Review Article # The Landscape of Digital Pathology in Transplantation: From the Beginning to the Virtual E-Slide Ilaria Girolami¹, Anil Parwani², Valeria Barresi¹, Stefano Marletta¹, Serena Ammendola¹, Lavinia Stefanizzi¹, Luca Novelli³, Arrigo Capitanio⁴, Matteo Brunelli¹, Liron Pantanowitz⁵, Albino Eccher¹ ¹Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy, ²Department of Pathology, Ohio State University, Columbus, Ohio, USA, ³Department of Translational Medicine and Surgery, Institute of Histopathology and Molecular Diagnosis, Careggi University Hospital, Florence, Italy, ⁴Department of Clinical Pathology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden, ⁵Department of Pathology, UPMC Shadyside Hospital, University of Pittsburgh, Pittsburgh, PA, USA Received: 27 April 2019 Accepted: 06 June 2019 Published: 01 July 2019 #### **Abstract** **Background:** Digital pathology has progressed over the last two decades, with many clinical and nonclinical applications. Transplantation pathology is a highly specialized field in which the majority of practicing pathologists do not have sufficient expertise to handle critical needs. In this context, digital pathology has proven to be useful as it allows for timely access to expert second-opinion teleconsultation. The aim of this study was to review the experience of the application of digital pathology to the field of transplantation. **Methods:** Papers on this topic were retrieved using PubMed as a search engine. Inclusion criteria were the presence of transplantation setting and the use of any type of digital image with or without the use of image analysis tools; the search was restricted to English language papers published in the 25 years until December 31, 2018. **Results:** Literature regarding digital transplant pathology is mostly about the digital interpretation of posttransplant biopsies (75 vs. 19), with 15/75 (20%) articles focusing on agreement/reproducibility. Several papers concentrated on the correlation between biopsy features assessed by digital image analysis (DIA) and clinical outcome (45/75, 60%). Whole-slide imaging (WSI) only appeared in recent publications, starting from 2011 (13/75, 17.3%). Papers dealing with preimplantation biopsy are less numerous, the majority (13/19, 68.4%) of which focus on diagnostic agreement between digital microscopy and light microscopy (LM), with WSI technology being used in only a small quota of papers (4/19, 21.1%). **Conclusions:** Overall, published studies show good concordance between digital microscopy and LM modalities for diagnosis. DIA has the potential to increase diagnostic reproducibility and facilitate the identification and quantification of histological parameters. Thus, with advancing technology such as faster scanning times, better image resolution, and novel image algorithms, it is likely that WSI will eventually replace LM. Keywords: Digital pathology, donor biopsy, graft biopsy, image analysis, transplantation #### INTRODUCTION Digital pathology has progressed over the last two decades and is being used for several clinical and nonclinical applications. Some of these use cases, including primary diagnosis, second-opinion consultation, archiving, education/ training, research, and image analysis. Many studies have been performed on the implementation and validation of digital systems. Several reviews have reported on the concordance between whole-slide imaging (WSI) and conventional light microscopy (LM) in surgical pathology^[1,2] and highlighted some of the technical challenges related to WSI in cytology.^[3] In addition, several digital image analysis (DIA) tools have been developed over the years, and apart from their role Access this article online Quick Response Code: Website: www.jpathinformatics.org DOI: 10.4103/jpi.jpi_27_19 in quantitative image analysis of breast biomarkers, these algorithms have been used mainly for research purposes. Transplantation pathology is a highly specialized field in which the majority of pathologists do not have enough expertise to handle critical practice needs. Digital pathology can be extremely useful in this regard as it allows general pathologists Address for correspondence: Dr. Albino Eccher, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Ple Stefani N. 1, 37126, Verona, Italy. E-mail: albino.eccher@aovr.veneto.it This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com **How to cite this article:** Girolami I, Parwani A, Barresi V, Marletta S, Ammendola S, Stefanizzi L, *et al.* The landscape of digital pathology in transplantation: From the beginning to the virtual E-slide. J Pathol Inform 2019:10:21 Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2019/10/1/21/261954 to employ teleconsultation for intraoperative consultation as well as to rapidly gain an expert second opinion. In addition, DIA can be applied to transplant biopsies to facilitate the identification and quantification of several morphological parameters, as well as their spatial relationships. The aim of this paper was to review the literature on transplantation digital pathology published in the last 25 years and to review the main issues, results, and future directions of the field. #### **M**ETHODS Papers on this topic were retrieved using PubMed as a search engine. The search was limited to papers written in the English language and published in the 25 years' time span until December 31, 2018, with the following search strategy: "("digital" OR "whole slide imaging" OR "WSI" OR "digital pathology" OR "telepathology" OR "telemedicine" OR "image analysis") AND ("transplant" OR "transplantation" OR "organ" OR "organ procurement" OR "preimplantation biopsy" OR "graft" OR "allograft") AND ("renal" OR "kidney" OR "liver" OR "heart" OR "lung" OR "pancreas")". Inclusion criteria were the presence in the study of the transplantation setting, pre- or post-transplant, and the use of any type of digital pathology image, both with or without the use of image analysis tools. Papers dealing with digital pathology and biopsies but not in transplantation setting, reviews, and commentaries were excluded. Papers retrieved were divided into pre- and post-transplant phase and grouped according to the organ of interest in the study, type of digital pathology, use of image analysis tools, main topic of the study among concordance/reproducibility, assessment of features for organ outcome and rejection, and other morphological or immunohistochemical (IHC) issues. #### **Distribution of studies** A total of 2207 papers were retrieved with the search strategy, and the main reasons for exclusion on the basis of title and abstract were (i) the absence of the transplantation setting, as the term "transplant" was intended only for tissues in plastic and reconstructive surgery; (ii) the absence of a digitalized image, as the term "digital" was intended for other imaging modalities; and (iii) the use of animal models. The included papers were 93, with the note that a single study^[4] comprised both pre- and post-transplant biopsies, so it was counted in both groups. The studies included so represented about 4% of all retrieved items. There were a growing number of publications in the last 15 years as more than 75% of papers have been published after 2004. Subdividing the studies according to the type of digital pathology, it can be seen how the static image modality use has started to decrease after 2008 and how the number of publications using WSI is increasing in the last decade, overcoming the static digitized image in the most recent period 2014-2018. A graphical summary of the distribution of studies over time is shown in Figure 1. Regarding the main issues addressed in the studies, the Figure 1: Number of publications over time and according to the type of digital pathology. WSI: Whole-slide imaging, NOS: Not otherwise specified concordance between modalities was the main topic overall in pretransplant phase papers (14/19, 73.7%), while it was the focus of the study only in 20% (15/75) of posttransplant studies. Indeed, in this group, the correlation of histological features assessed with digital instruments with outcome and the investigation of features related to rejection represented together the most common issues, with total 60% (45/75) of publications. Splitting according to technology type, it can be observed that in studies using WSI, the main topic is the concordance between WSI and conventional LM, both in pretransplant (all 4 studies) and posttransplant (9/13, 69.2%) studies. The assessment of histological features correlated to outcome of organ or with particular attention to rejection was the main topic of the studies using static digitized images (41/70, 58.6%, all posttransplant studies). A diagram of distribution of studies according to transplant phase, type of digital pathology, and main topic is shown in Figure 2. #### Modes of digital pathology Static telepathology requires only a microscope with an attached digital camera connected to a monitor or computer, internet access, and secure sharing software. A remote expert pathologist can view these static images but relies on an on-site pathologist who controls the microscope to capture relevant images that are in focus, which makes this inexpensive system restrictive.^[5] This can be overcome with robotic or dynamic telepathology, which allows the remote pathologist to control the microscope using software; however, this robotic system is more expensive, is
time-consuming, and demands a high network bandwidth.^[5] WSI scanners are essentially a microscope and software-driven robotic stage that methodically moves the slide in the x and y axes under the microscopic lens while simultaneously optimizing the Z-plane focus and photographing each microscopic field. [5] WSI scanners can be tile-based (the most common ones), in which a square photosensor is used to capture multiple tiles adjacent to each other, or line scan-based imaging, in which an oblong photosensor is used to continually capture strips of image data as it sweeps through the slide. The quality of focusing **Figure 2:** Hierarchy of papers according to transplantation phase, mode of digital pathology, and main topic of study. *A paper is counted in both groups as it comprises both pre- and post-transplant biopsies. IHC: Immunohistochemistry, WSI: Whole-slide imaging is limited by multiple optical and mechanical parameters, notably the numerical aperture (NA) of the objective and movement resolution on the vertical (z) axis. Higher NA allows the distance that can be resolved to become smaller, thus increasing resolution.^[6] WSI has proven to be superior in comparison to conventional microscopy in terms of case organization, navigation and annotation of slide, easiness to share for consultation and multiple viewing, and to be reliable for routine surgical pathology diagnosis, after validation of systems.^[7] However, scanning time at higher resolutions, storage issues, and costs remain open questions that could have limited widespread adoption of this technology at the beginning; however, nowadays, for academic institutions or community hospitals with a high diagnostic workload, these issues are not to be considered a barrier. Indeed, as reported by a recent international survey, after full implementation of digital pathology, in routine practice, the new step could be the integration of artificial intelligence tools in diagnostic pathology. [8] Finally, hybrid WSI-robotic technology offers pathologists the ability to switch between live robotic viewing and a scanned digital slide.[9] The use of WSI in the transplantation literature only appears after 2011 (13/75, 17.3% of posttransplantation and 4/19, 21.1% of pretransplantation papers). #### **Telepathology in transplantation** The application of telemedicine to transplantation has lagged significantly compared to other medical fields, despite widespread interest.^[10] The clinical benefits of mobile health technologies have been demonstrated in various phases of organ transplantation, including adherence of patients to therapy, clinical monitoring, and increase in life quality of recipients. In addition, in recent years, a number of case series and feasibility studies have highlighted the importance of digital pathology for providing access to expert second opinions. Indeed, this technology can help with real-time allograft selection and assessment of donor/recipient tissue specimens by allowing the teleconsultation of professionals during both pre- and post-transplant phases in medical centers with minimal experience.[10] However, the working scenarios in pre- and post-transplant phases is quite different. The posttransplant phase is best handled by a dedicated subspecialized pathologist, without the need for urgent turnaround times, and if needed availability of ancillary techniques. On the other hand, preimplantation diagnosis can typically be handled by an on-call general pathologist but does need to meet a turnaround time of only a few hours and usually without the luxury of ancillary studies (i.e., diagnoses depend almost entirely on a hematoxylin and eosin stain). In both scenarios, the need for diagnostic teleconsultation may be important. The vast majority of papers on digital pathology and transplantation published in the last 25 years dealt with the posttransplant biopsy during graft surveillance (75 posttransplant vs. 19 pretransplant articles, 79.8% vs. 20.2%). Minervini et al. reported their experience with second-opinion teleconsultation using a static telepathology system between the Mediterranean Institute for Transplantation and Advanced Specialized Therapies in collaboration with the University of Pittsburgh Medical Center.[4] In that study, the authors reviewed 18 posttransplant biopsies and five preimplantation frozen section (FS) liver biopsies. They assessed the agreement rates between the referring and consulting pathologist and the reliability and easiness of telepathology for obtaining a rapid second opinion.^[4] Low experience with digital pathology in the pretransplantation phase may be attributed to several reasons. Before the development of contemporary WSI scanners, the acquisition of digital images (e.g., static photographs) required a lengthy amount of time that was inconsistent with the rapid turnaround time needed for preimplantation biopsy assessment. Over time, as imaging devices began to allow dynamic and robotic telemicroscopy, so did the use of telepathology to remotely read intraoperative FSs before organ transplantation. [9] #### Digital image analysis in transplantation Although as stated in recent reviews, [11,12] the risk/benefit ratio and relative value of postimplantation biopsy for graft surveillance could appear to be decreasing, compared to less invasive monitoring techniques, given the development of newer noninvasive imaging and fluid techniques. However, advances in digital imaging techniques, robotics, and computing can provide new "toolkits" enabling pathologists to gain more information from tissue samples and to increase the histopathology value. [11] Indeed, starting from the early 90s, image analysis morphometric studies have been performed mainly for the detection of signs of rejection and prediction of organ outcome. The absence of time limitation comparing to pretransplant phase allows the pathologist to use ancillary techniques, to digitalize images, and to ask for consultation and perform image analysis, after slide scanning, and take advantage of DIA techniques for precise quantification of morphological features on biopsies. Among the posttransplant studies, 58/75 (77.3%) were carried out using conventional microscopy plus DIA, 8/75 (10.7%) were performed using WSI plus DIA, while 9/75 (12%) did not use DIA techniques. As clarified by Isse et al., morphometric software programs, which can range from relatively inexpensive basic macro-driven software for color quantification, too expensive and complex, trainable model-based applications for recognizing and quantifying tissue patterns, now consider WSI.[11] Moreover, the development of multiplex staining DIA algorithms and of deep learning algorithms has been rapidly increasing in recent years, with several applications in cancer pathology, that can be also applicable to transplantation biopsy pathology.^[12] Therefore, it is reasonable that in the next two decades, the proportion of WSI versus LM in image analysis studies will be reversed as more image analysis studies will use WSI and deep learning algorithms. #### Digital pathology in pre-transplantation Despite the greater number of published studies on posttransplantation biopsies, there is increasing awareness of the potential to use digital pathology in the pretransplantation phase. Pathologists involved in on-call rotations for the transplant service may be asked to classify lesions found during donor assessment and to evaluate the suitability of organs to transplant from small biopsies. For newly discovered lesions, the pathologist performing these duties needs to define their nature and exclude a malignant neoplasm that would preclude safe transplantation.[13] The studies concerning preimplantation biopsies are summarized in Table 1. Among 19 studies concerning the pretransplant phase, none addressed diagnostic issues of newly discovered lesions. However, given that these lesions are typically examined by means of FS, they are probably incorporated in other more general studies about digital pathology for intraoperative consultation. Most studies on organ assessment (14/19, 73.7%) were mainly about liver and kidney biopsy, [4,14-26] while only a small proportion (5/19, 26.3%)^[27-31] dealt with pancreatic islet preparations for transplant. With regard to the type of digital pathology technology used, 12/19 (63.2%) studies discussed DIA applied to LM-acquired images, 4/19 (21.1%) studies used WSI, [15,16,25,26] one study involved only static telepathology without DIA, [4] another referred generally to using a "virtual microscope,"[24] and one did not clarify the type of digital pathology used.[23] The majority of studies (14/19, 73.7%) concerning the pretransplant phase addressed the agreement/concordance of digital pathology with the conventional LM technique. The assessment of agreement was performed with different statistical tests. Minervini *et al.* reported an agreement rate of 86% between referring pathologist with LM and consultant pathologist with static digital pathology, but they did not specify the agreement rates for the each of the pretransplant cases.^[4] Other studies from the same group followed guidelines of the College of American Pathologists for validating WSI systems and compared WSI to LM in the assessment of kidney and liver biopsies. In one of their studies, the intraobserver concordance was excellent ($\kappa = 0.961$). The interobserver concordance was excellent for both LM $(\kappa = 0.903)$ and WSI $(\kappa = 0.863)$. [26] In another study on the validation of a WSI scanner, the case population included 28 scanned FS slides of the liver and kidney biopsy for organ suitability; the intraobserver concordance was excellent ($\kappa = 0.91$) with an accuracy rate of 86%. [15] Biesterfeld et al. analyzed the interobserver concordance in the quantification of macro- and micro-vesicular steatosis in liver biopsies using digital pathology. They found
good interobserver agreement $(\kappa > 0.70)$ for all degrees of steatosis (correlation coefficient r > 0.90 and r > 0.60) when the assessment was performed with LM, but the concordance rate was lower when using point grid counting on digitized images. Therefore, they concluded that point grid counting on the digital image does not add value for steatosis quantification.^[22] Two other studies analyzed the correlation between macrovesicular steatosis assessed by an experienced pathologist with LM to that assessed by DIA software ($r^2 = 0.426$). One study reported low correlation ($r^2 = 0.426$); however, DIA measurements had stronger correlation with liver function after transplant.^[21] In the other study, a high correlation ($r^2 = 0.97$) was found between pathologist's assessment and the DIA method.[18] Several studies concerned pancreatic islet preparations for islet transplant and compared the assessment of various parameters, including the number of islets, islet equivalents (islets normalized for an average size of 150 µm, IEQ), and purity using different methods. All of them reported high correlation between manual counting on LM^[28,29] or on a digitized image[30] and counting using automated/computerized DIA software (determination coefficient $r^2 = 0.91$, $r^2 = 0.78$ and linear coefficient r > 0.819, respectively). Three studies compared manual LM and automated DIA software by means of the coefficient of variation (CV), reporting that the CV is lower for automated software compared to manual counting^[27,29] and concluding that DIA is reliable for quantification of IEQ and purity. [30] Finally, one study compared three modalities (i.e., manual assessment on LM, manual assessment of digital images, and counting by DIA using software) and reported a high correlation between assessment of digital images and software analysis ($r^2 > 0.8$) and a lower correlation between standard manual assessment and software analysis $(r^2 \ 0.62 - 0.73)$. [31] Recently, some authors developed a deep learning model to identify and classify nonsclerosed and sclerosed glomeruli in WSI scans of donor kidney FS biopsies. They reported that their model based on convolutional neural networks yielded results comparable with those achieved by an expert renal pathologist, being robust enough to handle FS artifacts | | | | with pre-transpl | · · | | | | |----------------------------|---|------------------------------------|---|--|---|---|--| | Author,
year | Type of digital pathology | Number of
patients/
biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of
the study | Results | | Minervini et al., 2001 | Static | 102 | Various case
types, among
which 5 donor
FS liver biopsies | Consultant
telepathology
review | Referring
pathologist
original
diagnosis | Agreement rates, descriptive | 86% agreement
and 14% (only 3%
major) disagreement
between referring and
consultant pathologist | | Li <i>et al</i> .,
2002 | LM plus DIA | 102 | Donor kidney
biopsy | DIA software assessment | None | Glomerular volume
and sclerosis in
different age groups | Glomerular size
and global sclerosis
increase with age | | Benkoel
et al., 2003 | Confocal laser
microscopy
plus DIA | 30 | Donor liver
biopsy,
preimplantation
and
postreperfusion | DIA assessment
of IHC staining
for ICAM-1 | None | Difference in ICAM-1
expression between
preimplantation
and postreperfusion
biopsies | Higher expression of ICAM-1 in sinusoidal endothelial cells in postreperfusion biopsies | | Benkoel
et al., 2003 | Confocal laser
microscopy
plus DIA | 30 | Donor liver
biopsy,
preimplantation
and
postreperfusion | DIA assessment
of IHC staining
for F-actin | None | Difference in F-actin
expression between
preimplantation
and postreperfusion
biopsies | Significantly lower
expression of F-actin
in postreperfusion
biopsies | | Benkoel
et al., 2003 | Confocal laser
microscopy
plus DIA | 30 | Donor liver
biopsy,
preimplantation
and
postreperfusion | DIA assessment
of IHC
staining for
NaK-ATPase | None | Difference in NaK-ATPase expression between preimplantation and postreperfusion biopsies | Significantly
lower expression
of NaK-ATPase
in postreperfusion
biopsies | | Marsman
et al., 2004 | LM plus DIA | 49 | Donor liver
biopsy, FS | DIA software assessment | Pathologist
with glass
slide | Percentage of total
fat, microvesicular
and macrovesicular
steatosis; correlation
with liver function
indices, graft and
patient survival | Significant correlation
between pathologist
and software for
macrovesicular
steatosis and total fat;
significant association
of macrovesicular
steatosis and graft
survival both
when assessed
by pathologist or
software | | Niclauss
et al., 2008 | Static, stereo-
microscope
plus DIA | 12 | Pancreatic islets
preparations | Computerized
by 2 software
and manual
counting on
digital images | Manual
counting at
microscope | Number, islet
equivalents and purity
of islet preparation | Total islet number, equivalents number, and purity were much better correlated between digital manual and computerized analyses than between standard manual and computerized analyses | | Kissler
et al., 2009 | LM plus DIA | 12 | Pancreatic islets
preparations | Computerized
by software on
digital image | Manual
counting on
digital image | Accuracy, intra-
and inter-observer
reproducibility for
both modalities by
means of CV | Digital image
analysis is reliable
for islet counting,
with the advantage of
permanent records and
quality assurance | | Biesterfield et al., 2012 | Static LM,
point grid
counting | 120 | Donor liver
biopsy, cut in
half for FS and
FFPE | Point grid
counting | Conventional
LM | Interobserver
agreement for FS and
FFPE, correlation
between macro- and
micro-vesicular
steatosis | Substantial agreement (κ>0.60) and high correlation (r>0.80) between observers and types of steatosis; no advantage for point grid analysis | | Table 1: C | onta | | | | | | | |------------------------|--|------------------------------------|--|---|---|--|---| | Author,
year | Type of digital pathology | Number of
patients/
biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of
the study | Results | | Native et al., 2013 | LM plus DIA | 9 patients,
54 images | Donor liver
biopsy | Model-based
segmentation
method
algorithm | Expert
pathologists
with LM | Correlation between
pathologists'
assessments and
automated image
analysis-based
evaluations of ld-MaS
percentages | New algorithm proposed significantly improves separation between large and small macrovesicular lipid droplets (specificity 93.7%, sensibility 99.3%) and correlation with pathologists' ld-MaS percentage assessments (r=0.97) | | Gymr et al., 2015 | LM plus DIA | 42 | Pancreatic islets
preparations | Automated by
software on
digital image | Manual
counting at
LM | Correlation of
modalities for
total islet number,
equivalent number,
and purity;
intraobserver
variability | High correlation
between modalities
for total islet and
equivalent number;
high intraobserver
reproducibility for the
use of software | | Wang et al., 2015 | LM plus DIA | 25 patients,
84 samples | Pancreatic islets preparations | Computerized
by software on
digital image | Manual
counting on
digital image | Correlation of
modalities for
total islet number,
equivalent number,
and purity | Significantly high
correlation between
modalities; not
significant difference
for total counts | | Mammas et al., 2015 | Not clearly
defined | 518 images | Donor kidney,
liver and
pancreas | Diagnosis on
digital image
on 4 different
viewing
devices | Diagnosis
of reference
pathologist,
not stated if
with LM or
digital | Accuracy of diagnosis with different viewing devices | The desktop and
the experimental
telemedicine platform
are more reliable than
tablet and mobile
phone devices | | Buchwald et al., 2016 | LM plus DIA | 3 patients,
14 samples | Pancreatic islets
preparations | Computerized
by software on
digital image | Manual
counting at
LM | Correlation of
modalities for
total islet number,
equivalent number,
and purity;
intraobserver
variability | Very good overall
correlation between
modalities;
lower
intraobserver
variability for DIA | | Eccher et al., 2016 | WSI | 62 patients,
124
biopsies | Donor kidney
wedge biopsy | Pathologist
with WSI | Pathologist
with glass
slide | Intra- and
inter-observer
reproducibility with
weighted Cohen k
index | Very high intraobserver agreement (κ =0.961) for WSI and glass slide; slightly lower (κ =0.863) interobserver agreement for WSI than glass slide (κ =0.903) | | Osband et al., 2016 | Virtual
microscope,
not otherwise
specified | 23 kidneys | Donor kidney
wedge biopsy,
FS | Experienced
pathologist
with virtual
microscope | On-site
pathologist | Time to biopsy read | Shorter time to
biopsy read with
virtual microscope;
improved time to local
acceptance but not
cold ischemia time or
DGF rate | | Liapis
et al., 2017 | WSI | 40 | Donor kidney
biopsy | Experienced pathologist with WSI | None | Intraclass correlation
coefficient for various
parameters of score | Modest agreement
among pathologist,
only number of
glomeruli, sclerosed
glomeruli and
interstitial fibrosis with
ICC > 0.5 | | Table 1: Contd | | | | | | | | | | | |----------------------------|---------------------------|-------------------------------------|--|---|--|--|--|--|--|--| | Author,
year | Type of digital pathology | Number of patients/biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of the study | Results | | | | | Cima <i>et al.</i> , 2018 | WSI | 28 | 16 donor kidney
wedge biopsy,
FS
12 donor liver
biopsy, FS | Scoring with
WSI | Scoring with glass slide | Accuracy rate;
intraobserver
concordance with
weighted Cohen k
index; sensibility,
specificity, PPV, NPV | 86% accuracy rate,
high intraobserver
concordance (κ=0.91);
96%, 75%, 96%,
75% sensibility,
specificity, PPV, NPV,
respectively | | | | | Marsh <i>et al.</i> , 2018 | WSI | 17 patients,
48 biopsy
images | Donor kidney
biopsy, FS | Patch-based
model and fully
convolutional
model on WSI | Expert
pathologist
scoring with
WSI | Comparison between
the two models and
with pathologist's
assessment on
WSI in counting
total glomeruli and
sclerosed glomeruli | Fully convolutional
model substantially
outperforming the
model trained on
image patches of
isolated glomeruli, in
terms of both accuracy
and speed | | | | CV: Coefficient of variation, DIA: Digital image analysis, FFPE: Formalin-fixed, paraffin-embedded, FS: Frozen section, LM: Light microscopy, ld-MaS: Large droplet Macrovesicular steatosis, NPV: Negative predictive value, PPV: Positive predictive value, WSI: Whole slide imaging, ICAM-1: Intercellular adhesion molecule-1, DGF: Delayed graft function, IHC: Immunohistochemistry, ICC: Islet cell counter and adding value to the time-sensitive demand of donor biopsy evaluation. Their study is the first to specifically address glomerular recognition and classification in the FS preimplantation biopsy.^[16] The Banff group analyzed reproducibility among pathologists using WSI slides in a population of 40 donor kidney biopsies, with a different proportion of core versus wedge biopsies and FS versus paraffin technique. They reported overall good-to-excellent reproducibility for counting the total number of glomeruli, for assessing the percentage of sclerosed glomeruli and number of sclerosed glomeruli and interstitial fibrosis; however, the interobserver concordance was fair to poor in the assessment of other parameters.^[25] Osband *et al.* compared the time-to-donor kidney biopsy result between virtual microscopy and standard LM in practice and demonstrated a significant reduction in time-to-biopsy result using digital microscopy.^[24] Mammas *et al.* compared the accuracy rate for the diagnosis of kidney, liver, and pancreas biopsies with a pathologist reading a digital slide on different devices, and they demonstrated that mobile phones and tablets to be less reliable than desktop viewing.^[23] Finally, Benkoël *et al.* examined the expression of different IHC markers in a subset of paired preimplantation and postreperfusion liver biopsies, using DIA of confocal laser scanning microscope images, without comparison to conventional LM IHC.^[14,19,20] #### Digital pathology in post-transplantation Among the 75 retrieved studies on posttransplant biopsies, 10 (13.5%) were concerned with liver biopsy, 16 (21.6%) with the heart and lung, and 47 (63.5%) kidney. #### Liver graft biopsy The studies concerning posttransplant liver graft biopsies are summarized in Table 2. Two studies^[4,32] described the agreement with digital static pathology diagnosis and reported high concordance rates. Two more recent studies explored the reliability of WSI slides when compared to LM or reference diagnosis. [33,34] In the study by Neil et al., pathologists at several centers scored C4d antibody expression in liver biopsy tissue microarrays using WSI and LM. Interobserver agreement was variable with WSI when considering the different compartments of staining in a liver biopsy; in particular, concordance was good for the assessment of portal vein, central vein, and portal capillary compartments ($\kappa = 0.60-0.80$) and fair in the evaluation of sinusoidal and hepatic artery endothelium compartments ($\kappa = 0.30-0.40$). There was substantial agreement between pathologists with WSI and glass slides although κ indexes were not reported. [33] In the study of Saco et al., where WSI and LM were compared, the authors reported excellent intra- and inter-observer agreement ($\kappa = 0.80-0.90$) between modalities. Moreover, the authors highlighted the advantage of using WSI for viewing multiple slides, which is important because, in liver graft pathology, several stains are often used.^[34] Other studies regarding liver biopsy focused on the correlation with clinical parameters and predictive value on organ outcome for several features assessed by DIA software, such as fibrosis determined as collagen proportionate area (CPA) with Sirius red stain, [35-38] ductular reaction assessed with CK7 staining, [39] nuclear size, and IHC markers of oxidative damage.[40] In particular, CPA assessed as a continuous measure with DIA is reported to be a better predictor of graft outcome than Ishak stage assessed on conventional LM.[35-38] Ductular reaction area assessed with DIA software is reported to correlate with hepatic progenitor cell number assessed by manual counting and to be associated with hepatitis C virus (HCV) recurrence. [39] Nuclear size and anisonucleosis quantified with DIA software were not associated with any clinical parameters, except diabetes and the presence of a marker of oxidative damage. [40] Two older studies investigated the presence and role of overall inflammatory cells^[41] and mast cells^[42] for acute and chronic | Author,
year | Type of digital pathology | Number of
patients/
biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of study | Results | |--------------------------------|---------------------------|--|---|---|--|---|--| | Ito <i>et al.</i> ,
1994 | Static | 22 | Graft liver and kidney biopsy | Telepathology
diagnosis | Direct LM
diagnosis | Descriptive results | Agreement in 10/12
kidney biopsies and in
9/10 liver biopsies | | Ben-Hari
et al.,
1995 | LM plus DIA | 55 (92 biopsies) | Graft liver biopsy | DIA assessment of
eosinophil count,
cell density and
cross-sectional
area in portal tract | None | Descriptive
correlation of
parameters with
different degrees of
rejection | Positive correlation of all parameters with severity of rejection | | Minervini et al.,
2001 | Static | 102, among
which 9 liver
graft and 9
kidney graft
biopsies | Various case types:
Second opinion
consultation,
transplantation
pathology, general
surgical pathology | Consultant
telepathology
review | Referring
pathologist original
diagnosis | Agreement rates, descriptive | 86% agreement and
14% (only 3% major)
disagreement between
referring and consultant
pathologist | | El-Refaie
et al.,
2005 | LM plus DIA | 267 (343 biopsies) | Graft liver biopsy | DIA software
quantification of
mast cells and IHC
staining | None | Correlation of
mast cell count and
IHC staining with
different degrees of
rejection | Strong correlation of mast
cells with acute rejection
and of IHC staining for
c-Kit with severity of
rejection | | Calvaruso <i>et al.</i> , 2008 | LM plus DIA | 115 (225
biopsies) | Graft liver biopsy | DIA
software
quantification
of collagen
proportionate area | None | | Collagen proportionate
area assessed by DIA
correlated with Ishak
stage scores and portal
hypertension | | Guzman
et al.,
2010 | LM plus DIA | 19 (33 biopsies) | Graft liver biopsy | Anisonucleosis
and oxidative
damage scored by
DIA | None | Descriptive
correlation of
anisonucleosis with
different clinical
parameters | Higher anisonucleosis in
individuals with diabetes
and with high expression
of oxidative damage
marker | | Manousou <i>et al.</i> , 2011 | LM plus DIA | 135 | Graft liver biopsy | Computer-assisted
DIA quantification
of collagen
proportionate area | None | Descriptive correlation between DIA measurements, Ishak score, and decompensation | Collagen proportionate
area assessed by DIA
correlated with Ishak
stage scores and
decompensation | | Calvaruso et al.,
2012 | LM plus DIA | 65 | Graft liver biopsy | Computer-assisted
DIA quantification
of collagen
proportionate area | None | Descriptive
correlation between
DIA measurements,
portal hypertension
and graft outcome | Collagen proportionate
area assessed by DIA
correlated with portal
hypertension and
decompensation | | Manousou et al.,
2013 | LM plus DIA | 155 (587
biopsies) | Graft liver biopsy | Computer-assisted
DIA quantification
of collagen
proportionate
area and rate of
increase | None | Descriptive
correlation of DIA
measurements and
Ishak score with
portal hypertension
and graft outcome | Progression rate of
fibrosis is a better
predictor of clinical
outcome than progression
by Ishak stage | | Sclair et al., 2016 | LM plus DIA | 60 | Graft liver biopsy | DIA software
assessment of
ductular reaction
in HCV recurrent
recipients with
cirrhosis | DIA software
assessment of
ductular reaction
in stable recurrent
HCV recipients
with no cirrhosis or
fibrosing hepatitis | Descriptive difference among the groups | Significantly higher ductular reaction in recipients with cirrhosis | | Neil <i>et al.</i> ,
2017 | WSI | 40 | TMAs of graft
and native liver,
kidney, heart | Pathologists
scoring C4d with
WSI | Pathologists
scoring C4d with
LM | Descriptive surveys
of pathologists
and comparison of
staining methods | Strong and diffuse portal vein and capillary C4d staining, determined by both local and central pathologists, distinguished acute antibody-mediated rejection from native livers | | Table 2: | Table 2: Contd | | | | | | | | | | | |-------------------------|---------------------------|-----------------------------|--------------------|-------------------------|-------------------------|---|--|--|--|--|--| | Author,
year | Type of digital pathology | Number of patients/biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of
study | Results | | | | | | Saco
et al.,
2017 | WSI | 64 | Graft liver biopsy | Pathologist with
WSI | Pathologist with
LM | Intra- and
inter-observer
agreement | Almost perfect
intraobserver concordance
between modalities; high
interobserver concordance
for WSI (κ=0.80) | | | | | DIA: Digital image analysis, HCV: Hepatitis C virus, IHC: Immunohistochemistry, LM: Light microscopy, TMAs: Tissue microarrays, WSI: Whole-slide imaging rejection, with quantification of cellular infiltrates or specific subtypes of mast cells with DIA software in digital images; they showed that the number of inflammatory cells assessed by DIA was able to separate mild from severe rejection^[41] and that mast cell density both with tryptase and c-Kit staining correlated with the severity of acute and chronic rejection.^[42] #### Heart and lung graft biopsy The studies concerning posttransplant heart and lung graft biopsies are summarized in Table 3. Of papers concerning heart and lung graft biopsy, 2/16 (12.5%) dealt with agreement and reproducibility between digital slides and LM. The oldest study by Marchevsky *et al.* reported concordance rates of 96% and 82.8% with Cohen's κ coefficients of 0.92 and 0.692 for lung and heart biopsy, respectively. Using static digital pathology, images were acquired with a camera attached to a microscope, remotely diagnosed by a pathologist, and then compared to a reference diagnosis. A more recent study by Angelini *et al.* reported fair interobserver concordance among pathologists ($\kappa = 0.20-0.40$) when assessing a set of 20 endomyocardial biopsies (EMBs). The interobserver agreement increased when pathologists were stratified according to their expertise in heart transplant pathology. [44] Most of the studies (9/16, 56.3%) dealt with graft rejection and quantification of parameters that aid in grading the severity of rejection or help elucidate potential pathogenetic mechanisms. Features quantified with DIA software included myocyte diameter, [45] fibrosis with Masson's trichrome stain, [45,46] microvasculature density with CD31^[46] or CD34, ^[47] patterns of inflammatory and immunological cells, [48] monocytes and macrophage profiles, [49] expression of Sirt1, CD8, and FoxP3 on lymphocytes in rejection specimens, [50] and chromatin remodeling expressed as mean gray level.^[51] In some publications, digital images were converted in formats adequate for fractal analysis to quantify the inflammatory infiltrate and signs of myocyte damage; it was shown that this kind of DIA can discriminate among different grades of rejection. [52,53] Other parameters assessed on graft biopsy with DIA software on LM images (nuclear parameters of cardiomyocytes^[54] or fibrosis with Azan-Mallory stain and microvascular remodeling with IHC staining^[55]) were relevant for recipient outcome of different immunosuppressive treatments. Overall, the quantitative assessment of EMBs by means of DIA provided more information than routine, semi-quantitative investigation, even if the application of DIA software required a more reproducible staining quality among slides and a better than routine quality of histological slides.^[54] Image analysis was also used to quantify macrophages and T-lymphocytes in autopsy specimens of coronary vessels of transplanted heart recipients to compare several vascular remodeling features. [56] Finally, only two studies concerned lung biopsies and both explored the correlation of basement membrane thickness measured with DIA software with the development of bronchiolitis obliterans in recipients. They found that increased thickness of the basement membrane can be transient and not correlated to respiratory function decline.[57,58] For the majority of the aforementioned studies, DIA was carried out on static digital images acquired with an LM. Only three out of 14 studies where DIA was employed used WSI technology. This is not surprising given that WSI adoption was only adopted more recently. #### Kidney graft biopsy The studies concerning posttransplant kidney graft biopsies are summarized in Table 4. Articles concerning the posttransplantation kidney biopsy were the most numerous (47/75, 62.7%) and dealt with various topics. Apart from the studies by Minervini et al.[4] and Ito et al.[32] that also included kidney biopsies, nine out of 47 studies (19.1%) addressed agreements between LM and digital slide assessment for several parameters. [59-67] Ito et al. used a static telepathology system and only evaluated the concordance rate, [59] while more recent studies used WSI and achieved good or substantial $(\kappa > 0.40 \text{ and } \kappa > 0.60)$ intra- and inter-observer agreements, concluding that WSI is as reliable as LM for graft biopsy evaluation. [64,65] Older studies used LM plus DIA software for the quantification of fibrosis, inflammation, and glomerular sclerosis, reporting that DIA assessment had good correlation with manual evaluation, but that it had higher correlation with graft outcome. [60-62] More recent studies combining WSI with DIA for the quantification of C4d IHC, [63] fibrosis with PAS staining and collagen IHC, [66] and CD3 for acute rejection[67] showed that digital evaluation had better correlation with organ function and higher reproducibility than LM assessment. [63,66,67] Most of the studies on graft kidney biopsy use DIA techniques to explore the role of several biopsy features ranging from fibrosis evaluated with special stains to the expression and quantification of specific IHC markers in determining organ outcome, [68-83] as well as signs of acute rejection. [84-93] In all of | Author,
year | Type of
digital
pathology | Number of patients/biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of the study | Results | |-----------------------------|---------------------------------|-----------------------------|---|--|--|---|--| | Armstrong et al., 1998 | LM plus
DIA | 101 | EMBs | DIA software
assessment of
fibrosis and
myocyte diameter
in recipients | DIA software
assessment of
fibrosis and
myocyte diameter
in controls | Descriptive differences between the groups | Larger myocyte
diameter in
transplanted hearts;
fibrosis higher in the
first posttransplant
EMBs | | Marchevsky et al., 2002 | Static LM |
108 | Graft lung
and heart
biopsy | Telepathology
diagnosis | Previous LM diagnoses | Agreement rates, descriptive | 96% agreement,
κ =0.92, for lung
biopsies, 82.8%
agreement, κ =0.692,
for EMBs | | Law et al.,
2005 | LM plus
DIA | 25 | Graft lung
biopsy | DIA software
quantification
of basement
membrane
thickness | None | Correlation of
basement membrane
thickness with the
development of
bronchiolitis obliterans
syndrome | Strong negative
correlation of basement
membrane thickness
versus time | | Ward et al.,
2005 | LM plus
DIA | 30 (21 biopsies) | Graft lung
biopsy | DIA software
assessment
of basement
membrane
thickening | Published data
on basement
membrane
thickening
in other lung
diseases | Descriptive results
in lung recipients
and correlation with
respiratory function
parameters | Higher basement
membrane thickening
compared to published
data in other
lung diseases; no
correlation with lung
function | | Sorrentino et al., 2006 | LM plus
DIA | 21 (361 biopsies) | EMBs | DIA of IHC
staining | None | Descriptive | Role of IHC assessment in grading rejection | | Zakliczynski et al., 2006 | LM plus
DIA | 43 (129 biopsies) | EMBs | Automated
software
quantification of
nuclei | None | Descriptive | Role of chromatin
distribution in nuclei
to assess severity of
rejection | | Nozynski
et al., 2007 | LM plus
DIA | 31 | EMBs | Use of ATG | Standard
treatment | Descriptive differences
in quantitative
assessment of nuclear
parameters with
automated software in
the groups | Nuclear parameters of
rejection lower in the
ATG group | | Angelini
et al., 2011 | WSI | 20 | EMB | 18 pathologists
reading WSI
slides | Index diagnosis
of referent
pathologist | Interobserver
reproducibility and
agreement with
reference | Fair-to-moderate reproducibility (κ =0.39, α =0.55); role of expertise for agreement with reference diagnosis | | Moreira et al., 2011 | LM plus
DIA | Not stated,
658 images | EMBs | Fractal dimension by DIA software | None | Descriptive relation
between fractal
dimension and degrees
of rejection | Fractal dimension can
discriminate between
degrees of rejection | | Revelo
et al., 2012 | WSI plus
DIA | 22 | EMBs | Microvessel
density in
recipients with
AMR | Microvessel
density in
recipients without
AMR | Descriptive | Significantly reduced
microvessel density in a
subset of patients with
pathologic AMR with
worse outcome | | Devitt <i>et al.</i> , 2013 | LM plus
DIA | 34 | Transplanted
hearts in
deceased
recipients | Measurement on acquired images | None | Descriptive | Consideration of
donor-derived
accelerated
atherosclerosis in heart
recipients | | Pijet <i>et al.</i> , 2014 | LM plus
DIA | 40 | EMBs | Fractal parameters assessment with DIA software | None | Descriptive differences
between grades of
rejection | Some digital parameters can aid grading of rejection | | Table 3: Co | ntd | | | | | | | |----------------------------------|--|-----------------------------|-----------------|---|---------------------------------------|---|--| | Author,
year | Type of
digital
pathology | Number of patients/biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of the study | Results | | Tona et al.,
2014 | LM plus
DIA | 28 | EMBs | Everolimus | Mycophenolate
mofetil | Difference in fibrosis,
microvascular
remodeling, and
arteriolar thickening | Capillary density and
fibrosis comparable
between groups,
arteriolar thickening
lower in the everolimus
group | | Welsh et al.,
2016 | LM plus
DIA | 13 | EMBs | DIA software
assessment of
IHC staining | None | Evaluation of Sirt-1 expression in acute cellular rejection | Increased expression of
Sirt-1 in lymphocytes
in acute cellular
rejection | | Feingold et al., 2017 | WSI plus
DIA | 9 | EMB with
LGD | EMBs with WSI | 9 matched
control EMBs
with WSI | Automated
quantification
of fibrosis and
microvascular changes | Greater fibrosis and
microvascular changes
in LGD cases | | Van den
Bosch et al.,
2017 | WSI plus
DIA plus
confocal
microscopy | 25 (50
EMBs) | EMBs | EMBs at time of rejection | EMBs at no rejection time | Difference in
monocyte and
macrophage
infiltration and degree
of fibrosis | CD16+monocyte, M2
macrophage infiltration,
and higher fibrosis
are associated with
rejection | ATG: Anti-thymocyte globulin, DIA: Digital image analysis, EMBs: Endomyocardial biopsies, IHC: Immunohistochemistry, LGD: Late graft dysfunction, LM: Light microscopy, WSI: Whole-slide imaging, AMR: Antibody-mediated rejection these studies, there is no direct comparison of DIA evaluation with manual pathologist results. Moreover, most of these are retrospective or case-control observational studies. The most studied parameter was interstitial fibrosis, with the correlation of DIA quantitative assessment to organ outcome being the main focus of these studies. Interstitial fibrosis was highlighted with special stains or with IHC, and some studies included comparison with other techniques such as spectroscopy^[74] or Doppler ultrasound for renal resistance index.^[81] Even though organ outcome was assessed slightly differently, most of these studies reinforced the idea that precise and automated quantification of this parameter by DIA technique can add value to biopsy evaluation, providing more reproducible results and permitting comparisons to be made with findings from other researchers. Similarly, studies about rejection mostly compared the IHC expression of several inflammatory markers and immune system cellular infiltration evaluated with DIA software in rejection biopsies and normal control biopsies. The remaining studies on posttransplantation kidney biopsy explored other features that correlated with ischemic injury, [94] levels of glomerular sclerosis, [95] fibrosis in grafts from after-brain-death donor or cardiac-death donor, [96] IHC markers to quantify interstitial fibrosis, [97-99] correlation with Banff score parameters^[100] and more subtle features such as swollen glomerular epithelial cells.[101] Finally, three studies from the same research group compared fibrosis, assessed with special stains or IHC, and quantified by DIA software, in patients receiving cyclosporine or tacrolimus. [102-104] ## Two main research themes: concordance and correlation to outcome As already mentioned, the main issues addressed overall were the concordance between standard LM or manual assessment and WSI or DIA instruments and the correlation of histological features assessed by DIA methods with the outcome. The first topic was the most frequent in pretransplant papers. Intra- and inter-observer concordance with κ index was high when comparing WSI with LM, [15,26] thus reinforcing the point that digital diagnosis could replace conventional glass-slide diagnosis. The group of studies concerning pancreatic islet counting,[27-31] even with slightly different statistical measures, however, pointed toward the same direction, stating that DIA assessment is highly correlated to manual standard assessment and had the advantage of lesser interoperator variability. This remained true also in posttransplant papers addressing the same topic, even if less numerous.[33,34,44,63-67] In particular, more recent studies combining DIA with WSI concluded that DIA assessment of features has not only higher reproducibility than LM but also a better correlation to graft outcome, thus embracing with the second more frequent topic encountered through papers. This applies particularly to liver and kidney graft pathology, where a quota of papers compared DIA to manual assessment of features on LM-digitized images and correlated to outcome. With different grade of strength, they all suggested a better correlation to outcome and the advantage of a higher reproducibility. However, the vast majority of these studies were retrospective, both in the case of only concordance/reproducibility studies and of correlation-to-outcome studies, with the use of archival cases where the reference diagnosis was made previously with LM and sometimes with partly overlapping case populations. [35-38] Even if a quality assessment of studies was beyond the aims of this work, it is noticeable that only few studies were multicentric with the involvement of pathologists not working together, thus minimizing possible bias.[33,44,66] Moreover, | Author,
year | Type of digital | Number of patients/ | Type of
biopsy | Intervention | Controls or comparisons | Outcomes/Aim of the study | Results | |--|------------------------|----------------------------|--|---|--|---|--| | Ito <i>et al.</i> , 1994 | Pathology Static LM | biopsies
22 | Graft liver
and
kidney
biopsy | Telepathology diagnosis | Direct LM
diagnosis | Descriptive results | Agreement in 10/12 kidney biopsies and in 9/10 liver biopsies | | Gandaliano et al., 1997 | LM plus
DIA | 20 | Graft kidney
biopsy | DIA assessment
of IHC staining
for CD68 and
MCP-1 in acute
rejection biopsies | DIA assessment of
IHC staining for
CD68 and MCP-1
in tubular damage
and control biopsies | Descriptive
differences in
expression between
groups and correlation
with graft outcome | MCP-1 expression
significantly higher in acute
rejection biopsies | | Grimm <i>et al.</i> , 1999 | LM plus
DIA | 32 | Graft kidney
biopsy | DIA assessment
of IHC staining of
cellular infiltrate
in clinical and
subclinical
rejection biopsies | DIA assessment
of IHC staining of
cellular infiltrate in
normal controls | Descriptive
differences in IHC
staining among the
groups | Significantly higher
infiltration of CD8 and
CD68 positive cells in
clinical rejection | | Nicholson et al., 1999 | LM plus
DIA | 52 | Graft kidney
biopsy | Semiautomatic
DIA assessment
of interstitial
fibrosis with IHC | None | Descriptive correlation of interstitial fibrosis with graft outcome | Positive correlation of interstitial fibrosis as stained area with eGFR | | Bonsib et al., 2000 | LM plus
DIA | 14 (42 biopsies) | Graft kidney
biopsy | Tubular
membrane breaks
with methenamine
silver assessed on
digital images | None | Descriptive correlation with clinical parameters | Correlation of tubular
membrane breaks with
creatinine level | | Furukuwa et al., 2001 | LM plus
DIA | 21 | Graft kidney
biopsy | DIA software
assessment of
interstitial fibrosis | None | Descriptive
correlation of degree
of interstitial fibrosis
with graft outcome | Usefulness of the
computerized imaging
diagnosis for quantitative
evaluation of interstitial
fibrosis in predicting graft
failure | | Ishimura et al., 2001 | LM plus
DIA | 21 | Graft kidney
biopsy | DIA software
assessment of
interstitial fibrosis | None | Descriptive
correlation between
interstitial fibrosis
and TGF=beta IHC
staining | Strong association between
extracellular TGF beta
expression and long-term
decline in graft function and
increased interstitial fibrosis | | Ito <i>et al.</i> , 2001
Minervini <i>et al.</i> , 2001 | Static LM
Static LM | 31 (37
biopsies)
102 | Graft kidney
biopsy
Various
case types,
among
which 9
kidney graft
biopsies | Telepathology
diagnosis
Consultant
telepathology
review | Direct LM
diagnosis
Referring
pathologist original
diagnosis | Descriptive results Agreement rates, descriptive | Agreement on diagnosis in 30/37 cases 86% agreement and 14% (only 3% major) disagreement between referring and consultant pathologist | | Danilewicz et al., 2003 | LM plus
DIA | 34 | Graft kidney
biopsy | DIA assessment of
IHC staining and
glomerular area
in biopsies with
acute rejection | DIA assessment of
IHC staining and
glomerular area in
normal controls | Descriptive
differences in IHC
staining between the
two groups | Significantly higher cellular infiltrate, glomerular area and interstitial area in acute rejection biopsies | | Encarnacion et al., 2003 | LM plus
DIA | 49 | Graft kidney
biopsy | Different
computerized
strategies of DIA | Expert pathologist with LM | Correlation of
tubulointerstitial
fibrosis with graft
function | Different degree of
correlation with graft
function of tubulointerstitial
fibrosis scored with
different strategies | | Grimm <i>et al.</i> , 2003 | LM plus
DIA | NA | Graft kidney
biopsy | Automated
DIA software
assessment of
interstitial fibrosis | None | Correlation of interstitial fibrosis with graft outcome | Cortical fractional interstitial fibrosis volume can be a surrogate for time to graft failure | | Mui et al.,
2003 | LM plus
DIA | 30 | Graft kidney
biopsy | DIA assessment
of IHC staining in
ischemic injury | DIA assessment
of IHC staining in
normal controls | Descriptive | Different pattern of expression of markers in ischemic injury biopsies | | Table 4: C | <u> </u> | | - , | | | 0.1. /5: / | D 11 | |-------------------------------------|---------------------------------|------------------------------------|------------------------|---|---|---|--| | Author,
year | Type of
digital
pathology | Number of
patients/
biopsies | Type of
biopsy | Intervention | Controls or comparisons | Outcomes/Aim of
the study | Results | | Pape <i>et al.</i> , 2003 | LM plus
DIA | 56 | Graft kidney
biopsy | DIA assessment
of interstitial
fibrosis | None | Correlation of interstitial fibrosis with graft outcome | Quantitative measurement
of fibrosis by picrosirius
red staining is a prognostic
indicator for estimating
long-term graft function | | Sugiyama et al., 2003 | LM plus
DIA | 25 | Graft kidney
biopsy | DIA assessment
of mean
glomerular area
and interstitial
area | None | Descriptive
differences
in recipients
with or without
focal segmental
glomerulosclerosis | No significant difference in
mean glomerular area nor
interstitial area between the
two groups | | Bains et al.,
2004 | LM plus
DIA | 112 | Graft kidney
biopsy | DIA software
assessment of
fibrosis in DCD
and DBD graft
biopsies | None | Difference of fibrosis in the two groups | No significant differences in level of fibrosis | | Danilewicz et al., 2004 | LM plus
DIA | 35 | Graft kidney
biopsy | DIA
quantification of
mast cells and
leukocytes with
IHC staining in
acute rejection
biopsies | DIA quantification
of mast cells and
leukocytes with
IHC staining in
normal controls | Descriptive
differences between
the groups | Significantly higher number
of mast cells and leukocytes
in acute rejection; positive
correlation between
inflammatory infiltrate and
interstitial area | | Pape <i>et al.</i> , 2004 | LM plus
DIA | 56 | Graft kidney
biopsy | Renal resistance
index with
Doppler | Interstitial fibrosis
assessment with
DIA | Correlation between
the two measurements
and with graft
outcome | Positive correlation
between the two measures
and of the combination
of the two with graft
outcome | | Sarioglu et al., 2004 | LM plus
DIA | 15 | Graft kidney
biopsy | Automated quantification of stained area | None | Descriptive | Strong correlation between stained area and serum creatinine (r=0.64) | | Sund <i>et al.</i> , 2004 | LM plus
DIA | 33 | Graft kidney
biopsy | DIA automated quantification | Pathologist with
LM | Descriptive | Significant correlation between the two modalities and with graft outcome | | Nishi <i>et al.</i> , 2005 | LM plus
DIA | 14 | Graft kidney
biopsy | DIA software
assessment of
the peritubular
capillary network
in recipients with
rejection | DIA software
assessment of
the peritubular
capillary network in
recipients without
rejection | Descriptive | Significant differences in
surface areas of tubulin
and glomerular diameter
between the groups | | Sis <i>et al.</i> , 2005 | LM plus
DIA | 57 (75
biopsies) | Graft kidney
biopsy | DIA software
assessment of
stained area | None | Descriptive
correlation among
stained areas for
fibrosis, Banff scores
and rejection | No significant association
between serum creatinine
at time of biopsy and
percentage of stained areas
for fibrosis; no predictive
value for rejection | | Danilewicz et al., 2006 | LM plus
DIA | 33 | Graft kidney
biopsy | DIA of IHC
staining in
acute rejection
recipients | DIA of IHC
staining in
recipients with no
rejection | Differences in IHC staining in the two groups | Higher expression of TGF
beta, CD3, CD8 in acute
rejection | | Hoffman et al., 2006 | LM plus
DIA | 138 | Graft kidney biopsy | DIA of IHC staining | None | Descriptive expression of CXCR3 | Higher expression of CXCR3 in acute rejection | | Lauronen et al., 2006 | LM plus
DIA | 35 | Graft kidney
biopsy | DIA software scoring | Pathologist with
LM | Descriptive | No significant difference in scoring between the modalities | | Roos-van-
Groningen et al., 2006 | LM plus
DIA | 54 (108 biopsies) | Graft kidney
biopsy | Cyclosporine | Tacrolimus | Fibrosis and IHC
staining assessed
by automated DIA
software | No quantitative differences
in fibrosis and IHC staining
between cyclosporine and
tacrolimus | | Table 4: C | ontd | | | | | | | |----------------------------|---------------------------------|-----------------------------|------------------------|--|--------------------------|--|---| | Author,
year | Type of
digital
pathology | Number of patients/biopsies | Type of
biopsy | Intervention | Controls or comparisons | Outcomes/Aim of the study | Results | | Rowshani
et al., 2006 | LM plus
DIA | 126 | Graft kidney
biopsy | Cyclosporine | Tacrolimus | Fibrosis with Sirius
red assessed by
automated DIA
software | No difference in the degree
of interstitial stained area
between the two treatment
groups | | Sarioglu et al., 2006 | LM plus
DIA | 37 (44 biopsies) | Graft kidney
biopsy | DIA assessment
of periodic acid
methenamine
silver staining | None | Descriptive relation of
stained area to Banff
scores and creatinine
values | Strong association of
stained area with increased
interstitial fibrosis and
tubular atrophy Banff
scores | | Scholten et al., 2006 | LM plus
DIA | 126 | Graft kidney
biopsy | Cyclosporine | Tacrolimus | Subacute rejection
assessed by
pathologist and
automated fibrosis
quantification | No quantitative
differences in fibrosis
between cyclosporine
and tacrolimus; higher
prevalence of subacute
rejection in the cyclosporine
group but no difference in
graft survival | | Servais
et al., 2007 | LM plus
DIA | 26 | Graft kidney
biopsy | DIA automated
quantification of
interstitial fibrosis
in recipients
treated with
cyclosporine | None | Descriptive
correlation of
interstitial fibrosis
with graft outcome | Correlation of higher grade
of automated interstitial
fibrosis with a higher
creatinine | | Servais
et al., 2007 | LM plus
DIA | 26 | Graft kidney
biopsy | DIA automated
quantification of
interstitial fibrosis
in recipients
treated with
cyclosporine | None | Descriptive
correlation of
interstitial fibrosis
with graft outcome | Association between
high grade of automated
interstitial fibrosis and
worsening of creatinine
clearance | | Birk <i>et al.</i> , 2010 | LM plus
DIA | 29 (105 biopsies) | Graft kidney biopsy | DIA software
quantification of
interstitial fibrosis | None | Descriptive correlation of interstitial fibrosis and graft outcome | Significant correlation of interstitial fibrosis assessed by DIA software with graft outcome | | Yan et al.,
2010 | LM plus
DIA | 46 | Graft kidney
biopsy | DIA
quantification of
IHC staining | None | Correlation of IHC
staining with Banff
score for interstitial
fibrosis and tubular
atrophy | Higher IHC staining
expression in higher Banff
score classes for interstitial
fibrosis and tubular atrophy | | Brazdziute et al., 2011 | WSI plus
DIA | 32 (34 biopsies) | Graft kidney
biopsy | Automated software on WSI | Pathologist on LM | Correlation and
interobserver
variability in C4d
scoring | Good-to-high correlation
between pathologist and
automated software;
good manual-automated
interobserver agreement | | Meas-Yedid et al., 2011 | WSI plus
DIA | 90 biopsies | Graft kidney
biopsy | Automated software on WSI | Expert pathologist on LM | Correlation and interobserver variability in interstitial fibrosis scoring | Good agreement between the two methods (κ =0.75) | | Miura <i>et al.</i> , 2011 | LM plus
DIA | 109 | Graft kidney
biopsy | DIA software
assessment of
interstitial fibrosis | None | Correlation of interstitial fibrosis different tacrolimus regimens and cytochrome polymorphism | Higher increase in interstitial fibrosis in absence of cytochrome polymorphism | | Servais et al., 2011 | LM plus
DIA | 140 | Graft kidney
biopsy | Automated
DIA software
assessment of
interstitial fibrosis | None | Correlation of interstitial fibrosis with graft outcome | Correlation between interstitial fibrosis at different time points and eGFR | | Table 4: C | ontd | | | | | | | |-----------------------------|---|-----------------------------|---|---|---|--|---| | Author,
year | Type of
digital
pathology | Number of patients/biopsies | Type of biopsy | Intervention | Controls or comparisons | Outcomes/Aim of
the study | Results | | Becker
et al., 2012 | LM plus
DIA | 40 | Graft kidney
biopsy | IHC staining in
cellular infiltrate
of clinical,
operational
tolerance
recipients | IHC staining in
cellular infiltrate of
rejection recipients | Descriptive
expression of
IHC staining in
inflammatory infiltrate | Different IHC staining in the two groups | | Ozluk <i>et al.</i> , 2012 | WSI | 40 | Graft kidney
biopsy | Pathologists with WSI | Pathologists with LM | Intra- and
inter-observer
reproducibility | Comparable intraobserver
reproducibility for
both modalities;
higher interobserver
reproducibility with WSI | | Yan et al.,
2012 | LM plus
DIA | 28 | Graft kidney
biopsy | DIA software
quantification
of IHC staining
of GSK3 beta at
different levels of
inflammation | None | Descriptive
correlation between
GSK3 beta staining
and inflammation | Stronger GSK3 beta
expression with increasing
grade of inflammation or
interstitial fibrosis/tubular
atrophy | | Yan et al.,
2012 | LM plus
DIA | 61 | Graft kidney
biopsy | DIA software
quantification of
IHC staining in
recipients with
AMR | DIA software
quantification of
IHC staining in
recipients without
AMR | Descriptive
relationship of
IHC staining of
extracellular matrix
cytokines with
interstitial fibrosis and
creatinine | Higher expression in grafts with AMR; increasing expression with higher Banff scores of interstitial fibrosis and positive correlation with creatinine | | Caplin et al., 2013 | LM plus
DIA | 246 | Graft kidney
biopsy | Serial
posttransplant
biopsies | No serial biopsies | Descriptive
correlation of index of
chronic damage with
graft function | No significant differences
between the two groups;
index of chronic damage
not predictive of graft
function | | Jen et al.,
2013 | WSI | 25 | Graft kidney
biopsy | Expert pathologists with WSI | Expert pathologist with LM | Intra- and inter-observer concordance | Substantial intraobserver concordance between modalities (κ =0.60), moderate interobserver concordance (κ =0.41-0.45) | | Farris <i>et al.</i> , 2014 | WSI plus
DIA | 30 | Graft kidney
biopsies | Pathologists
scoring interstitial
fibrosis on WSI
slides with
different stains | Computerized DIA of collagen IHC staining | Interobserver
reproducibility and
correlation of visual
assessment on WSI
with DIA assessment
and with graft
outcome | Poor reproducibility
between pathologists;
moderate correlation
of visual assessment
with DIA assessment of
collagen-IHC; moderate
correlation with graft
outcome with no significant
differences between the
modalities | | Vuiblet et al., 2015 | LM plus
DIA plus
spectroscopy
(FTIR) | 106 (166
biopsies) | Graft kidney
biopsy | Spectroscopy | Pathologist with
LM and DIA | Quantification of interstitial fibrosis and inflammation | Poor agreement between
scoring LM versus DIA
and LM versus FTIR, good
agreement in percentages
between DIA and FTIR; good
correlation between fibrosis
with FTIR and graft function | | Hara et al.,
2016 | LM plus
DIA | 934 | Graft and
native
kidney
biopsy | 426 graft biopsy | 508 native kidney biopsy | Quantification of GSECs | Prevalence of GSECs
slightly increased with
posttransplant duration but
not statistically significant | | Yan et al.,
2016 | LM plus
DIA | 50 | Graft kidney
biopsy | DIA software
assessment of
IHC staining in
graft with chronic
dysfunction | DIA software
assessment of IHC
staining in graft
with no dysfunction | Difference in markers
expression and
correlation with Banff'
scores for interstitial
fibrosis/tubular atrophy | Higher expression in grafts with dysfunction; positive correlation between marker expression and Banff scores | | Table 4: Co | Table 4: Contd | | | | | | | | | | | |----------------------|---------------------------------|-----------------------------|------------------------|--|--|---|--|--|--|--|--| | Author,
year | Type of
digital
pathology | Number of patients/biopsies | Type of
biopsy | Intervention | Controls or comparisons | Outcomes/Aim of the study | Results | | | | | | Bräsens et al., 2017 | WSI plus
DIA | 67 | Graft kidney
biopsy | Automated software on WSI | None | Correlation of
different cellular types
digitally quantified
with graft function | Predictive value of digitally
quantified CD68 cell
density for graft function | | | | | | Moon et al., 2017 | WSI plus
DIA | 45 | Graft kidney
biopsy | DIA automated
software
assessment
of interstitial
inflammation
with different
algorithms | Visual assessment
of interstitial
inflammation | Descriptive correlation among the modalities |
Quantitation algorithms
correlated between each
other and also with visual
assessment | | | | | AMR: Antibody-mediated rejection, DBD: Donor after brain death, DCD: Donor after cardiac death, DIA: Digital image analysis, eGFR: Estimated glomerular filtration rate, FTIR: Fourier-transformed infrared spectroscopy, GSECs: Granular swollen epithelial cells, IHC: Immunohistochemistry, LM: Light microscopy, WSI: Whole-slide imaging, MCP-1: Monocyte chemotactic peptide-1, TGF: Transforming growth factor in the majority of studies, digital pathology pertained only to the research field, especially in case of assessment of histological features or particular IHC marker expression, but also for concordance studies, where the value of digital pathology is explored in view of a possible future clinical full implementation. #### CONCLUSION AND FUTURE DIRECTIONS The aim of this review was to provide a broad overview of accrued international experience in the use of digital pathology in transplantation. Most retrieved studies involved the evaluation of the posttransplantation biopsy. The acquisition, manipulation, and eventual transmission of digital slides, before the advent of WSI, were too slow to be compatible with the time-sensitive needs encountered in the preimplantation setting. DIA was more adequate for outcome studies where time is not necessarily an issue. It is not surprising that most of the studies using WSI, in particular, those in the pretransplant context, focused on the diagnostic agreement and concordance between LM and WSI. Indeed, it is likely that WSI may soon replace conventional LM diagnosis, especially as newer generation scanners acquire higher resolution images and digital platforms facilitate easier sharing of digital slides among pathologists. Some conventional barriers to implementation of WSI such as costs and storage issues could now be overcome in big centers and academic institutions. Some questions remain open, mainly concerning the regulatory constraints in different countries and economic issues on payer/reimbursement that apply particularly to the transplantation setting, for example, for second-opinion consultations and quality control programs, as transplantation activity is traditionally managed by public national health system. The number of studies about WSI coupled with DIA is relatively small and restricted to the last 8 years. However, it is foreseeable that in the future, there will be a growing number of studies applying DIA and most likely deep learning algorithms and artificial intelligence to WSI, thereby augmenting the practice and field of transplantation.^[8] ### Financial support and sponsorship Nil. #### **Conflicts of interest** There are no conflicts of interest #### REFERENCES - Goacher E, Randell R, Williams B, Treanor D. The diagnostic concordance of whole slide imaging and light microscopy: A systematic review. Arch Pathol Lab Med 2017;141:151-61. - Williams BJ, DaCosta P, Goacher E, Treanor D. A systematic analysis of discordant diagnoses in digital pathology compared with light microscopy. Arch Pathol Lab Med 2017;141:1712-8. - Capitanio A, Dina RE, Treanor D. Digital cytology: A short review of technical and methodological approaches and applications. Cytopathology 2018;29:317-25. - Minervini MI, Yagi Y, Marino IR, Lawson A, Nalesnik M, Randhawa P, et al. Development and experience with an integrated system for transplantation telepathology. Hum Pathol 2001;32:1334-43. - Neil DA, Demetris AJ. Digital pathology services in acute surgical situations. Br J Surg 2014;101:1185-6. - Park S, Pantanowitz L, Parwani AV. Digital imaging in pathology. Clin Lab Med 2012;32:557-84. - Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: Guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med 2013;137:1710-22. - 8. Sarwar S, Dent A, Faust K, Richer M, Djuric U, Van Ommeren R, *et al.* Physician perspectives on integration of artificial intelligence into diagnostic pathology. NPJ Digit Med 2019;2:28. - Pantanowitz L, Wiley CA, Demetris A, Lesniak A, Ahmed I, Cable W, et al. Experience with multimodality telepathology at the University of Pittsburgh Medical Center. J Pathol Inform 2012;3:45. - Fleming JN, Taber DJ, McElligott J, McGillicuddy JW, Treiber F. Mobile health in solid organ transplant: The time is now. Am J Transplant 2017;17:2263-76. - Isse K, Lesniak A, Grama K, Roysam B, Minervini MI, Demetris AJ. Digital transplantation pathology: Combining whole slide imaging, multiplex staining and automated image analysis. Am J Transplant 2012;12:27-37. - Wood-Trageser MA, Lesniak AJ, Demetris AJ. Enhancing the value of histopathological assessment of allograft biopsy monitoring. Transplantation 2019; [epub ahead of print]. - Neil DA, Roberts IS, Bellamy CO, Wigmore SJ, Neuberger JM. Improved access to histopathology using a digital system could increase the organ donor pool and improve allocation. Transpl Int 2014;27:759-64. - Benkoel L, Dodero F, Hardwigsen J, Benoliel AM, Bongrand P, Botta-Fridlund D, et al. Expression of intercellular adhesion molecule-1 (ICAM- 1) during ischemia-reperfusion in human liver tissue allograft: Image analysis by confocal laser scanning microscopy. Dig Dis Sci 2003;48:2167-72. - Cima L, Brunelli M, Parwani A, Girolami I, Ciangherotti A, Riva G, et al. Validation of remote digital frozen sections for cancer and transplant intraoperative services. J Pathol Inform 2018;9:34. - Marsh JN, Matlock MK, Kudose S, Liu TC, Stappenbeck TS, Gaut JP, et al. Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE Trans Med Imaging 2018;37:2718-28. - Li M, Nicholls KM, Becker GJ. Glomerular size and global glomerulosclerosis in normal Caucasian donor kidneys: Effects of aging and gender. J Nephrol 2002;15:614-9. - Nativ NI, Chen AI, Yarmush G, Henry SD, Lefkowitch JH, Klein KM, et al. Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin-stained histology images of human livers. Liver Transpl 2014;20:228-36. - Benkoël L, Dodero F, Hardwigsen J, Campan P, Botta-Fridlund D, Lombardo D, et al. Effect of ischemia-reperfusion on bile canalicular F-actin microfilaments in hepatocytes of human liver allograft: Image analysis by confocal laser scanning microscopy. Dig Dis Sci 2001;46:1663-7. - Benkoel L, Dodero F, Hardwigsen J, Mas E, Benoliel AM, Botta-Fridlund D, et al. Effect of ischemia-reperfusion on Na+, K+-ATPase expression in human liver tissue allograft: Image analysis by confocal laser scanning microscopy. Dig Dis Sci 2004;49:1387-93. - Marsman H, Matsushita T, Dierkhising R, Kremers W, Rosen C, Burgart L, et al. Assessment of donor liver steatosis: Pathologist or automated software? Hum Pathol 2004;35:430-5. - Biesterfeld S, Knapp J, Bittinger F, Götte H, Schramm M, Otto G. Frozen section diagnosis in donor liver biopsies: Observer variation of semiquantitative and quantitative steatosis assessment. Virchows Arch 2012;461:177-83. - Mammas CS, Lazaris A, Kostopanagiotou G, Lemonidou C, Patsouris E. The digital microscopy in organ transplantation: Ergonomics of the tele-pathological evaluation of renal and liver grafts. Stud Health Technol Inform 2015;213:287-90. - Osband AJ, Fyfe B, Laskow DA. Virtual microscopy improves sharing of deceased donor kidneys. Am J Surg 2016;212:592-5. - Liapis H, Gaut JP, Klein C, Bagnasco S, Kraus E, Farris AB 3rd, et al. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am J Transplant 2017;17:140-50. - Eccher A, Neil D, Ciangherotti A, Cima L, Boschiero L, Martignoni G, et al. Digital reporting of whole-slide images is safe and suitable for assessing organ quality in preimplantation renal biopsies. Hum Pathol 2016;47:115-20. - Kissler HJ, Niland JC, Olack B, Ricordi C, Hering BJ, Naji A, et al. Validation of methodologies for quantifying isolated human islets: An islet cell resources study. Clin Transplant 2010;24:236-42. - 28. Gmyr V, Bonner C, Lukowiak B, Pawlowski V, Dellaleau N, Belaich S, et al. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers. Cell Transplant 2015;24:1-9. - Buchwald P, Bernal A, Echeverri F, Tamayo-Garcia A, Linetsky E, Ricordi C. Fully automated islet cell counter (ICC) for the assessment of islet mass, purity, and size distribution by digital image analysis. Cell Transplant 2016;25:1747-61. - Wang LJ, Kissler HJ, Wang X, Cochet O, Krzystyniak A, Misawa R, et al. Application of digital image analysis to determine pancreatic islet mass and purity in clinical islet isolation and transplantation. Cell Transplant 2015;24:1195-204. - Niclauss N, Sgroi A, Morel P, Baertschiger R, Armanet M, Wojtusciszyn A, et al. Computer-assisted digital image analysis to quantify the mass and purity of isolated human islets before - transplantation. Transplantation 2008;86:1603-9. - Ito H, Adachi H, Taniyama K, Fukuda Y, Dohi K. Telepathology is available for transplantation-pathology: Experience in Japan using an integrated, low-cost, and high-quality system. Mod Pathol 1994:7-801-5 - Neil DA, Bellamy CO, Smith M, Haga H, Zen Y, Sebagh M, et al. Global quality assessment of liver allograft C4d staining during acute antibody-mediated rejection in formalin-fixed, paraffin-embedded tissue. Hum Pathol 2018;73:144-55. - 34. Saco A, Diaz A, Hernandez M, Martinez D, Montironi C, Castillo P, *et al.* Validation of whole-slide imaging in the primary diagnosis of liver biopsies in a university hospital. Dig Liver Dis 2017;49:1240-6. - 35. Calvaruso V, Dhillon AP, Tsochatzis E, Manousou P, Grillo F, Germani G, *et al.* Liver collagen proportionate area predicts
decompensation in patients with recurrent hepatitis C virus cirrhosis after liver transplantation. J Gastroenterol Hepatol 2012;27:1227-32. - Calvaruso V, Burroughs AK, Standish R, Manousou P, Grillo F, Leandro G, et al. Computer-assisted image analysis of liver collagen: Relationship to Ishak scoring and hepatic venous pressure gradient. Hepatology 2009;49:1236-44. - Manousou P, Burroughs AK, Tsochatzis E, Isgro G, Hall A, Green A, et al. Digital image analysis of collagen assessment of progression of fibrosis in recurrent HCV after liver transplantation. J Hepatol 2013;58:962-8. - 38. Manousou P, Dhillon AP, Isgro G, Calvaruso V, Luong TV, Tsochatzis E, *et al.* Digital image analysis of liver collagen predicts clinical outcome of recurrent hepatitis C virus 1 year after liver transplantation. Liver Transpl 2011;17:178-88. - Sclair SN, Fiel MI, Wu HS, Doucette J, Aloman C, Schiano TD. Increased hepatic progenitor cell response and ductular reaction in patients with severe recurrent HCV post-liver transplantation. Clin Transplant 2016;30:722-30. - Guzman G, Chennuri R, Voros A, Boumendjel R, Locante A, Patel R, et al. Nucleometric study of anisonucleosis, diabetes and oxidative damage in liver biopsies of orthotopic liver transplant recipients with chronic hepatitis C virus infection. Pathol Oncol Res 2011;17:191-9. - Ben-Ari Z, Booth JD, Gupta SD, Rolles K, Dhillon AP, Burroughs AK. Morphometric image analysis and eosinophil counts in human liver allografts. Transpl Int 1995;8:346-52. - El-Refaie AM, Burt AD. Mast cells and c-Kit expression in liver allograft rejection. Histopathology 2005;47:375-81. - Marchevsky AM, Lau SK, Khanafshar E, Lockhart C, Phan A, Michaels PJ, et al. Internet teleconferencing method for telepathology consultations from lung and heart transplant patients. Hum Pathol 2002;33:410-4. - 44. Angelini A, Andersen CB, Bartoloni G, Black F, Bishop P, Doran H, et al. A web-based pilot study of inter-pathologist reproducibility using the ISHLT 2004 working formulation for biopsy diagnosis of cardiac allograft rejection: The European experience. J Heart Lung Transplant 2011;30:1214-20. - Armstrong AT, Binkley PF, Baker PB, Myerowitz PD, Leier CV. Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation. J Am Coll Cardiol 1998;32:704-10. - 46. Feingold B, Picarsic J, Lesniak A, Popp BA, Wood-Trageser MA, Demetris AJ. Late graft dysfunction after pediatric heart transplantation is associated with fibrosis and microvasculopathy by automated, digital whole-slide analysis. J Heart Lung Transplant 2017;36:1336-43. - Revelo MP, Miller DV, Stehlik J, Brunisholz K, Drakos S, Gilbert EM, et al. Longitudinal evaluation of microvessel density in survivors vs. nonsurvivors of cardiac pathologic antibody-mediated rejection. Cardiovasc Pathol 2012;21:445-54. - Sorrentino C, Scarinci A, D'Antuono T, Piccirilli M, Di Nicola M, Pasquale M, et al. Endomyocardial infiltration by B and NK cells foreshadows the recurrence of cardiac allograft rejection. J Pathol 2006;209:400-10. - van den Bosch TP, Caliskan K, Kraaij MD, Constantinescu AA, Manintveld OC, Leenen PJ, et al. CD16+ monocytes and skewed macrophage polarization toward M2 type hallmark heart transplant acute cellular rejection. Front Immunol 2017;8:346. #### | Pathol Inform 2019, 1:21 - Welsh KJ, Zhao B, Buja LM, Brown RE. Sirt1-positive lymphocytes in acute cellular cardiac allograft rejection: Contributor to pathogenesis and a therapeutic target. ASAIO J 2016;62:349-53. - Zakliczynski M, Nozynski J, Lange D, Zembala-Nozynska E, Konecka-Mrówka D, Zembala M. Nuclear mean gray level and chromatin distribution changes in cardiomyocytes of heart transplant recipients suffering from acute cellular rejection. Transplant Proc 2006;38:325-7. - Moreira RD, Moriel AR, Murta Junior LO, Neves LA, Godoy MF. Fractal dimension in quantifying the degree of myocardial cellular rejection after cardiac transplantation. Rev Bras Cir Cardiovasc 2011;26:155-63. - Pijet M, Nozynski J, Konecka-Mrowka D, Zakliczynski M, Hrapkowicz T, Zembala M. Fractal analysis of heart graft acute rejection microscopic images. Transplant Proc 2014;46:2864-6. - Nozynski J, Zakliczynski M, Zembala-Nozynska E, Konecka-Mrowka D, Nikiel B, Lange D, et al. Thymoglobulin administered early after heart transplantation reduces early myocardial hypertrophy assessed by morphometric studies. Transplant Proc 2007;39:2825-32. - 55. Tona F, Fedrigo M, Famoso G, Previato M, Tellatin S, Vecchiati A, et al. Everolimus prevents coronary microvasculopathy in heart transplant recipients with normal coronary angiograms: An anatomo-functional study. Transplant Proc 2014;46:2339-44. - Devitt JJ, Rice A, McLean D, Murray SK, Hirsch GM, Lee TD, et al. Impact of donor benign intimal thickening on cardiac allograft vasculopathy. J Heart Lung Transplant 2013;32:454-60. - Law L, Zheng L, Orsida B, Levvey B, Oto T, Kotsimbos AT, et al. Early changes in basement membrane thickness in airway walls post-lung transplantation. J Heart Lung Transplant 2005;24:1571-6. - Ward C, De Soyza A, Fisher AJ, Pritchard G, Forrest I, Corris P. A descriptive study of small airway reticular basement membrane thickening in clinically stable lung transplant recipients. J Heart Lung Transplant 2005;24:533-7. - Ito H, Shomori K, Adachi H, Taniyama K. Telepathology for the biopsy specimens from human allografted kidney: Effectiveness and pitfalls. Clin Transplant 2001;15 Suppl 5:55-8. - Sund S, Grimm P, Reisaeter AV, Hovig T. Computerized image analysis vs. semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis. Nephrol Dial Transplant 2004;19:2838-45. - Lauronen J, Häyry P, Paavonen T. An image analysis-based method for quantification of chronic allograft damage index parameters. APMIS 2006:114:440-8. - Meas-Yedid V, Servais A, Noël LH, Panterne C, Landais P, Hervé N, et al. New computerized color image analysis for the quantification of interstitial fibrosis in renal transplantation. Transplantation 2011;92:890-9. - Brazdziute E, Laurinavicius A. Digital pathology evaluation of complement C4d component deposition in the kidney allograft biopsies is a useful tool to improve reproducibility of the scoring. Diagn Pathol 2011;6 Suppl 1:S5. - Ozluk Y, Blanco PL, Mengel M, Solez K, Halloran PF, Sis B. Superiority of virtual microscopy versus light microscopy in transplantation pathology. Clin Transplant 2012;26:336-44. - Jen KY, Olson JL, Brodsky S, Zhou XJ, Nadasdy T, Laszik ZG. Reliability of whole slide images as a diagnostic modality for renal allograft biopsies. Hum Pathol 2013;44:888-94. - Farris AB, Chan S, Climenhaga J, Adam B, Bellamy CO, Serón D, et al. Banff fibrosis study: Multicenter visual assessment and computerized analysis of interstitial fibrosis in kidney biopsies. Am J Transplant 2014;14:897-907. - Moon A, Smith GH, Kong J, Rogers TE, Ellis CL, Farris AB 3rd. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software. Virchows Arch 2018;472:259-69. - Nicholson ML, Bailey E, Williams S, Harris KP, Furness PN. Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection. Transplantation 1999;68:236-41. - 69. Bonsib SM, Abul-Ezz SR, Ahmad I, Young SM, Ellis EN, Schneider DL, - et al. Acute rejection-associated tubular basement membrane defects and chronic allograft nephropathy. Kidney Int 2000;58:2206-14. - Servais A, Meas-Yedid V, Buchler M, Morelon E, Olivo-Marin JC, Thervet E. Quantification of interstitial fibrosis by image analysis on routine renal biopsy 1 year after transplantation in patients managed by C2 monitoring of cyclosporine microemulsion. Transplant Proc 2007;39:2560-2. - 71. Servais A, Meas-Yedid V, Noël LH, Martinez F, Panterne C, Kreis H, *et al.* Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am J Transplant 2011;11:1456-63. - Birk PE, Gill JS, Blydt-Hansen TD, Gibson IW. Enhanced resolution of interstitial fibrosis in pediatric renal allograft biopsies using image analysis of trichrome stain. Pediatr Transplant 2010;14:925-30. - Caplin B, Veighey K, Mahenderan A, Manook M, Henry J, Nitsch D, et al. Early changes in scores of chronic damage on transplant kidney protocol biopsies reflect donor characteristics, but not future graft function. Clin Transplant 2013;27:E669-78. - Vuiblet V, Fere M, Gobinet C, Birembaut P, Piot O, Rieu P. Renal graft fibrosis and inflammation quantification by an automated Fourier-transform infrared imaging technique. J Am Soc Nephrol 2016:27:2382-91 - Bräsen JH, Khalifa A, Schmitz J, Dai W, Einecke G, Schwarz A, et al. Macrophage density in early surveillance biopsies predicts future renal transplant function. Kidney Int 2017;92:479-89. - Furukawa T, Kinukawa T, Sugiyama S, Ono Y, Ohshima S. Prediction of chronic allograft failure using computerized image analysis of postperfusion biopsy specimen: Study of cadaver kidney transplants. Transplant Proc 2001;33:962-3. - 77. Ishimura T, Fujisawa M, Isotani S, Higuchi A, Iijima K, Arakawa S, *et al.* Transforming growth factor-beta1 expression in early biopsy specimen predicts long-term graft function following pediatric renal transplantation. Clin Transplant 2001;15:185-91. - Diaz Encarnacion MM, Griffin MD, Slezak JM, Bergstralh EJ, Stegall MD, Velosa JA, et al. Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy. Am J Transplant 2004;4:248-56. - Grimm PC, Nickerson P, Gough J, McKenna R, Stern E, Jeffery J, et al. Computerized image analysis of Sirius red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J Am Soc Nephrol 2003;14:1662-8. - Pape L, Henne T, Offner G, Strehlau J, Ehrich JH, Mengel M, et al.
Computer-assisted quantification of fibrosis in chronic allograft nephropaty by picosirius red-staining: A new tool for predicting long-term graft function. Transplantation 2003;76:955-8. - Pape L, Mengel M, Offner G, Melter M, Ehrich JH, Strehlau J. Renal arterial resistance index and computerized quantification of fibrosis as a combined predictive tool in chronic allograft nephropathy. Pediatr Transplant 2004;8:565-70. - Sarioglu S, Celik A, Sakar M, Sonmez D, Tekis D. Methenamine silver staining quantitative digital histochemistry in chronic allograft nephropathy. Transplant Proc 2004;36:2991-2. - 83. Sarioglu S, Sis B, Celik A, Tekis D, Kavukcu S, Bora S, *et al.* Quantitative digital histochemistry with methenamine silver staining in renal allograft biopsies excluding pure chronic allograft nephropathy cases. Transplant Proc 2006;38:490-1. - Grandaliano G, Gesualdo L, Ranieri E, Monno R, Stallone G, Schena FP. Monocyte chemotactic peptide-1 expression and monocyte infiltration in acute renal transplant rejection. Transplantation 1997;63:414-20. - 85. Grimm PC, McKenna R, Nickerson P, Russell ME, Gough J, Gospodarek E, *et al.* Clinical rejection is distinguished from subclinical rejection by increased infiltration by a population of activated macrophages. J Am Soc Nephrol 1999;10:1582-9. - Danilewicz M, Wagrowska-Danilewicz M. A morphometric insight into glomerular and interstitial lesions in acutely rejected renal allografts. Pol J Pathol 2003;54:171-7. - Danilewicz M, Wagrowska-Danilewicz M. Immunohistochemical analysis of the interstitial mast cells in acute rejection of human renal allografts. Med Sci Monit 2004;10:BR151-6. - 88. Nishi S, Imai N, Alchi B, Iguchi S, Ueno M, Fukase S, et al. The #### | Pathol Inform 2019, 1:21 - http://www.jpathinformatics.org/content/10/1/21 - morphological compensatory change of peritubular capillary network in chronic allograft rejection. Clin Transplant 2005;19 Suppl 14:7-11. - Sis B, Sarioglu S, Celik A, Kasap B, Yildiz S, Kavukcu S, et al. Renal medullary changes in renal allograft recipients with raised serum creatinine. J Clin Pathol 2006;59:377-81. - Danilewicz M, Wagrowska-Danilewicz M. Correlative insights into the immunoexpression of transforming growth factor beta-1 in acutely rejected renal allografts. Pathol Res Pract 2006;202:9-15. - Hoffmann U, Segerer S, Rümmele P, Krüger B, Pietrzyk M, Hofstädter F, et al. Expression of the chemokine receptor CXCR3 in human renal allografts – A prospective study. Nephrol Dial Transplant 2006;21:1373-81. - Becker LE, de Oliveira Biazotto F, Conrad H, Schaier M, Kihm LP, Gross-Weissmann ML, et al. Cellular infiltrates and NFκB subunit c-rel signaling in kidney allografts of patients with clinical operational tolerance. Transplantation 2012;94:729-37. - Yan Q, Sui W, Wang B, Zou H, Zou G, Luo H. Expression of MMP-2 and TIMP-1 in renal tissue of patients with chronic active antibody-mediated renal graft rejection. Diagn Pathol 2012;7:141. - Mui KW, van Son WJ, Tiebosch AT, van Goor H, Bakker WW. Clinical relevance of immunohistochemical staining for ecto-AMPase and ecto-ATPase in chronic allograft nephropathy (CAN). Nephrol Dial Transplant 2003;18:158-63. - Sugiyama S, Asano S, Tomita M, Hasegawa M, Murakami K, Kushimoto H, et al. Focal segmental sclerotic lesions of the glomerulus in transplanted kidneys assessed using computerized image analysis. Clin Transplant 2003;17 Suppl 10:30-5. - Bains JC, Sandford RM, Brook NR, Hosgood SA, Lewis GR, Nicholson ML. Comparison of renal allograft fibrosis after transplantation from heart-beating and non-heart-beating donors. Br J Surg 2005;92:113-8. - 97. Yan Q, Sui W, Xie S, Chen H, Xie S, Zou G, *et al.* Expression and role of integrin-linked kinase and collagen IV in human renal allografts with interstitial fibrosis and tubular atrophy. Transpl Immunol 2010;23:1-5. - 98. Miura Y, Satoh S, Saito M, Numakura K, Inoue T, Obara T, *et al.* Factors increasing quantitative interstitial fibrosis from 0 Hr to 1 year in living kidney transplant patients receiving tacrolimus. Transplantation 2011;91:78-85. - Yan Q, Wang B, Sui W, Zou G, Chen H, Xie S, et al. Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction. Diagn Pathol 2012;7:5. - 100. Yan Q, Jiang H, Wang B, Sui W, Zhou H, Zou G, et al. Expression and significance of RANTES and MCP-1 in renal tissue with chronic renal allograft dysfunction. Transplant Proc 2016;48:2034-9. - 101. Hara S, Ishimura T, Fujisawa M, Nishi S, Itoh T. Granular swollen epithelial cells in the kidney allograft: A clinicopathological study with special emphasis on possible marker for kidney allograft aging. Nephrology (Carlton) 2016;21 Suppl 1:14-9. - 102. Roos-van Groningen MC, Scholten EM, Lelieveld PM, Rowshani AT, Baelde HJ, Bajema IM, et al. Molecular comparison of calcineurin inhibitor-induced fibrogenic responses in protocol renal transplant biopsies. J Am Soc Nephrol 2006;17:881-8. - 103. Rowshani AT, Scholten EM, Bemelman F, Eikmans M, Idu M, Roos-van Groningen MC, et al. No difference in degree of interstitial Sirius red-stained area in serial biopsies from area under concentration-over-time curves-guided cyclosporine versus tacrolimus-treated renal transplant recipients at one year. J Am Soc Nephrol 2006;17:305-12. - 104. Scholten EM, Rowshani AT, Cremers S, Bemelman FJ, Eikmans M, van Kan E, et al. Untreated rejection in 6-month protocol biopsies is not associated with fibrosis in serial biopsies or with loss of graft function. J Am Soc Nephrol 2006;17:2622-32.