. MTP is known to play an important role in 

push-off/take-off as the terminal segment to resist external moment produced by GRF 

during locomotion (Goldmann & Brüggemann, 2012). Previous studies reported that 

the peak MTP plantar flexion moments were about 60Nm and 110Nm during running 

and sprint, respectively, and this moment was greater than 100Nm during long jump 

(Stefanyshyn & Nigg, 1998; Stefanyshyn & Nigg, 1997).  

 

Research works on MTP began to attract particular attention since mid-1990s, in early 

works; Stefanyshyn et al. (1997) investigated energy generation and absorption at this 

joint. The authors indicated that MTP absorbed energy whereas generated no or very 

little energy during take-off since the joint remained to be dorsiflexion almost 

throughout the stance phase, and could not transform to plantar-flexion until the toes 

off the ground (Stefanyshyn & Nigg, 1997). The work showed that MTP absorbed, on 

average, 24J energy during one-legged vertical jump, and the jump height would 

increase approximately 3.5 cm with a body mass of 70 kg for such amount of energy 

(Stefanyshyn & Nigg, 1998). Base on this case, reducing energy absorption at MTP 

may potentially be a viable approach to enhance performance. Research on 

intervention at metatarsals such as footwear modification has been reported to be 

helpful in reducing energy loss at this joint. One example is to increase midsole 

longitudinal bending stiffness. Stefanyshyn et al. (2000) showed that the vertical jump 

height could be increased significantly when wearing shoe with stiffer midsole on 



account of decreased energy absorption at MTP, whereas energy generation and 

absorption at ankle, knee, and hip joints were not influenced by midsole stiffness. In 

another work, Roy et al. (2006) reported that stiffened MTP improved running 

economy without the reduction of energy loss, which was associated with the 

principle of optimizing musculoskeletal system. Athletes are capable of manipulating 

equipment to optimize contractile properties of the muscles such as relationship of 

force–length and force–velocity leading to performance enhancement (Nigg et al., 

2000). In addition, one work demonstrated that, in order to adapt gait with metatarsals 

intervention, ankle and knee angles would change notably (Wu et al., 2001). Similarly, 

Laroche et al. (2006) indicated that there was a negative relationship between 

maximal knee and hip flexion and underlying MTP dorsal flexion range of motion 

(ROM) during walking. 

 

Evident from these published works, it is highly likely that sports performance can be 

improved through adding proper intervention on metatarsals with a proper mechanism. 

Meanwhile, the intervention may also induce compensatory motion of ankle, knee and 

hip. Different from using compression garments or shoes with stiffer midsole, this 

study used a much simpler elastic compression bandage to strap the metatarsals to 

explore the effect of metatarsal strapping on vertical jump height and lower limb 

kinematics. To link the muscle activity and the jump height, EMG of four main lower 

limb muscles were measured. It was hypothesised that metatarsal strapping would not 

greatly alter lower limb kinematics; but increased metatarsal strapping magnitude 

would increase jump height and decrease the total intensity of lower limb muscular 

activity, which leads to optimum effects. 

 

2. Method 

2.1. Participants 

Twelve healthy male callisthenic athletes (age: 20.71±1.38 years, height: 1.74±0.04m, 

weight: 66.26±2.84kg) were selected in this study. All the participants have excellent 

ability of posture control and coordination skills with the average training experience 



of 2.14±1.35 years. All the athletes are free from any injuries that could affect the 

motion during vertical jump. All subjects provided informed consent for inclusion in 

the study, which was approved by the Human Ethics Committee of Ningbo 

University. 

 

2.2. Procedure 

The tests were performed in the Sports Biomechanics Laboratory of Ningbo 

University. Strapping was applied to the metatarsal area in an “8-shaped” pattern 

(Fig.1) with elastic compressive bandage (Fig.2, width: 2.5cm, thickness: 1.5cm). In 

this study, strapping pressure was added via increasing twining laps, and it was 

measured with Novel Pliance (Novel, Germany). The relationship between laps and 

mean pressure is presented in Fig.2 Three conditions were designated as 0kpa 

(non-strapping, NS), 4-6kpa (moderate strapping, MS) and 10-12kpa (high strapping, 

HS). In addition, to ensure consistent motion quality in jump, subjects were asked to 

wear common shoes that they always use in competitions and training. All the 

participants were given at least ten minutes before each jump task to become 

accustomed to each strapping condition. During the test, subjects were instructed to 

stand on a force platform (Kistler, Germany) and to complete vertical jump from a 

squat posture with maximal power. To avoid energy gains associated with trunk and 

upper limb actions, instruction was also given requiring them to minimise the trunk 

action by attempting to keep it as vertical as possible and to put their hands on hips. 

Different strapping magnitudes were randomly selected and acceptable trials under 

each condition were repeated five times.  

 

Insert Fig.1 

 

Insert Fig.2 

 

Three-dimensional kinematic data were collected using a Vicon 8-camera motion 

analysis system (Oxford Metrics Ltd., Oxford, UK) at frequency of 200Hz. Sixteen 



reflective markers (diameter 14 mm) were attached on anatomical landmarks of both 

left and right lower limbs including: anterior-superior iliac spine, posterior-superior 

iliac spine, lateral mid-thigh, lateral knee, lateral mid-shank, lateral malleolus, second 

metatarsal head and calcaneus. A 8-channel surface EMG equipment (ME6000, Mega 

Electronics, Finland) was adopted to record muscle activity of tibialis anterior (TA), 

medial gastrocnemius (MG), rectus femoris (RF), biceps femoris (BF) at sampling 

rate of 1000Hz. Two measuring electrode slices (diameter of 10 mm) were placed on 

positive and negative testing muscle bellies separately and the line between two slice 

centres was parallel to the muscle fiber direction with an inter-distance of 20 mm. One 

referential electrode slice was placed on another muscle. The skin patch where the 

electrode slices were pasted were shaved and disinfected. All kinetic, kinematic and 

EMG data collection processes were conducted simultaneously. 

 

2.3. Data analysis 

A completed jump motion in this study was divided into three key events as take-off, 

flight and landing based on GRF values. The durations of each stage were obtained 

from force-time curves. The maximal jump height was determined according to the 

law of energy conservation (1) and the theorem of momentum (2). Impulse (F∆t) 

during take-off stage could be calculated by integrating the force-time curve. All 

calculations were processed in MATLAB programs (MathWorks Inc., Cambridge, 

MA, USA). The percentage of average root mean square (RMS) by the maximal RMS 

among five trials was calculated to evaluate the muscle activation level. Peak joint 

angles in three planes of the right leg and RMS percentages (RMS %) during take-off 

and landing stages were used for analysis. 

 

mgh=
1

2
𝑚𝑣𝑖

2                                                  (1) 

F∆t=∑𝑚𝑖′𝑣𝑖′-∑𝑚𝑖 𝑣𝑖                                           (2) 

 

The stage between the beginning of take-off and the end of rising was selected, where 



h is the maximal jump height, F∆t is impulse during this stage, 𝑣𝑖 is the velocity at 

beginning, and 𝑣𝑖′ is the velocity in the end (0m/s). 

 

2.4. Statistical analysis 

All statistical tests were conducted using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). 

One-way repeated measures analysis of variance (ANOVA) was used to compare the 

duration of each divided stage, the maximal jump heights, joint angles and RMS% 

across strapping conditions. A Scheffe’s contrast post hoc test was applied to further 

determine the differences between different paired conditions. Statistical significance 

level was set at 5% level. 

 

3. Result  

3.1. The maximal jump height 

Fig. 3 presents the maximal jump heights under three conditions of NS, MS and HS. 

Overall, vertical jump performance showed an improvement with MTP strapping. The 

average maximal height of NS group was 35.2cm, which was significantly less than 

that of 37.5cm of the HS group. The data for MS group is, on average, 1.7cm higher 

than the NS group and 0.6cm less than the HS group; however, the differences 

between both comparisons were not significant. The height increased 4.8% and 1.6% 

when comparisons were made between NS and MS, MS and HS, respectively.  

 

Insert Fig.3 

 

3.2. Angles of lower limb joints 

No differences were found in the duration of take-off (0-22%), flight (23-51%) and 

landing (52-100%) across three strapping conditions. Fig.4 shows the curves of hip, 

knee and ankle angles in three dimensions during one jump motion. Table 1, 2, 3 lists 

peak angles of hip, knee and ankle during two key events of take-off and landing 

respectively. 

 



3.2.1. Ankle 

In the sagittal plane, angles under three conditions were almost the same. In the 

frontal plane, compared with the control group, the MS group showed smaller 

inversion degree during take-off and the peak inversion presented statistical 

significance. In the transvers plane, curves of HS and NS were similar during take-off 

but different from that of MS which had a larger internal rotation degree, and the peak 

external rotation during take-off stage decreased significantly. Also, much smaller 

peak external rotation was observed under MS condition during landing. 

 

3.2.2. Knee 

In the sagittal plane, three curves are comparable during whole jump motion. While 

the peak flexion angle was significantly larger under HS in comparison with NS 

during take-off. In the frontal plane, although there was no significant difference 

between each corresponding paired conditions, the peak adduction of HS was slightly 

higher during take-off. In the transvers plane, the peak internal rotation and external 

rotation at propulsion are larger under two strapping conditions. 

 

3.2.3. Hip 

In the sagittal plane, hip flexion-extension was not affected by metatarsal strapping in 

general. The peak flexion angles under MS and HS were comparable during take-off 

but larger than that of NS, however, the differences failed to reach a significant level. 

In the frontal plane, angles for NS, MS and HS were almost the same except for 

slightly higher peak abduction under MS condition during take-off. In the transverse 

plane, the curves exhibited obvious differences between NS, MS and HS during 

take-off, flight and the first half of landing stage. During landing, the peak internal 

rotation increased as the strapping magnitude increased without significance. 

 

Insert Fig.4 

 

 



 

3.3. EMG 

During take-off, significant differences of RMS% were found in TA and BF. 

Compared with NS, TA RMS% under MS condition decreased by 16% (P=0.013) and 

BF RMS% under HS condition decreased by 12% (P=0.018). The differences of MG 

and RF RMS% between strapping and non-strapping conditions were insignificant 

(Fig.5 a). During landing, significance only presented in TA RMS% between NS and 

HS conditions (Fig.5 b). In comparison with NS, RMS% increased by 23% (P=0.011) 

under HS. There were no significant differences in RMS% values between any 

conditions referring to other three muscles (Fig.5 b). 

Insert Fig.5 

 

4. Discussion 

This study is the first systematic work to investigate the effect of metatarsal strapping 

on vertical jump performance, lower limb kinematics and EMG. The key results from 

the data of 12 male subjects shows that increasing strapping pressure from 4-6kpa to 

10-12kpa could provide performance advantages for vertical jump height. The 

maximal jump height was increased 2.3cm under HS in comparison with NS, which 

almost matched the reported increasing jump height (2.4cm) when performing a 

maximal-effort countermovement jump wearing compression shorts (Doan et al., 

2003). Two possibilities could have contributed to this improvement. Firstly, the 

elasticity of the bandage or the garment may increase the rigidity of the foot or hip 

segment, which enhances the propulsive force at push-off (Fayson et al., 2013). 

Secondly, compressive garments have been known to be effective in improving 

proprioception, which is beneficial to address jump technique (Kraemer et al., 1998; 

Perlau et al., 1995). Another previous theoretical study suggested that the increase in 

jump height was the consequence of the reduction of energy loss at MTP 

(Stefanyshyn & Nigg, 1998; Stefanyshyn & Nigg, 2000), this may also partially 

explains the performance improvement in the present study. Similar result that the 

very stiff shoe could increase jump height by 1.7cm than the control shoe was 



reported in a previous research (Stefanyshyn & Nigg, 2000). The relatively larger 

jump height increase in this study may indicate that increasing strapping pressure has 

more obvious effect on metatarsals than the approach of increasing midsole stiffness. 

The metatarsal strapping approach is also much simpler technically and economic in 

terms of facilities. 

 

The test data showed that the influence of metatarsal strapping depends on the level of 

strapping pressure. As discussed above, the HS condition presented clear beneficial 

effects. By contrast, difference in jump height was not significant when comparison 

was made between NS and MS conditions, although the average height under MS was 

relatively higher. Regarding to data from individual participant, jump height under 

MS varied considerably between the subjects. This indicates that strapping magnitude 

of 4-6kpa is not sufficient. When the strapping pressure was increased to 10-12kpa, 

the increasing height became more significant. In addition, the rate of jump height 

increase decreased as the strapping pressure was further increased. This suggests that 

that the jump performance can only be enhanced over a finite range of strapping 

pressure, beyond which performance cannot be further improved. 

 

As a multi-segmental system, intervention on metatarsals may cause kinematic 

compensation of other lower limb joints; fortunately, no adverse results were observed 

generally in this study. Compensatory changes mostly occur in the frontal and 

transverse planes of the ankle which is located closest to metatarsals. In the sagittal 

plane, distinct difference only presents in the knee joint. As to the hip, the influence of 

metatarsal strapping in all three planes is not significant. 

 

Compression equipment like knee neoprene sleeve, ankle tape and compressive 

garments have been demonstrated to improve joint position sense of these joints 

respectively by neuromuscular control (Kraemer et al., 1998; Birmingham et al., 2000; 

Spanos et al., 2008). Metatarsal strapping may also enhance joint proprioception to 

increase ankle joint stability; as a result, the peak inversion and external rotation 



during take-off both decreased significantly in this work. At the same time, the 

significantly decreased peak external rotation during landing could be considered as a 

reaction to the comprehensive integration of compensatory postural adjustments to 

stabilize this joint (Sousa et al., 2012) and help to prevent injuries. However, the data 

in this work showed that all significant changes in ankle exposed under MS condition 

rather than HS. This is probably due to the different effects of strapping magnitude on 

proprioception which is an essential process to motor control (Riemann & Lephart, 

2002). As shown in the data, in the sagittal plane, ankle dorsiflexion decreased 

slightly under strapping without significance. As to the knee, the peak flexion angle 

during take-off increased significantly with HS, which was similar to the effect of 

compression shorts that lowered the squat depth to increase impulse during the 

concentric phase of the jump (Doan et al., 2003). On the contrary, Moran et al. (2007) 

found no significant difference in jump height between two knee flexion degrees (70° 

versus 90°) at outset and considered larger peak knee flexion as a helpless factor to 

performance improvement during a squat jump. The different durations of squat phase 

in these tests may lead to the adverse results observed. Apart from metatarsals, there 

was no significant effect of this small range strapping on hip angles, while a subtle 

change in the transverse plane was detected. The result in this work showed that the 

joint average rotation degree shifted to a more internal direction with increasing 

strapping magnitude. Compared with the first metatarsal, the fifth metatarsal 

possessed smaller anatomic cross-section (Green & Briggs, 2013), which easily lead 

to medial shift of plantar pressure when five metatarsals were restricted in order to 

reduce weight bearing on the fifth metatarsal, as a linking reaction, the larger internal 

rotation of the hip could be explained. While individual variation showed to be 

dispersive in this study, but in each case, metatarsal strapping did increase the 

maximal jump height without negative kinematic changes of other lower limb joints.  

 

Previous work showed that vertical jump height could be predicted with EMG (Verma 

& Lane, 2000). Ancillao et al. (2014) revealed that there was a very high correlation 

between EMG and jump height. The current research tested muscle activity from TA, 



MG, BF and RF used RMS% for evaluation of muscle latency. According to statistical 

analysis, RMS% of TA and BF changed significantly when metatarsals strapping is 

used. 

 

It is known that, during take-off, MG and RF play the role as agonist with concentric 

contraction while TA and BF play the role as antagonist with eccentric contraction 

(McBride et al., 2008). The data of this work showed that there were no significant 

differences in RMS% of MG and RF between paired conditions during this stage, 

implying insignificant changes of energy generation at ankle and knee. The 

proprioception appeared to be more sensitive to MS magnitude and the significant 

difference of TA activity existed between MS and NS conditions. In compatible with 

kinematic changes in ankle, the smaller TA RMS% was responsible for the reduction 

of ankle peak inversion to some extent. Conversely, BF RMS% obviously decreased 

while the peak knee flexion increased with HS. This is probably due to the fact that 

knee joint position sense increased with strapping. On the basis of the reduced EMG 

of antagonists (TA and BF), muscle coordination was possibly optimised with 

strapping on metatarsals, which is in agreement with the effect of compression sleeve 

on the knee (Kuster et al., 1999). 

 

During landing, agonists and antagonists are exactly opposite to those during take-off. 

Based on the test data, only TA RMS% was affected by strapping, a significantly 

increasing height with HS during this stage was observed. It is known that TA starts 

with its tendon on the first metatarsal; therefore, strapping on these bones may trigger 

the excitability of the muscle (Romkes et al., 2006) particularly at impact. Without 

significance, muscle activity of MG, RF and BF all exhibited a decrease with HS, this 

could be a beneficial change in terms of reducing tissue injury or fatigue and 

enhancing performance in repeated jumps. Consistent with result of the other 

published data, no significant differences were seen in muscle activity of MG between 

different strapping conditions, as well as BF and RF in this work (Roy et al., 2006). 

Additionally, EMG was only recorded from two flexors (TA and BF) and two 



extensors (MG and RF). It is possible that other muscles (i.e., lateral gastrocnemius, 

medial vastus, lateral vastus and so on) may also have been influenced by metatarsal 

strapping, but these data are absent. Furthermore, if strapping conditions affect the 

mechanical behaviour of the contractile or elastic elements of muscle tendon unit, a 

proper explanation would likely require a computational model of the muscle to 

estimate the active state and internal muscle behaviour (Jacobs et al., 1993).  

 

In conclusion, this work shows that metatarsal strapping can be considered as an 

effective strategy to improve vertical jump performance. With a strapping pressure 

range of 10-12kpa, the maximal jump height was increased significantly (2.3cm). 

Changes of joint angles were found to be dependent on strapping magnitude slightly, 

and no obviously negative or positive compensations were observed in joints of ankle, 

knee and hip. The effect on EMG was found to be primarily located in TA. With 

strapping, TA RMS% decreased during take-off and increased during landing. It is 

important to note that neither the moderate nor the high strapping condition adopted 

in this work is the optimal recommendation, and additional magnitudes should be 

tested. In addition, the underlying mechanisms that attribute to the improvement are 

still not fully understood. Further study should probe into energy generation and 

absorption at each lower limb joint including MTP under different strapping 

conditions. Further works on muscle activity should also involve more relative 

muscles. The information may be extremely useful to athletes, coaches, and sports 

equipment manufacturers for performance improvement. 

 

Acknowledgements 

The study sponsored by National Natural Science Foundation of China (81301600), 

K.C.Wong Magna Fund in Ningbo University, and Ningbo Natural Science 

Foundation (2013A610262). 

 

 

 

 

 

 



References 

 

Ancillao, A., Galli, M., Rigoldi, C., & Albertini, G. (2014). Linear correlation 

between fractal dimension of surface EMG signal from Rectus Femoris and height of 

vertical jump. Chaos, Solitons & Fractals, 66, 120-126.  

Birmingham, T. B., Inglis, J. T., Kramer, J. F., & Vandervoort, A. A. (2000). Effect of 

a neoprene sleeve on knee joint kinesthesis: influence of different testing procedures. 

Medicine and science in sports and exercise, 32(2), 304-308.  

Chatard, J. (1998). Elastic bandages, recovery and sport performance. Health and 

Protective Textiles, 2, 79-84.  

De Glanville, K. M., & Hamlin, M. J. (2012). Positive effect of lower body 

compression garments on subsequent 40-kM cycling time trial performance. The 

Journal of Strength & Conditioning Research, 26(2), 480-486.  

Doan, B., Kwon, Y. H., Newton, R., Shim, J., Popper, E., Rogers, R., Kraemer, W. 

(2003). Evaluation of a lower-body compression garment. Journal of sports sciences, 

21(8), 601-610.  

Fayson, S. D., Needle, A. R., & Kaminski, T. W. (2013). The effects of ankle Kinesio® 

taping on ankle stiffness and dynamic balance. Research in Sports Medicine, 21(3), 

204-216.  

Goldmann, J. P., & Brüggemann, G. P. (2012). The potential of human toe flexor 

muscles to produce force. Journal of anatomy, 221(2), 187-194.  

Green, S., & Briggs, P. (2013). Flexion strength of the toes in the normal foot. An 

evaluation using magnetic resonance imaging. The foot, 23(4), 115-119.  

Stefanyshyn, D. J., & Nigg, B. M. (1998). Contribution of the lower extremity joints 

to mechanical energy in running vertical jumps and running long jumps. Journal of 

sports sciences, 16(2), 177-186.  

Jacobs, R., Bobbert, M. F., & van Ingen Schenau, G. (1993). Function of mono-and 

biarticular muscles in running. Medicine and science in sports and exercise, 25, 

1163-1163.  

Kemmler, W., von Stengel, S., Köckritz, C., Mayhew, J., Wassermann, A., & Zapf, J. 

(2009). Effect of compression stockings on running performance in men runners. The 

Journal of Strength & Conditioning Research, 23(1), 101-105.  

Kraemer, W. J., Bush, J. A., Newton, R. U., Duncan, N. D., Volek, J. S., Denegar, C. 

R., Sebastianelli, W. J. (1998). Influence of a compression garment on repetitive 

power output production before and after different types of muscle fatigue. Research 

in Sports Medicine: An International Journal, 8(2), 163-184.  

Kuster, M. S., Grob, K., Kuster, M., Wood, G. A., & Gächter, A. (1999). The benefits 

of wearing a compression sleeve after ACL reconstruction. Medicine and science in 

sports and exercise, 31(3), 368-371.  

Laroche, D., Pozzo, T., Ornetti, P., Tavernier, C., & Maillefert, J. (2006). Effects of 

loss of metatarsophalangeal joint mobility on gait in rheumatoid arthritis patients. 

Rheumatology, 45(4), 435-440.  

McBride, J. M., McCaulley, G. O., & Cormie, P. (2008). Influence of preactivity and 

eccentric muscle activity on concentric performance during vertical jumping. The 



Journal of Strength & Conditioning Research, 22(3), 750-757.  

Moran, K. A., & Wallace, E. S. (2007). Eccentric loading and range of knee joint 

motion effects on performance enhancement in vertical jumping. Human movement 

science, 26(6), 824-840. 

Nigg, B. M., Stefanyshyn, D. J., & Denoth, J. (2000). Work and energy mechanical 

considerations. In B.M.Nigg, B.R.Macintosh and J.Mester (eds.), Biomechanics and 

Biology of Human Movement. (pp.5-18). Champaign, IL. HumanKinetics.  

Perlau, R., Frank, C., & Fick, G. (1995). The effect of elastic bandages on human 

knee proprioception in the uninjured population. The American journal of sports 

Medicine, 23(2), 251-255.  

Riemann, B. L., & Lephart, S. M. (2002). The sensorimotor system, part II: the role of 

proprioception in motor control and functional joint stability. Journal of athletic 

training, 37(1), 80.  

Romkes, J., Rudmann, C., & Brunner, R. (2006). Changes in gait and EMG when 

walking with the Masai Barefoot Technique. Clinical Biomechanics, 21(1), 75-81.  

Roy, J., & Stefanyshyn, D. J. (2006). Shoe midsole longitudinal bending stiffness and 

running economy, joint energy, and EMG. Medicine and science in sports and 

exercise, 38(3), 562-569.  

Sousa, A. S., Silva, A., & Tavares, J. M. R. (2012). Biomechanical and 

neurophysiological mechanisms related to postural control and efficiency of 

movement: A review. Somatosensory and Motor Research, 29(4), 131-143.  

Spanos, S., Brunswic, M., & Billis, E. (2008). The effect of taping on the 

proprioception of the ankle in a non-weight bearing position, amongst injured athletes. 

The foot, 18(1), 25-33.  

Stefanyshyn, D. J., & Nigg, B. M. (1997). Mechanical energy contribution of the 

metatarsophalangeal joint to running and sprinting. Journal of biomechanics, 30(11), 

1081-1085.  

Stefanyshyn, D. J., & Nigg, B. M. (2000). Influence of midsole bending stiffness on 

joint energy and jump height performance. Medicine and science in sports and 

exercise, 32(2), 471-476.  

Verma, B., & Lane, C. (2000). Vertical jump height prediction using EMG 

characteristics and neural networks. Cognitive Systems Research, 1(3), 135-141.  

Wu, M., Ji, L., & Jin, D. (2001). The influence of flexion of metatarsophalangeal joint 

on gait characteristics. Chinese Journal of Rehabilitation Medicine, 16(6), 8-12.  

 

 

 

 

 

 

 

 

 

 



Figures: 

 

 

Fig.1 Strapping region and shape 

 

 

Fig.2 Elastic bandage and the relationship between laps and pressure 

 

 

 

Fig. 3 Comparison of jump height between three strapping magnitudes 

∗indicates significant difference (p< 0.05) 

 

 



 
Fig.4 Joint angles of the ankle (A), knee (B), and hip (C) during one motion cycle 

 

 

 
Fig.5. RMS% of TA, MG, RF and BF under different conditions during take-off 

(a) and landing (b). 

#indicates significant difference between NS and MS during take-off (P=0.013) 

* indicates significant difference between NS and HS during take-off (P=0.018) 

& indicates significant difference between NS and HS during landing (P=0.011) 

 

 

 

 

 

 

 

 



 

Tables: 

 

Table 1. Peak angles of ankle in sagittal, frontal and transverse planes during take-off 

and landing 

Stages  
Strapping 

magnitude 

Dorsi- 

flexion 

Plantar- 

flexion  

Inversion  Eversion Internal- 

rotation 

External- 

rotation 

Take-off  

NS 57.94 

(3.17) 

-16.32 

(1.14) 

6.04 

(1.44) 

-3.90 

(1.31) 

5.23 

(1.28) 

-12.28 

(2.69) 

MS 57.07 

(2.74) 

-18.27 

(1.24) 

4.64 

(1.63)# 

-4.24 

(1.63) 

6.17 

(2.33) 

-9.00 

(2.41)# 

HS 57.67 

(1.60) 

-17.33 

(1.74) 

5.46 

(1.89) 

-3.87 

(1.27) 

5.36 

(2.90) 

-11.44 

(2.75) 

Landing  

NS 52.05 

(2.61) 

-11.89 

(1.78) 

5.53 

(2.12) 

-4.02 

(1.62) 

7.72 

(2.45) 

-14.00 

(2.11) 

MS 46.63 

(5.00) 

-10.02 

(2.05) 

3.67 

(1.92) 

-4.62 

(1.03) 

10.67 

(3.38) 

-9.22 

(3.04)# 

HS 45.33 

(3.34) 

-9.97 

(2.67) 

4.34 

(2.64) 

-3.53 

(1.11) 

7.51 

(2.01) 

-11.86 

(2.44) 

#indicates significant difference (p< 0.05) between NS and MS.  

 

 

 

 

Table 2. Peak angles of knee in sagittal, frontal and transverse planes during take-off 

and landing 

Stages  
Strapping 

magnitude 

Flexion Adduction  Internal- 

rotation 

External- 

rotation 

Take-off  

NS 94.06(5.98) 22.48(1.17) 6.39(1.10) -15.19(3.59) 

MS 94.02(6.03) 22.75(1.78) 7.92(2.03) -17.67(3.11) 

HS 99.64(7.47)* 25.53(1.12) 9.79(2.70) -17.21(1.33) 

Landing  

NS 66.60(1.08) 16.02(3.29) 1.04(0.11) -14.54(3.29) 

MS 62.28(2.17) 13.24(3.62) 0.71(0.07) -14.75(4.39) 

HS 65.90(2.33) 14.74(1.32) 1.89(0.33) -15.75(1.52) 

∗indicates significant difference (p< 0.05) between NS and HS. 

 

 

 

 

 

 

 

 

 



Table 3. Peak angles of hip in sagittal, frontal and transverse planes during take-off 

and landing 

Stages  
Strapping 

magnitude 

Flexion Abduction  Internal- 

rotation 

External- 

rotation 

Take-off  

NS 75.73(2.94) -6.06(1.65) 19.62(3.49) -4.56(0.70) 

MS 78.24(1.97) -6.89(1.06) 24.37(1.17) -3.21(0.46) 

HS 77.61(3.61) -6.19(1.63) 25.38(2.97) -0.42(0.37) 

Landing  

NS 43.49(2.48) -4.49(1.13) 15.33(2.43) -4.23(1.63) 

MS 44.27(5.15) -4.34(0.27) 14.00(3.72) -2.79(1.57) 

HS 44.91(3.10) -4.96(1.93) 14.46(1.56) -0.22(1.54) 

 

 


