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= A large range of cubic structures was
generated by using a continuum topol-
ogy modelling, connectivites and prop-
erties of database can be directly plot
in 2D color surface maps.

Evolution of elastic mechanical proper-
ties by the variation of relative density
obtained by homogenization procedure
was fitted by power law.

Power laws parameters represented the
influence of topologies on the observed
property. They were determined for
cubic elastic constants and anisotropy.
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havior families.
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This article investigates the elastic properties of a large panel of lattice architectures using a continuous descrip-
tion of geometry. The elastic constants of the orthotropic material are determined, and discussed in terms of spe-
cific stiffness and of its density dependence. Different kinds of topology families are emerging depending on their
specific deformation behavior. For some of them, interesting properties in terms of traction-compression were
measured, while some other families are predominantly adapted to shear loading. Homogenization technique
also allows to quantify the anisotropy of the structures and to compare them. Specific structures having quasi-
isotropic properties even at low relative densities were detected. Experimental works demonstrated the validity
of the numerical models, and highlighted the necessity to consider carefully the effect of defects on the specific
strength, which are not negligible, despite being of the second-order. Finally, this article provides user-friendly
maps for selection of optimal architectures for a large variety of specific needs, like a target stiffness or anisotropy.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

With the development of additive manufacturing processes, it is
now possible to produce scaffold structures with an increasing level of
tailoring. By changing the architecture, it is possible to decrease the

0264-1275/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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mass of the part while preserving a large range of accessible stiffness
properties [1-5]. These structures are used to fill a specific volume in
parts having a complex shape produced by additive manufacturing
(Fig. 1a) [3]. Such complex geometries usually appear with multiaxial
loadings [6,7]. On a macroscopic scale, the stress field may be seen as
a combination of local elementary loadings: for instance, the part may
be under pure shear load in one location, pure compression in another,
and some complex loadings in between [6]. This issue cannot be re-
duced to uniaxial elastic properties solely, but it requires a global 3D de-
scription. In Fig. 1a, the case of a hip implant is illustrated, with external
forces on the femoral neck. This results in a complex 3D stress field in
the stem, with possibly the need for several optimal architectures de-
pending on the location. On the other hand, at the microscopic scale, it
is well known that a second stress field emerges from the porous char-
acter of lattices [1,8,9]. The effective stress field inside the lattice beams
(Fig. 1c) is no more relevant for mechanical design of the macroscopic
part, because the local maxima interfere with the understanding of
the smooth variations of the macroscopic stress (Fig. 1a) [6,10]. There-
fore, there is a need for an intermediate description of the elastic prop-
erties of this complex struts network (Fig. 1b) at a mesoscale. The
optimal properties are selected at a macroscopic scale while considering
the microscopic features of the lattice, thanks to this intermediate ele-
ment. This is made possible by using homogenization procedures to
represent the scaffold through its effective elastic properties. These pro-
cedures give also the possibility to evaluate the anisotropy of a given
architecture.

Most of existing works are dedicated to the study of one specific, or
few topologies, like the work on the octet-truss structure [8,12,15], or
the gyroid structure [18]. However, only few studies proposed to deal
with a large range of architectures. We should mention the results of
Xu et al., Dong et al. or Maskery et al. [16,17] working with six or
seven different topologies. One of the most extended studies is the
work of Vigliotti and Pasini [13] considering 12 topologies. The paper
of Favre et al. [2] used 66 topologies that are however limited by a 1D
description of elastic behavior.

There are several homogenization strategies and most of them can
be applied to the case of strut-based lattice. Different schemes lead to
determination of elastic properties based on analytical formulations,
as in the works of [8,9,12-15], while some others use numerical
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methods [16-20]. Stevens proposed a straightforward and easily
implementable technique [21,22]. This procedure was successfully
used in other studies with the same kind of microstructures [16,18].
This method may be considered as an upper bound for the elastic con-
stants determined due to the kinematic boundary conditions.

This work proposes to apply the homogenization procedure was
based on the work of Stevens on a large set of architectures based on
the works of Favre. A specific focus was done on the comparative
study of the architectures concerning their elastic properties and their
anisotropy. In consistence with the previous parametric studies [2,10],
a large panel of topologies was swept by massive computing to generate
a database of readily available solutions. Within this database, it is pos-
sible to identify different behavior groups (shear friendly or tensile
friendly behavior). The reverse use of this database is a powerful tool
for mechanical design to select the optimal structure for local targeted
anisotropic properties. Moreover, the group combining both shear and
tensile friendly behaviors could be considered as near-isotropic. This ge-
neric group may be used for general replacement of bulk isotropic ma-
terials, where no preferential orientation of the properties is required,
while preserving the capability to tailor the stiffness [16].

The goal of this paper is to systematically estimate and compare stiff-
ness constants and anisotropy of a large panel of topologies, and for a
large range of relative densities. The optimal properties for specific stan-
dard mechanical loadings are determined and discussed by numerical
models and experiments. First, the method for homogenization and ex-
perimental validation is presented. Second part focuses on the connec-
tivity of cubic lattice structures. Then, the results collected in term of
elastic and anisotropic properties are plotted as a function of the archi-
tecture in color maps, and as a function of density. We assess the validity
of the model on a specific experimental case. Finally, the results are
discussed in relation to the connectivity, and main families of behaviors
are identified.

2. Methods and calculations
2.1. Lattice structures generation

The method to generate a database of architectures with a continu-
ous variation of two parameters was implemented from

b. C.

Homogenization procedure

Fig. 1. Investigation scheme for the control of stiffness and anisotropy, a. a hip implant with an architecture core and associated stress field [11], b. homogenized materials with equivalent

elastic properties, c. example of lattice structures.
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Fig. 2. Procedure for generation of large range of structures, a/ (x, y) parametric space, symmetry set and an example of B point position, b/ a generated 1d linear network (x = 0.25andy =
0.25), ¢/ associated lattice structure generated by Openscad, d/ 3d tetrahedral meshes and FE computation by Abaqus.

crystallographic rules [2]. Using this method allows to sweep a range of
architectures in a continuous way, while taking the advantage of sym-
metries to decrease the complexity of the network geometrical descrip-
tion. Main idea is to use a set of symmetry operations associated to the
m3m point group that combines different space groups associated to
the conventional cubic Bravais lattices (BCC (body centered cubic),
FCC (face centered cubic) as well as the PC (primitive cubic)). These
three Bravais lattices, all have a well-known lattice structure equivalent:
BCC was related to the diag-structure or body centered [23], FCC to the
well-known octet-truss of Desphande [8,12] and PC was associated to a
simple cube [6]. One of the main advantages of this procedure is to en-
able a complete description of topologies by using only two parameters.
This procedure allows to plot any kind of results into a 2D color map,
where the 2D plane axis represent the (x, y) parametric space (see
Fig. 1) and color stands for the variation of the different studied charac-
teristics (connectivity, stiffness constant ...).

All these parameters represent the information necessary to place
the first beam in the space, other ones were further generated automat-
ically by symmetry systems. Fig. 2 summarizes the procedure for a Py-
thon script generating lattices by inflating a 1D wireframe to a 3D
volumic mesh, later imported to the Abaqus software. The two parame-
ters mentioned earlier correspond to x and y coordinates of point B
(Fig. 2a), while the z coordinate was maintained at mid of the cell size
to preserve the continuity of the unit cell. This procedure to generate
cubic lattices structures is well discussed and largely explained in a pre-
vious work, and the reader willing to further learn about this technique
can refer to [2]. Each cell had a global size of 1x1x1 mm, and the radius
of beams is defined as a fraction of this length.

In this study, the representative 2D space of the possible (X,
y) couples was discretized by 36 topologies, each of which was pro-
duced with 4 different radii, in order to explore the 3D space of (X, y,
r) for 144 different cases. All of these structures were meshed using
Tetgen software [24]. The elements were set with a maximal face area
of 0.005 mm? and a maximal volume of 0.01 mm?>. It resulted in a
mean number of elements per section between 12 and 20. These param-
eters were selected after a series of tests, in order to determine the con-
vergence of the mesh for some topologies. Tetgen file format was
converted to INP file format by a home-made Python script. Relative
density was computed by adding up the volume of each tetrahedron
on the 3D meshes. For this study the calculations were run on a single
unit-cell. It is common to perform FE computation on a single cell as
some publications show that for strongly periodic microstructure, a rep-
resentative elementary volume limited to one unit-cell was acceptable
[25,26].

2.2. Homogenization procedure

A straightforward and easily implementable homogenization rou-
tine, proposed by Steven, was used [21,22]. Stiffness matrix Gy, is a

fourth-order matrix, linking the macroscopic strain tensor gy, to the
macroscopic stress tensor oy in the Hooke's law 0j; = Cjj€x. Due to
the symmetry of 0y, & and G, Gyjiy can be reduced from 81 to 21 con-
stants. Six different boundary conditions are needed for the identifica-
tion of constants. For each condition, one component of the strain
tensor is equal to 1, while the five others are null. It results in a stress
tensor which is obtained from the reaction forces on appropriated
faces. This stress tensor provides directly the quantification of a row of
Cijig matrix, as indicated in Eq. (1):

&n 1 on Cn &1
€2 0 022 Ca €2
g3 (_JO tafos3| _ JCxy £33
26 ()0 Oon () Ca 2e3
2€31 0 031 Csy 2€3
262 0 021 Ce1 262
0 O Cia
8 02 524
lead ) O33 34
Y1 TYon( ) Cu (1)
0 031 Csy4
0 021 Ceas

Boundary conditions are listed in Table 1. These conditions consist in
three normal uniaxial strains &, €, &, and three shear strains Yy, Yz
"Yyz Which respectively correspond to &1, £, €33, £12, €13, £23. It was
shown in other studies that this procedure gives well accurate predic-
tion results for the macroscopic mechanical properties for lattice struc-
tures [16,18], but also for other kind of materials such as composite
materials [22,27]. The homogenization procedure was implemented in
Python language, and finite element analysis were performed in Abaqus
6.14, in a fully automatized procedure from the generation of structures
to the post-treatment of FE analysis. For this study, an isotropic bulk ma-
terial was used with a Young Modulus of 1 GPa and a Poisson coefficient
set at 0.4. In a previous paper, authors have shown that the variations of
stiffness with the relative density was material independent if a suitable
normalization is applied [2]. The idea is to use this kind of procedure to
explore the dependence of elastic constants with density. This depen-
dence is analyzed in the Results section.

Once the stiffness matrix is resolved, it becomes possible to quantify
the anisotropy of the lattice. The Zener ratio [28,29] defined in Eq. (2)
was used to estimate the anisotropic behavior:

2C4s

A=_4 2)

(C11—C12)

This ratio was computed for each combination of topology and ra-
dius values to determine its dependence with the relative density. If
this ratio is near to unity [16,29], then the structure can be seen as iso-
tropic. It will be shown in the next section how this parameter can
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Table 1
Boundary conditions for the six different loading case.

Active strain component Boundary condition

en Al = 0,001
AlxIx:O = Aly[y:O = A’yly:ly = AIZ\Z:O = Alzlz:lz =0
&2 Alylyzly = 0.00Uy
Alxlx:O = Alxlx:lx = Aly|y:0 = Alzlz:O = Alz|z:lz =0
£33 Alje—y, = 0.0011,
Alyx—0 = Alx|x:lx = Alyy—o = Aly|y:1y = Alj;—0 =0
£3 Alygy—q, = 0.0005l, Alyj,—;, = 0.0005l,
Alyy=0 = Aly=0 = Alyjp—0 = Aly,—;, = 0
£ Al = 0.0005L, ALy,—;, = 0.0005l,
Aly|z:l‘) = Alz|y:0 = Alx|)<:0 = Alx|)<:l,( =0
- Algz—;, = 0.00051, Aly,—;_= 000051,

Alyjz—0 = Aljx—0 = Alyjy—o = Alyjy—;, =0

help to predict the ability of a topology to deform under tensile, shear, or
both loading conditions.

2.3. Experimental validation

The predicted stiffness and anisotropy were assessed by experimen-
tal mechanical tests. The area of investigation was restricted to the study
of one topology, to preserve a reasonable experimental time. The idea
was mainly to confirm the predictability of the numerical models, and

1.86+08

1.6E+08
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1.2€+08

1.0E408

8.0E+07

Tensile stress (Pa)

6.0E407
4.0E407

2.0E407

=)
o
-

0.2 03 04
Strain

the systematic experimental test of all the topologies is not required.
Therefore, the experimental Young and shear modulus were deter-
mined by uniaxial compression tests, and torsion tests on the architec-
ture (0.25, 0.25, 0.5). Experimental measurement was compared to
numerical results in the Result section “Experimental validation”.

All samples were built by using selective laser melting technology
(SLM) with a SLM 280 HL system (SLM Solutions). The powder material
was Ti-6Al-4 V with spherical morphology and a particle size distribu-
tion centered on 45 pm. The part was built under Argon protective at-
mosphere with a laser of 200 W power, a scanning rate of
1650 mm-s~ !, and a hatching distance of 80 um. In this study, we
choose to fix the set of parameters to reduce the variability of the pro-
duced samples. These parameters correspond to the recommended
values provided by the SLM manufacturer. Relative density was deter-
mined by relative weighting of porous sample as compared to the
bulk materials of the same global dimensions.

Uniaxial quasi-static compressive tests were carried on a Zwick-
Roell machine, with a load cell of 100KN and a strain rate of
1.1073 s~ 1. Displacement measurements were carried out using an ex-
tensometer multiXtens. Samples were designed to fit with the recom-
mendation of the norm ISO 13314 (Fig. 3.b). They consisted of 5
repetitions of a unit-cell in the 3 directions of an orthogonal basis. The
Unit-cell corresponded to a cube with a width of 3 mm. Three levels of
beam radii (150, 200 and 225 um) and bulk material were tested. It

d.

- Zone of
interest

- Gradient

area
— Bulk area
3.5E+07
3.06407
2.56407
a
&
w 2.0E407
2
o
%
5 1.56407
@
<
"
1.0E407
5.0E+06
0.0E400
05 0 0.01 0.02 0.03 0.04 0.05

Strain

Fig. 3. a. Compressive test configuration, b. sample for compressive test, c. torsion test configuration, d. sample for torsion test, with the central and gradient area and the bulk area (embed
in jaws). Red arrows indicate the loading or couple direction, e. Experimental tensile stress-strain curve and f. experimental shear stress-strain curve. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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leads to three theoretical relative densities of 21.4%, 37.0%, 44.4%, and
100%. For each density value, test was repeated four times in order to
determine the incertitude of the measured Young modulus. Stiffness
was determined as described by the norm ISO 13314. For the sake of
simplicity, the determined quasi-elastic gradient is assimilated to the ef-
fective Young modulus.

Torsion quasi-static tests were carried out on a Zwick-Roell hydrau-
lic machine, with a maximal couple of 250 N-m™" at an angular rate of
0.5°-s™!. The central area of the sample was designed in accordance
with the ISO 13314 norm: it consists of a circular section of 15 mm
with a height of 18 mm where unit-cells have the same dimension as
for tensile testing. Two bulk cylindrical parts are added in the extremi-
ties for fixation in the jaws. For the purpose of mismatch area reduction
between porous and bulk areas, a density gradient was used. It also in-
creases the probability of failure in the central area. It consists of two
slices of 3 mm of height where the struts radius is progressively in-
creased compared to the bulk area (see Fig. 3.d). The same relative den-
sities as for tensile tests were used. For each density value, test was
repeated three times for the determination of shear moduli and its asso-
ciated uncertainty values.

For both tensile and torsion tests, the uncertainty values are consid-
ered to be twice the value of the standard deviation around the average
of Young modulus and shear modulus.

3. Results and discussion

The elastic properties can be deduced from specific effects of the
connectivity, the density and the spatial organization of the lattices.
The results are analyzed to separate methodically these effects on the
elastic constants and on the anisotropy. First, the connectivity of the lat-
tices was determined, as it is an important factor to understand the var-
iations of stiffness [30,31]. Then, the dependence of elastic constants on
density is analyzed for different architectures. The effect of the topology
on this dependence is identified. The contribution of architecture and
connectivity to the anisotropy of the lattice structures is determined.
Then, the topologies are classified in groups depending on their defor-
mation modes. Finally, the last section is an experimental validation of
a particular case of interest, including discussion of divergence between
theory and experiment.

a/

Connectivity

12
11
10

Y parameter
bunowoow

02 03
X parameter

Y parameter

3.1. Connectivity of cubic lattice structure

Connectivity in the crystallography field concerns the number of
struts that are connected to the same node [30]. Since the work of Max-
well [32], Calladine [33], as well as Desphande [30], connectivity of a lat-
tice is a direct indicator of framework rigidity. For a 3D framework, the
necessary and sufficient condition to obtain a rigid structure is Z = 12
(where Z is the connectivity). When Z > 12 the system is redundant in
term of rigidity. Whereas for Z < 12, the framework is under-
constraint and presents a bending dominant behavior [30]. These
works provide main guidelines to design of a rigid framework, but
they suffers from some limitations. The first limitation was the notion
of pin-jointed framework, which diverges from real situation of addi-
tively manufactured lattice structures having rigid joints [30,31]. The
other limitation concerns the notion of similarly situated nodes, mean-
ing that all nodes in the frameworks should have the same connectivity
[30]. Actually, this is not the case, and a large number of lattices have
several kind of nodes connectivity, like some auxetic structures [34] or
the rhombic dodecahedron unit-cell [35]. Some examples of this kind
of topologies are shown in Fig. 4.b. In this study, connectivity was calcu-
lated by the weighted average of each node connectivity. The weight of
each connectivity is computed from the fraction of nodes, but also con-
siders the division of nodes located at the boundaries (on the edges, ver-
tices or faces).

One important point to note is that for any structure, there is always
one node at the corner of the cell (see Figs. 1 and 2.b) and at least one
secondary node present on faces, edges or inside the structure, as
readers can see in Fig. 2.b.

A 2D color map in Fig. 4a illustrates the calculated average connec-
tivity. First, most of the topologies seem to have a very low connectivity
(dark blue area in Fig. 4a). In specific areas of this map, such as the diag-
onal x + y = 0.5, the connectivity jumps to larger values. Some of these
topologies fulfil the rigidity criterion Z = 12 [30]. Table 2 summarizes
the essential data from the connectivity map (Fig. 4b). Connectivity Z,
corresponds to the outer nodes shared with neighboring cells, and
comes from point A in Fig. 2. The connectivity Z, is the one of inner
nodes belonging to a single cell, and comes from point B in Fig. 2. The
connectivity Z is the weighted average of Z; and Z,.

The category A corresponds to the structures with just one kind of
node connectivity. It corresponds respectively to primitive cubic (just

b/

0.5 :
A (\&_VNN\\ / ~/1 A
E ~
w A
Y
F \
4 /D// / \\\
z; / \
ﬁ
a
0

A X parameter

Fig. 4. Connectivity as a function of x and y parameters (a) and locally generated topology for the different (x, y) couple (b) areas correspond respectively to structure groups in Table 2
(red: similarly situated, green: faces, blue: cross-shape, purple: unconnected-diag, yellow: connected diag, copper: other, dark purple dash line: strut length = v/2/2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)



6 P. Lohmuller et al. / Materials and Design 182 (2019) 108059

Table 2

Connectivity zone on 2D map of connectivity.
Zone name Zone description Parameters range 7y Z 7
A Similarly situated topologies (0,0),(0,0.5), (0.5,0.5) 6/12/8 - 6/12/8
B Faces topologies (0,y) (withy €]0,0.5[) 24 2 ~5.14
C Cross-shaped topologies (0.5,y) (withy ¢]0,0.5[) 24 4 ~6.14
D Single-V Hexatruss (x,y) (withx=y) 24 2 ~3.64
E Strongly Connected Hexatruss (% y) (with X 42ry _ 411) 48 10 ~11.52
F Double-V Hexatruss (xy) 48 2 ~3.84
G Weakly Connected Hexatruss V2 48 4 ~5.76

When beam length = -5

preserving edges of a cube as strut), octet-truss (or face centered cubic)
and diag-structure (or cubic centered). The categories B and C corre-
spond to the map boundaries in Fig. 2.b. They both present a connectiv-
ity similar to the A-type cubic primitive structure due to the sharing of
lower connectivity inner nodes, but they have an outer node with a
higher connectivity. The category C of “Cross-shaped” structure pre-
sents a larger connectivity due to the lower number of second order
connectivity nodes (only 6, one per face). This set of structures also
give a continuous way to switch from octet-truss to diag-structure.
The areas D and F correspond to the so-called hexatruss structures,
with a single V-shaped bond between the corners of the cube for D cat-
egory, and two V-shaped bonds for F category. Group D along the diag-
onal of the (x,y) space (where x = y) corresponds to a lower
connectivity, this is due to a large number of nodes with a connectivity
equal to two, not balanced by a higher connectivity of corner nodes. The
same remarks hold for the connectivity of the group F laying in the cen-
tral area of the map. Group E of Strongly Connected Hexatruss is an in-
teresting special case: the mean of (x,y) coordinates is equal to a
quarter, resulting in a higher average connectivity due to new bonds be-
tween inner nodes of adjacent cells. This higher connectivity happens
due to the creation of new strut with neighbor unit-cells: for these spe-
cific configurations, the distance between nodes of neighbor cells corre-
sponds to the strut length, resulting in new bonds between nodes. In the
G group, another special condition is met when the beam length is equal
tov/2/2: some new connections appear also with the neighbor cells and
increase the connectivity. In this study, two structures exhibit this spe-
cific configuration: the octet-truss FCC structure, and (x = 0.3; y = 0.4).

Of course, the analysis of the connectivity by reducing it to its aver-
age value only, is a significant simplification. Further consideration of its
distribution may reveal a higher degree of details. This analysis is a first
attempt to point out specific families of architectures with different
levels of connectivity by just considering their topologies. Some families
are distinguished due to a specific connectivity (A, B, C in Table 2) and
others are rather explained by geometrical condition (F, G in Table 2).
The areas D and F (unconnected hexatruss) exhibit the lowest connec-
tivity due to the presence of an important number of nodes with a con-
nectivity equal to 2, not balanced by the high connectivity of corner
nodes.

3.2. Stiffness constant variation by the density decrease

Stiffness varies mainly with density. Therefore, several levels of den-
sity were studied to determine this variation. The relative density was
changed by modifying the beam radius, and the resulting stiffness was
obtained from FEM model. It allows to compare the topologies based
on their stiffness dependence on density.

Calculations cover four levels of density for each topology. Then, a
power law is used to fit this set of 4 points:

K=p™ 3)

where K is the studied characteristic (here the specific stiffness constant
or the anisotropy ratio, but it may apply to other properties), p corre-
sponds to the relative density between 0 and 1, and m* is the parameter
of the power law. In this study, we choose a power law rather than the
conventional Gibson-Ashby model [1], because it is a single parameter
law, and it enables the display of all results for one property in a single
chart. The parameter m* is determined by the slope measured on a log/
log plot of properties versus relative density. m* is a direct indicator of
the decrease of a given property with the density. When equal to one,
it corresponds to the mixture rule; when m* > 1 the loss of the proper-
ties is greater than the gain in weight, that may be comparable to an an-
tagonistic effect; when m* < 1 then the loss of properties is greater than
the gain, and it can be understood as a synergic effect. In this study, all
properties have shown an antagonistic effect. This observation is obvi-
ous from a mechanical point of view: stress concentration and local de-
formation fields result in a decrease of stiffness greater than solely the
effect of material loss.

For all the structures, computed stiffness matrix shows at least cubic
properties. This means that the complete 3D description of the constitu-
tive elastic law of designed topologies can be described by three inde-
pendent constants (Cqq, Ci2 and Cyy):

Ci1 Cp Cp O 0 0

Cp Cu G2 0 0 O
co—|C2 G2 Cn 0 0 0
710 0 0 Cyq O 0
0 0 0 0 Cyq O

0 0 0 0 0 Cu

This observation is consistent with the m3m point group properties.
At the end of this section, we will study the evolution of these constants
with density, in order to determine which kind of topology may be more
interesting in terms of tensile/compressive or shear loadings.

The evaluation of the elastic constants with density holds only for a
constant topology, assuming the cubic symmetry to be preserved along
the deformation path. Therefore, it holds only for the linear part of the
elastic behavior. Any effect of the topology change or the density change
induced by deformation should be investigated by more complete the-
ories of elasticity of materials, with voids such as micro-dilatation
models [41]. The reader interested to extend the current results to
large strain elasticity should refer to dedicated works on the continuum
micro-dilatation approach applied to lattice structures [42]. In this case,
it is expected that Eq. (3) does not hold anymore for large deformation,
and its power coefficient should be continuously updated with the to-
pology change along the deformation.

- Cyq and C;, constant and their related m;; and m;, parameters

Cubic materials present the particularity (as isotropic materials) to
possess a tensile and shear behavior governed by independent con-
stants. Tensile/compressive stiffness of materials only depends on Cy;
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and Cy, stiffness constants. They are directly associated to the calcula-
tion of equivalent Young modulus and Poisson ratio for cubic materials
by the relationships [29]:

(C% +C11C12—2C%z) o Cn )
Cii+Cp2 " Cin+Ci2

Then Cy; is the parameter governing the stiffness for a uniaxial load-
ing, and Cy, is related to the transversal response induced by the
displacement.

The stiffness constants depend on both the density and the topology
[1,2]. First, the effect of density is studied, regardless of the variation of
the topology. Then the effect of architecture on the deformation mode is
examined. An optimal structure for tensile/compressive loading is
determined.

Fig. 5a illustrates the variation of the specific elastic constant C; =
CH/C?l, where C?; corresponds to the associated C;; constant of the
bulk isotropic material, and Fig. 5b illustrates the variation of C;, nor-

malized in the same way. It is shown that both constants C;; and Cq;
vary with density following a global power law. The first power expo-
nent is m§'°°* = 2.35, and the second is m§"" = 3. It is also obvious
here, that the evolution of these constants confirm an antagonist effect,
where the loss of stiffness is even higher than the weight gain. This de-
creasing trend is more important for C;,: it indicates that the variation
of the transverse component of strain may be more sensitive to the den-
sity than to the magnitude of longitudinal strain. If we make the analogy
with isotropic materials (and especially for ceramics materials), it is
well-known that Poisson ratio is highly related to relative density. It is
interesting to show here that this variation exists for all the range of
densities.

If we now focus on Cq7, we can observe that all computed topologies
tend to fit with the same power law, regardless of architecture varia-
tions. At first glance, the reader may think that there is a negligible effect
of architecture on Cj;. However, it has to be analyzed carefully while
considering the range of applications of lattice structure. With an aim
of mass reduction, lattice structures are generally used at low density
(p<0.3). If we draw the attention on this particular field, we can see in
Fig. 1.a that the relative constant C;; exhibits nearly 60% of variation
with topology at p = 0.3, and >80% of variation when the relative den-
sity is below 10%. For large density values, the density plays a first
order role after the topology. At lower densities range, this is no more
the case, and stiffness constant shows large variation with topology

a/ 1 0,2
56%
0,8 O, 1

8a% 0%

0,6 t
A
04 {

0,2

OM“ ]

0 20 40 60 80 100

Cu/Cyy°

Relative density (%)

for fixed values of density. It indicates that architecture has a secondary
order effect but tends to be more important at low densities.

For C;, the global trend seems to be the same. It shows a suitable fit
with a power law, but with a more important dispersion around the my;
global ya]ye, It was possible to describe properly the variation range by
using a deviation around m#?* equal to one (dashed copper lines in
Fig. 5). This higher variability of C;, constant is due to the high sensibil-
ity of the Poisson ratio to density. It was leading to larger variations at-
tributed to the architecture change. This high sensitivity to architecture
is observed in a larger range of relative densities as compared to Cy stiff-
ness constant. This variation may be explained by the results from a pre-
vious study. In the previous paper, authors have shown that some
topologies exhibit auxetic effect (v < 0) at low densities [2]. This obser-
vation may also explain the greater decrease of the C;; stiffness constant
with density.

We will now focus our attention on the effect of architecture on the
evolution of these stiffness constants. The m; and m;, parameters were
found for each topology, which allow to consider the effect of architec-
ture on the studied stiffness constants. Results were ploted on 2D color
maps, and we will attempt here to analyze these maps with regard to
previous results on connectivity, in order to explain the different
variations.

As expected based on the first part of analysis, the variation of my; is
larger than my, as it can be seen on the color bars of Fig. 6: my; varies
from about 1 to 3, and my, from 1 to 5.5. We can first observe that all
the topologies situated at the corners of the map represent a local min-
ima, which may signify that a single value of node connectivity tend to
ensure a lesser decrease of the two stiffness constants C;; and C;, with
decreasing density. We can also observe that for topologies in the area
“connected Hexatruss” (see areas E, G in Table 2) present my; and my,
parameters near to the average of all computed m parameters per con-
stant stiffness (m3} = 2,09 and mi% = 2,68). These two areas are also
associated with an higher connectivity, and it may be the cause for the
steep decrease of stiffness constants at lower densities. We can see
here that maximas of m;; and my; are situated in areas with the
smallest connectivity in map Fig. 2a (corresponding to the group F
from Table 2). It means that the more nodes with a small connectivity
are present in the structure, the higher is the collapse of properties
with decreasing density. This phenomenon is especially pronounced
for auxetic structures. This kind of materials often present re-entrant to-
pology, as in the works of Yang et al. [34] or the works of Biickmann
et al. [36] on cubic auxetic materials. These cases present two different
kinds of node connectivity. It suggest that nodes with lower
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Fig. 5. a. C; versus density for all the computed topologies, focus on the range of densities for lightweight applications, corresponding power law with m§¢*' = 2.35 (red dashed line), b.

C;; versus density for all the computed topologies and corresponding power law with m$*! = 3 (red dashed line) and the associated deviation @ = +1 (copper dashed line). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6.a. m;; and b. m;, parameter for the power law which respectively link C;1/C9; and C;,/CY; to the relative density.

connectivity have a larger displacement, and they are responsible for
the re-entrant effect of auxetic materials.

If we now want to analyze these maps in terms of lattice perfor-
mance, it should be kept in mind that there are many possible paths
in the (X, y, p) space to pass from a bulk isotropic material to a near
zero density. The choice of relevant architectures has to be done so as
to promote a rapid decrease of density while preserving mechanical
properties as far as possible [1]. Therefore the best choice for the me-
chanical engineer would be a m parameter as small as possible. For
the first map (Fig. 6.a) the slowest decrease of properties was obtained
for cubic primitive (x = 0, y = 0). It is quite intuitive: in the case of an
uniaxial loading, most of the struts of this topology are directed along
the loading axis, and the specific stiffness is obviously maximized.
Neighbors of cubic primitive (left low corner) were globally a degraded
version of cubic primitive, and it explains the smooth decrease of my;.

For my, map very high values are met in a very localized area around
the coordinate x = 0.15; y = 0.25. The use of power law in Eq. (3) ex-
clude the possibility for negative values of C;,. However, these struc-
tures were reported to be auxetic, and it results in a negative Poisson
coefficient [2]. According to Eq. (4), this is associated to negative or
null values of Cy,. This explains the sudden rise of m;, for these topolo-
gies. The occurrence of auxetic structures has been extensively
discussed in previous work [2]. These conclusions can be found again
using Fig. 6.b: by some appropriate data processing of my,, one can cal-
culate C;, and determine the Poisson ratio from Eq. (3), making it pos-
sible to detect the occurrence of auxetic structures.

- Cyy4 constant and myy parameters

In this section, we will focus our attention on the Cy4 stiffness con-
stant, which is directly related to the shear modulus in cubic materials
through the relation [29]:
Cy=G (5)

In Fig. 7, we can see that relative Cy4 is well fitted with a power law,
with an average m§® = 2.6. Here, we can show that m§iy®¥ < mgieba!
<mgPPa which is conform to the observed variation of Cq7, C12 and Cag
in the work of Li et al. [18]. Unlike the C;; constant, there is a large var-
iation of the m exponent for fixed values of relative density. Indeed,
below only 60% of relative density, we observe a variation up to 36%,
and this variation continuously increases to reach >80% for an infill
below 30%.

As we concluded for Cy, the variation of C44 mainly depends on the
density, and only in a second order on the architecture. In other words,
architecture seems to play a more important role for the shear modulus
than for Young modulus. It also implies that some topologies exhibit a
particularly strong decrease of shear modulus compared to the others.

Fig. 8 shows the different calculated my4 parameters for each com-
puted topology. The global variations are very similar to my; and mj,
maps, but the trend is reversed. The global minima were transferred
from coordinate (0, 0) to the coordinates (0.5, 0.5) which correspond
to diag-structure. The (0.5, 0.5) BCC structure has an optimal shear stiff-
ness because the struts are oriented in the principal stress direction, it is
the complementary of primitive cube (0, 0) in compression. Cross-
shaped topologies (see Table 2) also exhibit interesting shear modulus
variation. Due to the cross-shape morphology of each face, this kind of
topologies may be considered as degraded versions of the diag-
structure, in the same way as the neighbors of cubic primitive were pre-
sented as “degraded versions” of the optimal Cy; in Fig. 6.a. It is consis-
tent with the results in literature studies on cross-shaped-topologies,
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Fig. 7. C44 versus density for all the computed topologies, and corresponding power law
with average m§$"? = 2.6 (red dashed line) and the associated deviation p = +0.8
(copper dashed line). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 8. m,4 parameter for the power law which rely C44/C34 to the relative density.

such as the works of Dirrenberger et al. [37], or Doyoyo et al. [38] As
seen in the previous maps (Fig. 6), the area that presented higher
connectivity (as connected hexatruss in domains E and G) tends to
have the my4 parameter slightly lower than the average m3} = 2.6.
It is another confirmation that connectivity tends to improve the
properties in term of shear modulus. As for the stiffness constant,
the worst candidate for mass reduction were found in the area of
low connectivity. Double-V Hexatruss in zone F (see Fig. 2.b) pre-
sents a large number of “V-shaped” struts assemblies along the
shear direction. During the loading, it is obvious that these assem-
blies extend like springs and yield to low shear properties corre-
sponding to high myy4 in Fig. 8.

3.3. Anisotropy of cubic lattices

Lattice structures are used for lightweight applications to fill up a
volume that is not required to be bulk in the mechanical specifica-
tions [3]. Within a complex part, an elementary volume may be sub-
jected to complex loading (tensile, shear ...) with significant stress
and strain gradients [6]. To control the deformation mode of the
macroscopic part, it is of high importance to tailor the anisotropy of
elastic properties at the mesoscopic scale. The anisotropy of different
topologies is examined now to achieve this point. This study also
gives the possibility to compare all topologies by considering simul-
taneously every stiffness constant that governs the elastic contin-
uum law (Eq. (2)).

For the purpose of this study, the anisotropic ratio (or Zener ratio) is
named A; A = 1 represents isotropic materials [29]. When it is >1, Cyy4 is
predominant followed by C;; and C;5, in which case the materials could
be seen as “shear friendly”. When it is below 1, C;; and C;, together are
predominant over C44. That does not directly imply that the material is
“tensile friendly” due to the presence of two stiffness constants, but it
may simply mean that stiffness constant related to the tensile/compres-
sive behavior is more noticeable than C44 constant.

As in the previous analysis, we propose here to study the evolution
of this ratio with a bulk isotropic material as a reference, and 36 differ-
ent architectures made of this material. To do so, we introduce the Z pa-
rameter which corresponds to the parameter binding the Zener ratio to
the relative density by a power law:

A=7 (6)

Z parameter
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Fig. 9. Z parameter map which rely the anisotropic ratio to the relative density for each
topology.

Three specific situations can be identified: i) Z = 0, corresponds to
isotropic materials (log (A) = 0 and A is equal to 1 for all densities),
ii) Z < 0, associated to shear friendly materials, and iii) Z > 0, for mate-
rials with a predominant tensile stiffness constant.

Fig. 9 shows the evolution of calculated Z parameters. This map
clearly tends to be separated into three domains. The first one, on
the upper right corner, concentrated all the Z < 0 which are directly
consistent with the result of C44 and confirms the presence of shear
friendly topologies family around the diag-structure. It also indi-
cated that this shearing preference is compensated by a strong an-
isotropy of properties. The next domain of this map concerns the
areas B, D, F in Table 2, corresponding to “Face topologies” and
“Hexatruss”. They all have the Z value above 1, in this case possibly
indicating a “tensile friendly behavior”. The exact behavior of these
structures will be discussed just afterwards, once the global trends
will be understood. The last domain concerns Connected Hexatruss
areas E and G of Table 2. These two areas seem to present Z parame-
ters which tend to conserve the isotropy of properties due to
the specific architecture of the matter. Two topologies are particu-
larly preserving A value close to 1: topologies x = 0.25;y = 0.25
with Z = 1.104; and x = 0.2; y = 0.3 with Z = 1.057. These values
have to be compared to the octet-truss with Z = 1.636 which is
sometimes considered as a reference case for isotropic properties
[39,40], therefore it corresponds to a difference of >55%. It was very
un-expected to detect these two isotropic structures in this domain,
especially when we consider their high level of symmetry. These iso-
tropic structures are resulting from a good compromise between
shear and tensile stiffness constants. This in turn, comes directly
from the high connectivity in the areas E and G.

3.4. Experimental validation through a specific case

For both porous and bulk samples, tests were conducted with a load-
ing direction along the building direction for compression, and with a
shear plane normal to the building direction for torsion tests. The tests
lead to a value of 116.32%"7¢ GPa for Young modulus and 45.20*
184GPa for shear modulus. These values will be used as reference for
the determination of relative stiffness.

Fig. 10 shows the different experimental results. Numerical points
are calculated by using respectively Eq. (4) for Young modulus and
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Eq. (5) for shear modulus. The red dashed line corresponds to numerical
fitting with the associated equations:

E— =1.91

p (7)

G=0.01103xp"™ (8)

whereE = / En,ﬁ =7/, andG = ¢ / . with Eg and G corresponding

to the Young and shear modulus of the bulk material determined previ-
ously; E* and G* corresponding to the values obtained for the different
tests; p* and po corresponding respectively to porous samples density
and bulk samples density. Globally the numerical model tends to be in
very good agreement with experimental results. In term of relative den-
sity, deviations between numerical model and SLM manufactured sam-
ples are —1.20%, +0.32% and 1.56% respectively for the designed values
of 24.1%, 37.0% and 44.7%. The structure (0.25, 0.25, 0.5) seems to pos-
sess a good manufacturability. This structure only possesses two strut
orientations of 67° and 36° in respect to the building direction. Struts
with a tilt angle of 36° are commonly accepted within the range of man-
ufacturability. On the contrary the struts with a tilt angle of 67° are
under the common criterion of 30° to the building plate. Good manufac-
turability comes probably from the rather low strut length in this struc-
ture, reducing the overhanging fraction and canceling out the negative
effects of high tilt angle values. Readers may notice that the observed
deviations are not monotonous according to the relative density.
These reveals that inerrant defects associated to the manufacturing
have different natures or different levels of significance, depending on
the tested densities levels.

In Fig. 10a we can see that when the manufactured density is higher
than the target values, then the stiffness is also higher for the two
highest density levels. For density equal to 24%, the measured densities
are higher than the nominal ones, surprisingly the associated stiffness is
also above the trend. In term of shear modulus for the lower levels of
density, the decrease of density induces a slight decrease of shear mod-
ulus. On the contrary, for the two other density levels, the shear modu-
lus is lower than the predicted one despite a higher density than the
target. These second observations can be an indicator that different
types of defects are induced during manufacturing. The specific effect
of each type of defect is not constant in regard to the relative density.
In addition, the influence of defects on compressive and shear stiffness
tend to be different.

To sum up, experimental testing proved a satisfactory reliability of
the numerical model. Despite this good result, it is important to notice

that the difference between numerical model and SLM manufactured
samples highlights the occurrence of defect with different nature and
proportion regarding the relative density. A further study dedicated to
the determination and quantification of defects associated to SLM pro-
cess will be necessary. It also seems necessary to perform an experimen-
tal validation on topologies having struts orientations lower than 30° in
respect to the building plate.

3.5. Global discussion around the elastic properties of cubic lattices
structures

In this section, we propose to sum up all the previous results to give a
general overview of the possibilities in term of 3D elastic behavior for
cubic lattices structures generated using m3m point group. This over-
view is leading to six specific cases resulting from the previously pre-
sented maps. These domains are illustrated in Fig. 11. We detail briefly
the particularity of each area regarding the topologies and connectivi-
ties, the stiffness constants decreasing parameters, and the anisotropy
of properties.

Isotropic area: Structures having a good isotropy of properties at low
range of density, mostly for (x = 0.25;y = 0.25and x = 0.2; y = 0.3). 1t
is mainly explained by the high connectivity of these structures, caused

Bl |sotropic area
B Shear friendly

Tensile friendly
0 Auxetic area
M Weakarea

Y parameter

X parameter

Fig. 11. Map of different behaviors obtained for the cubic lattice.
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by a connection with neighbored lattice, and specific struts length. They
present a suitable compromise between compressions and shears load-
ings, and they appear to be good candidates for multiaxial loading.

Shear friendly behavior: Topologies that were associated to diag-
structure (neighbored topologies and some of cross-shaped structures):
they present a slower decrease of C44 compared to the two other con-
stants. It is attributed to an important fraction of struts oriented in the
direction of shear loading. It results in good performances in term of
shear modulus balanced by a strong anisotropy of their properties.

Tensile friendly behavior: It is a very similar category to the previous
one, but associated to the tensile/compressive aptitude of lattice. These
topologies are degraded variations of the primitive cube, which presents
a large proportion of strut axially distributed to the loading direction (or
slightly misaligned). They also present a strong anisotropy of their
properties.

Auxetic area: This area presents re-entrant topologies which leads to
auxetic effect. The appearance of this effect may be suggested by strong
decreasing of the C;; relative stiffness constant. It is to be noted that
using a power law blurs the complexity of the variations of Poisson
ratio, and the exact determination of the auxetic properties is difficult
to capture with my, alone.

Weak area: These structures present the smallest connectivity. It is
leading to a strong decrease of each stiffness constant, which conducts
to an important anisotropy of structures' properties. They may be seen
as soft-structures, with a very low specific stiffness. It may be interesting
for some problematic where very low elastic properties and large elastic
strain need to be reached (for example biomimetic and biomechanics of
rigid and soft biomaterials, or in the case of vibration damping
applications).

4. Conclusions

In this study, a large database of cubic lattices structures has been
generated to produce a large panel of topologies. The following relevant
conclusions were drawn:

» We proposed here to determine lattices connectivity based on a
weighted average of the nodes network. Some specific families of to-
pologies with different levels of connectivity were identified and cor-
related to the mechanical properties.

» The use of a homogenization procedure allowed us to determine the
different elastic constants of the homogenized material. The modeling
work has revealed that the stiffness matrix always preserves the sym-
metry of the point group that was used to generate the structures. It
was shown that the dependence of elastic constants to the relative
density follows a power law. The domains corresponding to a low
value of my 1, my,, M44 0N color maps are directly correlated to the do-
mains of high connectivity. The optimal structure maximizing the
stiffness for the lowest density is the one minimizing the m parame-
ters for a given loading, It is interesting to notice that the optimal to-
pology varies with the nature of the loading: for the pure tensile
strain, the x = 0.0 and y = 0.0 (PC) is optimal, while for pure shear
strain the x = 0 0.5 and y = 0.5 (BCC) is optimal. Elastic constants
are determined within the framework of small strain, with a constant
cubic architecture. Any deviation from this work hypothesis would re-
quire using continuum models such as micro-dilatation. The estima-
tion of elastic constants holds for the initial linear stage of elastic
deformation.

A parameter quantifying the variation of anisotropic ratio (Zener

ratio) was determined from the elastic constants. It was shown that

some topologies preserve an attractive isotropy for interestingly low

densities below 16%.

The experimental validation of the numerical model on a specific case

shows a good agreement with the theoretical result. However, some

discrepancy was observed, and it is attributed to the geometric devia-
tion in the manufactured topology.

* The cross-correlation of all color maps including connectivity, elastic
constants variations, and anisotropy variation highlight the existence
of different behavior families: isotropic, tensile friendly, shear
friendly, auxetic, and weak.
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