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ABSTRACT

In this paper, we examined the characteristics of the sum of independent
and non-identical set of binomial ranked set samples, where each set has
different order depending success probability. The characterization is done
by establishing the general recurrence relations for two different situations
based on the number of cycle, which is initially pre-assumed as a constant
integer and when it is a random variable. To extend the knowledge about
the characteristics of sum in terms of their behaviour and pattern, first four
moments i.e., mean, variance, skewness and kurtosis are derive and com-
pared with the sum of binomial simple random samples with same success
probability. The proposed procedure has been illustrated through a real-
life data on survivorship of children below one year in Empowered Action
Groups (EAG) states of India.

Key words: Factorial moment generating function, Skewness; Kurtosis,
Poisson distribution.

1. Introduction

The role of Ranked Set Sampling (RSS) as an alternative method of Sim-
ple Random Sampling (SRS) have been investigated since the time McIn-
tyre(1952), who first introduced this sampling procedure. Since, then many
authors have discussed about the efficacy of RSS either theoretically or an-
alytically. RSS is found to be very effective in contexts where exact mea-
surement of sampling units is expansive in time or toil; but the sample unit
can be readily ranked either through subjective or via the use of relevant
concomitant variables.
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Comparing with earlier studies where the variable of interest is continuous,
infrequent research discuss about the effectiveness of RSS where the vari-
able is binary. In cases, where the variable of interest is binary, there are
two possible outcomes, success (denoted as 1) and failure (denoted as 0)
and is supposed to follow Bernoulli with success probability p, say. Here,
the probability p can be viewed as a proportion of individuals with certain
characteristic in the population. The foregoing studies of RSS, where the
response is a binary variable, Terpstra (2004), Chen et al. (2005, 2006,
2007, 2008), Chen (2008), Verma et.al(2017), Das et.al (2017) Lacayo et
al. (2002), Terpstra and Miller (2006) and Chen et al. (2009), are mainly
concerned about estimation of population proportion and variance, and the
comparison with SRS is done using these estimates.

Obtaining the behaviour of a sum of Bernoulli random variables based on
simple random sample has found of greater importance in various applica-
tions like formalization random walk process (Takacs, 1991), the Stein-Chen
method for approximation of Poisson (Barbour and Holst, 1989), obtaining
bounds for entropy (Sason, 2013), characterization of flows in internet traffic
(Chabchoub et al. 2010), and approximation of rare events (Chen and Rollin,
2013). The problem of estimating the characteristics of sum of independent
binary variable in terms of their moments based on simple random sam-
ples has already been emphasized by many researchers like Malik (1969),
Ahuja (1970), Percus and Percus (1985), Ling (1988), Horvath (1989), Yu
and Zelterman (2002), and Kadane (2016). As an alternative procedure of
SRS, RSS has found to be more efficient and reliable, but the characteriza-
tion of a sum of independent and non-identical Bernoulli random variables
based on ranked set sample has not been considered in the literature. In
this connection the present article has mainly concerned to establish a re-
currence relations between the factorial moments of sum of independent
and non-identical sets of binary variables, which is never procured in case
of RSS. These relations also assists to reduce the number of independent
calculations required for evaluation of moments under RSS. And, helps in
characterizing the sum of binary variables under RSS by using recurrence
relations and compare with SRS.

In this paper, the recurrence relationship of sum of binary variables under
SRS and balanced RSS for fixed set size, s, and probabilities of success, p,
are obtained under two different situations. In the first case, the relationship
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is obtained when number of cycles, m is assumed to be known fixed values.
In the second case, an attempt is being made to extend the previously men-
tioned results of recurrence relations among the sum of independent binary
variable where the number of cycle is a random variable. To understand the
characteristics of sum of binary variables under SRS and RSS, the first four
moments are derived using factorial moments that by establishing the recur-
rence relationships. The technique of asymptotic approximations has been
found very helpful in various aspects like in Monte Carlo simulation (Hast-
ings, 1970) and bootstrap techniques (Freedman and Peters, 1984, Brown
and Newey, 2002), for obtaining numerical estimates and their asymptotic
variance and asymptotic confidence intervals. In characterization of any
distributions, asymptotical aspects adds additional information of the distri-
bution and it is an important feature to describe the how large the sample
size is required to achieve the asymptotic approximation. A simulation based
comparison among SRS and RSS has been discussed to numerically illus-
trate the requirement of sample size to achieve the asymptotic normality. A
practical illustration of the proposed procedure with a real-life data on child
survivorship for all eight selected Empowered Action Groups (EAG) Indian
states viz., Bihar, Uttaranchal, Chhatisgarh, Jharkhand, Orissa, Rajasthan,
Madhya Pradesh and Uttar Pradesh, has also been presented.

2. Sampling Design

Suppose the variable of interest is dichotomous variable, say X , and n(=ms),
denotes size of the sample drawn from the population by adopting the pro-
cedures of SRS and RSS, respectively, for prefixed set size,s and number
of cycles, m. Let {X[r]i;r = 1(1)s, i = 1(1)m} symbolizes a ranked set sample
of size ms, where X[r]i denotes the ith observation in the rth ranking class.
Because of RSS procedure, X[r]i’s are independently distributed and corre-
sponding to each rth set, (X[r]1,X[r]2, · · · ,X[r]m) are independently and identi-
cally (i.i.d.) distributed and X[r]1 is the rth order statistic from a simple random
sample of s observations on X . Let XSRS = (X1,X2, · · · ,Xn) is an i.i.d. simple

random sample from Bernoulli(p) and W (=
n
∑

i=1
Xi), denotes their sum and its

density is given by,

fW (w) =

(
n
w

)
pw (1− p)n−w ;w = 0(1)n;0≤ p≤ 1 (2.1)
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Let X[r] = (X[r]1,X[r]2, · · · ,X[r]m) is an vector of i.i.d. ranked set samples of rth

set from Bernoulli (p[r]), for all r = 1(1)s and Yr =
m
∑
j=1

X[r] j, is the number of

times the event occurred in rth class, follows Binomial (m, p[r]) and is given
by,

P(Yr = yr) =

(
m
yr

)
pyr
[r] (1− p[r])

m−yr ;yr = 0,1, · · · ,m. (2.2)

Here, p[r] = Ip(s−r+1,r), denotes the standard incomplete beta integral and
is given by,

Ix(a,b) =
1

B(a,b)

x∫
0

ta−1(1− t)b−1dt, 0 < x < 1.

where B(a,b) = Γ (a)Γ (b)
Γ (a+b) . And, Y = (Y1,Y2, · · · ,Yr, · · · ,Ys) is vector of indepen-

dent Binomial variate with parameters m > 0 and p[r] for all r = 1(1)s and

Z =
s
∑

r=1
Yr, denotes their sums.

3. Characterization using the Recurrence Relations

Let G(t) =
n
∑

x=0
txP(X = x), denotes the probability generating function (pgf )

of a random variable X having distribution P(X = x), with support 0,1, · · · ,
n(= ms) ∈ Z+.

3.1. Case-I: The number of cycles, m, is a known fixed value

Theorem-1: For fixed m, the recursive relationship among factorial moment
of sum W and Z, under SRS and RSS, respectively, is given by

µ
′
[k](W ) = ms

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

p( j+1)
µ
′
[k−1− j](W ) (3.1)

and

µ
′
[k](Z) = m

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z). (3.2)

where µ ′[0] = 1.

Proof: Suppose that W , denotes the sum of n(= ms) i.e.,=
n
∑

i=1
Xi and Yr;
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∀r = 1(1)s, is the sum of m i.e.,=
m
∑
j=1

X[r] j, Bernoulli variables with parameters

p and p[r] respectively. The factorial moment generating function (fmgf ) of
W and Yr using equations (2.1)-(2.2) respectively, are given by

GW (t +1) =
n

∏
i=1

GXi(t +1) = (1+ pt)n (3.3)

GYr(t +1) = E((t +1)Yr) =
m

∏
j=1

E((t +1)X[r] j)

= (1+ p[r]t)
m. (3.4)

Since, {Yr}’s is a set of mutually independent Binomial variate, therefore, the

fmgf of Z(=
s
∑

r=1
Yr) using equation-(3.4) is given by

GZ(t +1) =
s

∏
r=1

GYr(t +1) =
s

∏
r=1

(1+ p[r]t)
m. (3.5)

If D denotes the differential operator i.e., d
dt , then the recursive relationship

between the factorial moments of W , based on simple random samples, can
be obtained by successive differentiation of equation-(3.3) and are as follows

D(GW (1+ t)) =
np

1+ t p
GW (1+ t),

D2(GW (1+ t)) =
np

1+ t p
D(GW (1+ t))− np2

(1+ t p)2 GW (1+ t),

D3(GW (1+ t)) =
np

1+ t p
D2(GW (1+ t))− 2np2

(1+ t p)2 D(GW (1+ t))+

2np3

(1+ t p)3 GW (1+ t),

... =
...,

Dk(GW (1+ t)) = n
k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
p

1+ t p

) j+1

Dk−1− j(GZ(1+ t)),

(3.6)
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and setting t = 0 in equation-(3.6) gives

µ
′
[k](W ) = ms

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

p( j+1)
µ
′
[k−1− j](W ),

where µ ′[0](W ) = 1.

The recursive relationship between fmgf of Z, which is based on ranked
set samples, using equation-(3.5), is given by

D(GZ(1+ t)) =
s

∑
i=1

(
mp[i]

1+ t p[i]

) s

∏
r=1

(1+ t p[r])
m =

s

∑
i=1

(
mp[i]

1+ t p[i]

)
GZ(1+ t),

D2(GZ(1+ t)) = D(GZ(1+ t))
s

∑
i=1

(
mp[i]

1+ t p[i]

)
−GZ(1+ t)

s

∑
i=1

m
(

p[i]
1+ t p[i]

)2

D3(GZ(1+ t)) = D2(GZ(1+ t))
s

∑
i=1

(
mp[i]

1+ t p[i]

)
−

D(GZ(1+ t))
s

∑
i=1

2m
(

p[i]
1+ t p[i]

)2

∗

GZ(1+ t)
s

∑
i=1

2m
(

p[i]
1+ t p[i]

)3

,

... =
...,

Dk(GZ(1+ t)) = m
k−1

∑
j=0

(−1) jh(k) j

(
s

∑
i=1

p j+1
[i]

)
Dk−1− j(GZ(1+ t)), (3.7)

where h(k) j =
(k−1)!

(k−1− j)! , setting t = 0 in equation-(3.7) provides

µ
′
[k](Z) = m

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z),

where µ ′[0](Z) = 1.

Corollary 1: The first four factorial moments i.e., for k = 1,2,3 and 4, using
equation-(3.1) of W and (3.1) of Z, based on simple random samples and
ranked set sample, are given in Appendix-(7.1).
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3.2. Case-II: The number of cycles, m, is a random variable

Suppose that the number of cycles, N, is a random variable, where m∈N+ =

{1,2, , · · ·}. The probability mass function of N = m is given by

fN(m) =
e−λ λ m−1

(m−1)!
;m = 1,2, · · · . (3.8)

i.e., N−1∼P(λ ) (Poisson with mean λ ), λ > 0.

Theorem-2: The recursive relationship between factorial moments of marginal
sums of W and Z respectively, where N is a random variable and follows the
Poisson distribution of equation-(3.8), is given by

µ
′
[k](W ) = s

k−1

∑
j=0

(k−1)!
(k−1− j)!

p( j+1)
(
(−1) j +

λ (s−1)!
(s−1− j)! j!

)
µ
′
[k−1− j](W ), (3.9)

µ
′
[k](Z) = λ

(
s

∑
i=1

p[i]

)
µ
′
[k−1](Z)+

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z)

(3.10)
Proof: Suppose W and Yr, are the mixtures of binomial distributions with a
fixed probability of success p and p[r], respectively, but a variable number
of cycles, m, modelled with Poisson distribution discussed in equation-(3.8).
The conditional distribution of W |N = m is given by,

fW (w|N = m) =

(
n
w

)
pw (1− p)n−w =

(
ms
w

)
pw (1− p)ms−w

where w = 0,1, · · · ,ms and 0 ≤ p ≤ 1. The fmgf of mixture of W using the
equations-(2.1) and (3.8) can be derived as,

GW (1+ t) = e−λ
∞

∑
m=1

λ m−1

(m−1)!

ms

∑
w=0

(
ms
w

)
((1+ t)p)w (1− p)ms−w,

= e−λ
∞

∑
m=1

λ m−1

(m−1)!
(1+ t p)ms,

= e−λ (1+ t p)seλ (1+t p)s
. (3.11)

If D denotes the differential operator i.e., d
dt , then the recursive relationship

between the factorial moments of the mixture of W can be obtained by suc-
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cessive differentiation of equation-(3.11) and are as follows,

D(GW (1+ t)) = e−λ{ps(1+ t p)s−1eλ (1+t p)s
+(1+ t p)seλ (1+t p)s

λ sp(1+ t p)s−1},

= GW (1+ t)
{

sp
1+ t p

+λ sp(1+ t p)s−1
}
,

= s GW (1+ t)
(

p
1+ t p

)
+ sλ p GW (1+ t)(1+ t p)s−1,

D2(GW (1+ t)) =
sp

1+ t p
D(GW (1+ t))− sp2

(1+ t p)2 GW (1+ t)+

λ sp(1+ t p)s−1D(GW (1+ t))+

λ s(s−1)p2(1+ t p)s−2GW (1+ t),

D3(GW (1+ t)) =
sp

1+ t p
D2(GW (1+ t))− 2sp2

(1+ t p)2 D(GW (1+ t))+

2sp3

(1+ t p)3 GW (1+ t)+λ sp(1+ t p)s−1D2(GW (1+ t))

2 λ s(s−1)p2(1+ t p)s−2GW (1+ t)

λ s(s−1)(s−2)p3(1+ t p)s−3GW (1+ t),
... =

...,

Dk(GW (1+ t)) =

s
k−1

∑
j=0

(k−1)!
(k−1− j)!

(
p

1+ t p

) j+1(
(−1) j +

λ (s−1)!
(s−1− j)! j!

(1+ t p)s
)

Dk−1− j,

(3.12)
setting t = 0 in equation-(3.12) gives the recursive relationship,

µ
′
[k](W ) = s

k−1

∑
j=0

(k−1)!
(k−1− j)!

p( j+1)
(
(−1) j +

λ (s−1)!
(s−1− j)! j!

)
µ
′
[k−1− j](W ) (3.13)

where µ ′[0](Z) = 1.

The fmgf of mixture of Yr of the rth set of Y by using the equations-(2.2)
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and (3.8) can be derived as,

GYr(t +1) = e−λ
∞

∑
m=1

λ m−1

(m−1)!

m

∑
yr=0

(1+ t)yr

(
m
yr

)
pyr
[r] (1− p[r])

m−yr

= e−λ
∞

∑
m=1

λ m−1

(m−1)!
(1+ t p[r])

m

= (1+ t p[r])e
−λ

∞

∑
m=1

((1+ t p[r])λ )(m−1)

(m−1)!

= (1+ t p[r]) e−λ (1−(1+t p[r])) = (1+ t p[r]) eλ t p[r] . (3.14)

The fmgf of Z using the equation-(3.14) is given by,

GZ(1+ t) =
s

∏
r=1

GYr(1+ t) = e
tλ

s
∑

r=1
p[r] s

∏
r=1

(1+ t p[r])

= eta
s

∏
r=1

(1+ t p[r]), (3.15)

where z = 0,1, · · · ,ms and 0 ≤ p[r] ≤ 1, a = λ sp and p =
s
∑

r=1
p[r]/s, for all

r = 1(1)s. The recursive relationship between the factorial moments of the
mixture of Z can be obtained by successive differentiation of equation-(3.15)
and are as follows,

D(GZ(1+ t)) = aeta
s

∏
r=1

(1+ t p[r])+ eta
s

∑
i=1

(
p[i]

1+ t p[i]

) s

∏
r=1

(1+ t p[r]),

= aGZ(1+ t)+GZ(1+ t)
s

∑
i=1

(
p[i]

1+ t p[i]

)
,

D2(GZ(1+ t)) = aD(GZ(1+ t))+D(GZ(1+ t))
s

∑
i=1

(
p[i]

1+ t p[i]

)
−

GZ(1+ t)
s

∑
i=1

(
p[i]

1+ t p[i]

)2

,
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D3(GZ(1+ t)) = aD2(GZ(1+ t))+D2(GZ(1+ t))
s

∑
i=1

(
p[i]

1+ t p[i]

)
−

D(GZ(1+ t))
s

∑
i=1

2
(

p[i]
1+ t p[i]

)2

+

GZ(1+ t)
s

∑
i=1

2
(

p[i]
1+ t p[i]

)3

,

... =
...,

Dk(GZ(1+ t)) =

aDk−1(GZ(1+ t))+
k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
Dk−1− j(GZ(1+ t)), (3.16)

setting t = 0 in equation-(3.16) gives recursive relationship as,

µ
′
[k](Z) = aµ

′
[k−1](Z)+

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z)

where µ ′[0](Z) = 1.

Corollary 2: The first four factorial moments, i.e., k = 1,2,3 and 4, of the
mixture of W and Z using equation-(3.9) and equation-(3.10) based on sim-
ple random sample and ranked set sample, respectively, where the number
of cycles, m, is a random variable and follows the Poisson distribution, is
given in Appendix-(7.2).

4. Comparison of Moments

In this section, a comparison is being made among the factorial moments of
W and Z. Let D[k] = µ ′k(W )− µ ′k(Z), denotes the difference among factorial
moments of W and Z, of order k. For the situation, where m, is a known
constant, the difference, D[k], by using equations-(3.1) and (3.2), is given by

D1[k] = m
k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
sp( j+1)

µ
′
[k−1− j](W )−µ

′
[k−1− j](Z)

s

∑
i=1

p j+1
[i]

)
.

(4.1)
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Under the assumption that m, is a random variable, D[k] can be obtained by
using the equations-(3.9) and (3.10) and is given by,

D2[k] =

k−1

∑
j=0

(
sp( j+1)

γ j µ
′
[k−1− j](W )− (−1) j

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z)

)

× (k−1)!
(k−1− j)!

−λ

(
s

∑
i=1

p[i]

)
µ
′
[k−1](Z), (4.2)

where γ j =
(
(−1) j + λ (s−1)!

(s−1− j)! j!

)
.

Note-1: Since, p[i] = Ip(s− i+ 1, i), ∀ i = 1,2, · · · ,s, therefore, a sum of p[i]’s
is given by,

s

∑
i=1

p[i] =
s

∑
i=1

Ip(s− i+1, i) =
s

∑
i=1

p∫
0

ts−i(1− t)i−1

B(s− i+1, i)
dt

=

p∫
0

s

∑
i=1

(
s−1
i−1

)
ts−i(1− t)i−1dt = s

p∫
0

dt = sp.

Note-2: Let γ(v) = 1
pv

s
∑

i=1
pv
[i], is a constant depends on the order v and for

v = 1, γ(1) = sp/p = s, i.e., the minimum value of γ(v) is s, that implies γ(v)≥
s ;∀v. Suppose that,

s

∑
i=1

pv
[i] =Cpv,

where C > 0, is a proportionality constant such that,

s

∑
i=1

pv
[i]−Cpv = 0 if C = γ(v) (4.3)

s

∑
i=1

pv
[i]−Cpv > 0 if C ∈ (0,γ(v)] (4.4)

s

∑
i=1

pv
[i]−Cpv < 0 if C > γ(v). (4.5)

Note-3: The difference equations of D1[k] and D2[k], of equations-(4.1)-(4.2),
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respectively, for k = 1,2 are such that

D1[1] = m

(
sp−

s

∑
i=1

p[i]

)
= 0 (4.6)

D1[2] = m

(
s

∑
i=1

p2
[i]− sp2

)
> 0; from-equations (4.6) and (4.4) (4.7)

D2[1] = sp(1+λ )−
s

∑
i=1

p[i]−λ

s

∑
i=1

p[i] = 0 (4.8)

D2[2] = sp(1+λ )µ ′[1](W )+ sp2(−1+λ (s−1))−µ
′
[1](Z)

[
λ sp+

s

∑
i=1

p[i]

]
+

s

∑
i=1

p2
[i]

=

[
s

∑
i=1

p2
[i]− sp2

]
+ sp2

λ (s−1)> 0; from-equations (4.8) and (4.4) (4.9)

Since,
s
∑

i=1
p[i] = sp and s ∈ (0,γ(v)];∀v, therefore, from equation-(4.4), we find

that the difference between,
(

s
∑

i=1
pv
[i]− spv

)
> 0.

5. Simulations

To assess the performance and changes in the moments of sums, when
set size, m, is known and unknown, a simulation study is done for differ-
ent combination of p ∈ {0.1,0.2,0.3,0.4,0.5}, s = 2,4 and 6, and m = λ =

10,50,100,200 and 500, under SRS and RSS, are presented in Table 1-2
of Appendix. To compare the accuracy of the estimator under RSS with
respect to SRS, the relative efficiency (RE)

RE =
µ2(SRS)
µ2(RSS)

is also obtained. In addition of that pattern of the skewness and kurtosis
of sums based on both SRS and RSS regarding their asymptotic behaviour
are also depicted in Figure 1-4 of Appendix.

Discussion: From Table 1, it has observed that the RE of the estimator un-
der RSS with respect to SRS, always greater than 1 for all combination of s,m
and p. For fixed number of cycles, m and proportion, p, the RE of the estima-
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tor under RSS with respect to SRS, is also increasing in most of the cases
with increase in set size, s, such as for m = 10 and p = 0.1, with increase the
value of s = 2,4,6, the RE is 1.21, 1.32 and 1.39, respectively. When the set
size, s, is fixed and number of cycles are significantly high values, the RE
of the estimator under RSS with respect to SRS has followed an increasing
trend with increase in proportion p, for e.g., when m = 500 and s = 6, the
RE has obtained as 1.38, 1.81, 2.02, 2.26 and 2.31 for p = 0.1,0.2, · · ·0.5,
respectively. Table 2 is based on the assumption that the number of cycles,
is a random quantity and follows zero truncated poisson(λ ). Under this trun-
cated poisson assumption, similar pattern of the RE of the estimator under
RSS with respect to SRS as previous has obtained. Results has shown that
with increase in s and p higher will be the values of RE. It has also found
that for fixed s and p, changing in poisson parameter λ does not affect the
efficiency of estimators under RSS as comparing to SRS, and remains al-
most same. It is found from the simulated results that even though the mean
under both SRS and RSS are same (Verma et.al (2017)) but the variances
of sums based on SRS are often higher than that of RSS, for all m and p,
which shows that the number of success obtained using RSS is more reli-
able and efficient as compare to SRS.

The interaction of sample size, n = ms, and skewness and kurtosis, respec-
tively, of sums under SRS and RSS has depicted in Figure 1-2, where the
number of cycles m is a fixed quantity. Figures 1 and 2 represents the pat-
tern of five skewness and kurtosis curves, respectively, obtained for fixed
set size, s, at different choices of p ∈ {0.1,0.2,0.3,0.4,0.5}. When m is a
random quantity and follows zero truncated poisson(λ ), the pattern of five
skewness and kurtosis curves for different choices of p have also presented
in Figure 3-4. Through these figures, one can compare and calculate the
required sample size, n, to meet that asymptotic normality (Small, 1980,
Bai and NG,2005, Sunklodas, 2014, and Butler and Stephens, 2017), i.e.,
skewness = 0 and kurtosis = 3, under RSS as compare to SRS, for given p.
For fixed set size, s, and proportion p, it has found that with a minimum
number of cycles, m or parameter λ , one can achieve asymptotic normality,
under RSS as compare to the required number of sample based on SRS.

6. Illustration with Real-life Data

To illustrate a practical significance of the discussed methodology, a real-
life data on children aged 0-1 years to mothers aged 15 to 39 years, who
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are residing in eight Indian states ((a) Bihar (b) Uttaranchal (c) Chhatis-
garh (d) Jharkhand (d) Orissa (e) Rajasthan (f) Madhya Pradesh and (g)
Uttar Pradesh,) has considered. These selected eight states are socio-
economically backward and reports highest infant mortality rates (< 50 per
1000), and are also known as Empowered Action Groups (EAG) states of
India. The data has been obtained from the National Family Health Survey-
3 (2005-06), preceding five years of the survey. Here, our objective is to
characterize the number of babies that remains alive in EAG states of India,
under both SRS and RSS.

The event of survivorship of a child is positively correlated with mother’s age
(Finlay et.al (2011) and Selemani et.al (2014)). One can say that chance of
survivorship of a child is low in mother of lower ages than that of those of
higher ages. So mother’s age (in months) is used as an auxiliary variable
for ranking purpose in ranked set sampling. The procedure adopted for
sampling through RSS has discussed below (Das et al. 2017):

1. A simple random sample of s2 units, say Xi; i = 1,2, · · · ,s, is drawn from
the target population and are randomly partitioned into s sets each
having s units, , say Xr j for all r = 1,2, · · · ,s; j = 1,2, · · · ,s.

2. In each of s sets the units are ranked according to the mother’s age, de-
noted as X[r] j. In situation of ties the observations are ordered system-
atically in the sequence, as discussed by Terpstra and Nelson (2005)

3. From the first set, the unit corresponding to the mother with lowest
age is selected (X[1]1). From the second set, the unit corresponding to
mother with second lowest age is selected (X[2]2) and so on. Finally,
from the sth set, the unit corresponding to the mother with highest age
(X[s]s) is selected. The remaining s(s−1) sampled units are discarded
from the data set.

4. The Steps 1 - 3, called a cycle, are repeated m times to obtain a ranked
set sample of size n = ms.

Using the sample we have computed various moments discussed in previ-
ous sections under both SRS and RSS. The results have reported in Tables
3 and 4. When the number of cycles m has assumed as a fixed quantity,
the obtained result have shown that characterization of the sums based on
ranked set sampling for all states are much reliable and its efficiency lies
to 10-34%. The kurtosis based on both simple random sample and ranked



STATISTICS IN TRANSITION new series, September 2019 15

set sample have found closer to 3, but significant deviation from 0 have ob-
served in the skewness (negatively skewed). Under the assumption that m is
a random quantity, the efficiency increases 3 to 4 times that of earlier case.
It has also observed that the variance under RSS is converging towards the
mean, which shows the asymptotic convergence to possion distribution. The
kurtosis based on both simple random sample and ranked set sample have
found far away from 3 and a significant deviation from 0 have observed in the
skewness (positively skewed). Statistical Analysis System (SAS) package,
University edition has used for sampling units and all other computation is
carried out by using R package (version-3.0.3).

7. Conclusion

The goal of present article is to characterize a sum of independent and non-
identical set of binomial ranked set samples and compare it with a sum of
independent and identical binomial simple random samples for two different
situations based on the number of cycles, which is first pre-assumed as a
constant integer and when it is a random variable. Our comparison depends
only on establishing the variability and their behaviour using some moments.
Results show that the sum based on ranked set samples, which is same as
that of simple random sample, are more precise and achieve asymptotic nor-
mality using comparatively with smaller sample than that of simple random
sample. In the context of real-life data study related to child’s survivorship
in selected eight EAG Indian states, it is found that RSS provides much re-
liable and accurate estimates than that of SRS for all selected states taken
into account.
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APPENDIX

INTER-RELATIONSHIP BETWEEN FACTORIAL, RAW AND CENTRAL
MOMENTS

µ
′
[1] = µ

′
1 = µ1

µ
′
[2] = µ

′
2−µ

′
1 ; µ

′
2 = µ

′
[2]+µ

′
1 ; µ2 = µ

′
2−µ

′2
1

µ
′
[3] = µ

′
3−3µ

′
2 +2µ

′
1 ; µ

′
3 = µ

′
[3]+3µ

′
2−2µ

′
1 ; µ3 = µ

′
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′
2µ
′
1 +2µ

′3
1

µ
′
[4] = µ

′
4−6µ

′
3 +11µ

′
2−6µ

′
1 ; µ

′
4 = µ

′
[4]+6µ

′
3−11µ

′
2 +6µ

′
1;

µ4 = µ
′
4−4µ

′
1µ
′
3 +6µ

′2
1 µ
′
2−3µ

′4
1

7.1. Case-I: The number of cycles, m, is a known fixed value

Using equation-(3.1) the factorial moments based on simple random sample
are given by

µ
′
[1](W ) =

n!
(n−1)!

p

µ
′
[2](W ) =

n!
(n−2)!

p2

µ
′
[3](W ) =

n!
(n−3)!

p3

µ
′
[4](W ) =

n!
(n−4)!

p4

Using equation-(3.2) the factorial moments based on ranked set sample are
given by

µ
′
[1](Z) = m

(
s

∑
i=1

p[i]

)

µ
′
[2](Z) = m

(
s

∑
i=1

p[i]

)
µ
′
[1]−m

(
s

∑
i=1

p2
[i]

)

µ
′
[3](Z) = m

(
s

∑
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p[i]
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µ
′
[2]−2m

(
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∑
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p2
[i]
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µ
′
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s

∑
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p3
[i]

)

µ
′
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µ
′
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p2
[i]

)
µ
′
[2]+6m

(
s
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i=1

p3
[i]

)
µ
′
[1]−6m

(
s

∑
i=1

p4
[i]

)
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µ
′
[k](W ) = s

k−1

∑
j=0

(k−1)!
(k−1− j)!

p( j+1)
(
(−1) j +

λ (s−1)!
(s−1− j)! j!

)
µ
′
[k−1− j](W ). (7.1)

7.2. Case-II: The number of cycles, m, is a random variable

Using equation-(3.9) the first four factorial moments based on simple ran-
dom samples, where N ∼ Poisson (λ ) ;N = 1,2, · · · , are given by

µ
′
[1](W ) = sp(1+λ )

µ
′
[2](W ) = s{p(1+λ )µ ′[1]+ p2(−1+λ (s−1))}

µ
′
[3](W ) = s{p(1+λ )µ ′[2]+2p2(−1+λ (s−1))µ ′[1]+2p3(1+0.5λ (s−1)(s−2))}

µ
′
[4](W ) = s{p(1+λ )µ ′[3]+3p2(−1+λ (s−1))µ ′[2]

+6p3(1+
λ (s−1)(s−2)

2
)µ ′[1]+6p3(−1+

λ (s−1)(s−2)(s−3)
3!

) }

µ
′
[k](Z) = λ

(
s

∑
i=1

p[i]

)
µ
′
[k−1](Z)+

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z).

(7.2)

Using equation-(3.10) the first four factorial moments based on ranked set
samples, where N ∼ Poisson (λ ) ;N = 1,2, · · · , are given by

µ
′
[1](Z) = a+
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µ
′
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where a = λ sp and p = 1
s

s
∑

r=1
p[r].
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Table 1: Mean and relative precision of sum of Binomial variate under SRS
and RSS, for the given set size s, m and p.

p m s=2 s=4 s=6
Mean RE Mean RE Mean RE

SRS RSS SRS RSS SRS RSS
0.1 10 3 3 1.21 3 3 1.32 5 5 1.39

50 14 14 1.19 18 18 1.23 29 29 1.53
100 16 16 1.10 42 42 1.23 46 46 1.60
200 38 38 1.12 83 83 1.36 103 103 1.42
500 101 101 1.11 196 196 1.29 273 273 1.38

0.2 10 5 5 1.50 7 7 1.41 12 12 1.66
50 20 20 1.25 42 42 1.98 58 58 1.51

100 44 44 1.20 89 89 1.66 139 139 2.17
200 91 91 1.22 157 157 1.48 234 234 1.82
500 197 197 1.20 375 375 1.48 593 593 1.81

0.3 10 5 5 1.50 12 12 1.83 18 18 1.50
50 31 31 1.33 60 60 1.99 92 92 2.33

100 67 67 1.46 120 120 1.63 175 175 1.98
200 117 117 1.19 247 247 1.54 356 356 2.08
500 298 298 1.27 597 597 1.70 899 899 2.02

0.4 10 3 3 1.21 23 23 2.51 29 29 2.11
50 39 39 1.29 75 75 1.60 122 122 2.07

100 79 79 1.10 168 168 1.79 240 240 2.18
200 164 164 1.33 297 297 1.77 481 481 2.25
500 422 422 1.30 792 792 1.91 1205 1205 2.26

0.5 10 10 10 1.56 17 17 2.51 28 28 4.39
50 49 49 1.33 107 107 2.38 154 154 1.99

100 108 108 1.24 212 212 1.78 297 297 2.53
200 204 204 1.43 400 400 1.83 596 596 2.05
500 508 508 1.38 1000 1000 1.89 1509 1509 2.31
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Table 2: Marginal mean and relative precision of sum of Binomial variate
under SRS and RSS, for the given set size s, λ and p.

p λ s=2 s=4 s=6
Mean RE Mean RE Mean RE

SRS RSS SRS RSS SRS RSS
0.1 10 2.2 2.2 1.10 4.4 4.4 1.30 6.6 6.6 1.50

50 10.2 10.2 1.10 20.4 20.4 1.30 30.6 30.6 1.50
100 20.2 20.2 1.10 40.4 40.4 1.30 60.6 60.6 1.50
200 40.2 40.2 1.10 80.4 80.4 1.30 120.6 120.6 1.50
500 100.2 100.2 1.10 200.4 200.4 1.30 300.6 300.6 1.50

0.2 10 4.4 4.4 1.20 8.8 8.8 1.60 13.2 13.2 1.99
50 20.4 20.4 1.20 40.8 40.8 1.60 61.2 61.2 2.00
100 40.4 40.4 1.20 80.8 80.8 1.60 121.2 121.2 2.00
200 80.4 80.4 1.20 160.8 160.8 1.60 241.2 241.2 2.00
500 200.4 200.4 1.20 400.8 400.8 1.60 601.2 601.2 2.00

0.3 10 6.6 6.6 1.30 13.2 13.2 1.89 19.8 19.8 2.49
50 30.6 30.6 1.30 61.2 61.2 1.90 91.8 91.8 2.50
100 60.6 60.6 1.30 121.2 121.2 1.90 181.8 181.8 2.50
200 120.6 120.6 1.30 241.2 241.2 1.90 361.8 361.8 2.50
500 300.6 300.6 1.30 601.2 601.2 1.90 901.8 901.8 2.50

0.4 10 8.8 8.8 1.40 17.6 17.6 2.19 26.4 26.4 2.98
50 40.8 40.8 1.40 81.6 81.6 2.20 122.4 122.4 3.00
100 80.8 80.8 1.40 161.6 161.6 2.20 242.4 242.4 3.00
200 160.8 160.8 1.40 321.6 321.6 2.20 482.4 482.4 3.00
500 400.8 400.8 1.40 801.6 801.6 2.20 1202.4 1202.4 3.00

0.5 10 11.0 11.0 1.49 22.0 22.0 2.48 33.0 33.0 3.47
50 51.0 51.0 1.50 102.0 102.0 2.50 153.0 153.0 3.49
100 101.0 101.0 1.50 202.0 202.0 2.50 303.0 303.0 3.50
200 201.0 201.0 1.50 402.0 402.0 2.50 603.0 603.0 3.50
500 501.0 501.0 1.50 1002.0 1002.0 2.50 1503.0 1503.0 3.50
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Table 3: State-wise mean, variance, skewness, kurtosis and relative precision of sum of Binomial variate under SRS
and RSS, for the given set size s, m and p.

State p s m Mean SRS RSS RE

Vari Skew Kurt Vari Skew Kurt

Bihar 0.94 4 140 523 34.56 -0.148 3.018 29.11 -0.108 3.001 1.19

Uttaranchal 0.95 4 75 285 14.25 -0.238 3.050 12.96 -0.204 3.025 1.10

Chhatisgarh 0.92 4 90 328 29.16 -0.152 3.018 22.56 -0.091 2.993 1.29

Jharkhand 0.93 4 100 373 25.18 -0.172 3.025 21.15 -0.126 3.002 1.19

Orissa 0.93 5 60 278 20.39 -0.189 3.029 14.63 -0.090 2.981 1.39

Rajasthan 0.93 5 70 324 24.07 -0.174 3.024 19.34 -0.116 2.997 1.24

Madhya Pr. 0.93 5 100 465 32.55 -0.151 3.019 26.23 -0.101 2.998 1.24

Uttar Pr. 0.91 5 80 367 30.28 -0.152 3.018 23.44 -0.093 2.995 1.29
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Table 4: State-wise marginal mean, variance, skewness, kurtosis and relative precision of sum of Binomial variate
under SRS and RSS, for the given set size s, λ and p.

State p s λ Mean SRS RSS RE

Vari Skew Kurt Vari Skew Kurt

Bihar 0.94 4 140 527.74 1995.18 0.086 3.008 524.20 0.043 3.021 3.81

Uttaranchal 0.95 4 75 288.80 1097.44 0.117 3.014 285.17 0.058 3.041 3.85

Chhatisgarh 0.92 4 90 335.69 1250.82 0.108 3.012 332.23 0.054 3.033 3.76

Jharkhand 0.93 4 100 374.71 1403.58 0.102 3.011 371.22 0.051 3.030 3.78

Orissa 0.93 5 60 284.67 1325.64 0.131 3.017 280.25 0.059 3.049 4.73

Rajasthan 0.93 5 70 328.63 1524.07 0.122 3.015 324.27 0.055 3.042 4.70

Madhya Pr. 0.93 5 100 469.65 2195.13 0.102 3.010 465.26 0.046 3.029 4.72

Uttar Pr. 0.91 5 80 369.56 1697.65 0.114 3.013 365.30 0.052 3.036 4.65
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Figure 1: Skewness pattern of sum of Binomial variable under SRS
and RSS for set size s = 2,4,6 and sample size n = ms, where m =
{10,50,100,200,500}, and for fixed p.
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Figure 2: Kurtosis pattern of sum of Binomial variable under SRS
and RSS for set size s = 2,4,6 and sample size n = ms, where m =
{10,50,100,200,500}, and for fixed p.
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Figure 3: Marginal skewness pattern of sum of Binomial variable under SRS
and RSS for set size s= 2,4,6 and sample size n=ms, where m∼Poisson(λ ),
λ = {10,50,100,200,500}, and for fixed p.
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Figure 4: Marginal kurtosis pattern of sum of Binomial variable under SRS
and RSS for set size s= 2,4,6 and sample size n=ms, where m∼Poisson(λ ),
λ = {10,50,100,200,500}, and for fixed p.


