
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/16315

To cite this version :

Carolina RENGIFO, Jean-Rémy CHARDONNET, Hakim MOHELLEBI, Damien PAILLOT, Andras
KEMENY - Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing
Algorithm - In: 2019 International Conference on Robotics and Automation (ICRA), Canada, 2019-
05-20 - IEEE International Conference on Robotics and Automation (ICRA) - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/16315
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/

Feasibility Analysis For Constrained Model Predictive Control
Based Motion Cueing Algorithm

Carolina Rengifo1,2, Jean-Rémy Chardonnet2, Hakim Mohellebi1, Damien Paillot3 and Andras Kemeny1,2

Abstract—This paper deals with motion control for an 8-
degree-of-freedom (DOF) high performance driving simulator.
We formulate a constrained optimal control that defines the
dynamical behavior of the system. Furthermore, the paper
brings together various methodologies for addressing feasibility
issues arising in implicit model predictive control-based motion
cueing algorithms.

The implementation of different techniques is described and
discussed subsequently. Several simulations are carried out in
the simulator platform. It is observed that the only technique
that can provide ensured closed-loop stability by assuring
feasibility over all prediction horizons is a braking law that
basically saturates the control inputs in the constrained form.

I. INTRODUCTION

The actuator capabilities and the workspace limits of driv-
ing simulators do not allow motion signals to be sent directly
from the driver to the simulator platform. Therefore, the so-
called Motion Cueing Algorithms (MCA) were created. Their
aim is to transform all trajectories generated by a dynamic
virtual model into the desired motion cues within the physical
limits by providing the most realistic motion cues.

Model Predictive Control (MPC) is one of few suitable
methods to handle this issue. The main advantage of the
MPC compared to previously used algorithms (classical,
adaptive and optimal) is its ability to handle input and state
constraints. Unlike optimal control techniques such as LQR
(Linear Quadratic Regulator), an MPC controller does not
guarantee closed-loop stability. The optimization problem
must guarantee a solution along the prediction horizon, oth-
erwise the applied control law could make the system states
become unstable, causing damage to the simulator’s structure
or even worse, to the driver. When there are only restrictions
in the input, a simple saturation can reassure the solution,
but when there are state constraints, the task becomes more
difficult since there is an inconsistency between the index
performance and the constraints.

One of the first techniques that guarantees closed-loop
stability if feasibility is also guaranteed is to complement the
cost function with a terminal state constraint equal to zero
[1]. Another approach is to introduce a terminal penalty equal
to the infinite horizon cost [2]. This condition can refer to

1Renault, Virtual Reality and Immersive Simulation Center, 78288 Guyan-
court, France {carolina.c.rengifo, hakim.mohellebi,
andras.kemeny}@renault.com

2LISPEN EA7515, Arts et Métiers, HESAM,
UBFC, Institut Image, 71100 Chalon-sur-Saône, France.
jean-remy.chardonnet@ensam.eu

3Université de Bourgogne, LISPEN EA7515, Arts et Métiers,
HESAM, UBFC, Institut Image, 71100 Chalon-sur-Saône, France
damien.paillot@u-bourgogne.fr

the solution of the Riccati difference equation as the terminal
penalty matrix in the cost function.

Regarding MCA, the MPC was first applied in [3], in
which the explicit offline procedure proposed in [4] is used
to find the invariant set of initial states from which the
system reaches an equilibrium point within a finite time.
This problem creates a subset of points defined for a bang-
bang control condition where the closed-loop system can
achieve states stability within their boundaries. In [5] an
explicit strategy for a 1 DOF optimization is implemented,
extended in [6] to a 2 DOF optimization problem using an
implicit strategy, in which a new stability condition is created
based on a braking law. In [7] a motion blocking strategy is
implemented by using different sampling frequencies in the
prediction. Other authors who use implicit MPC do not make
evident the conditions for which the problem is feasible [8],
[9] or simply consider states weighting as an alternative to
the existence of a control law [10].

It was shown that for processes with fast dynamics it is
preferable to implement explicit control strategies in which
the control law is found offline and applied online according
to the system initial states at each time-step [9]. But this
technique with LQ invariant sets is undesirable for the
trajectory tracking problem using a 2 DOF optimization,
as the computation of the admissible set may not converge
[5]. Therefore, in this paper, we will focus on different
conditions applied to create a standard implicit MPC-based
MCA that can handle constraints, maximize the platform’s
working space and stabilize the closed-loop system by finding
a feasible solution for the quadratic optimization problem
(QP). As far as we know, this is the first work that shows a
comparison between the available strategies.

This article is organized as follows: in section II we present
the mathematical model based on the platform and the human
perception motion. Section III offers a design to the MPC-
based MCA problem. Section IV provides some appreciations
of different strategies implemented in the MCA that are
dealing with feasibility issues and in Section V we present
all simulations results. The final section concludes the paper.

II. MATHEMATICAL MODEL
In this study, Renault’s ULTIMATE 8-DOF motion simu-

lator is considered, allowing three translations and rotations
along the x, y, and z axes from a hexapod platform and
two supplementary X and Y rails. The simulator is divided
into four subsystems, two independent DOFs corresponding
to the vertical axis and yaw and two coupled subsystems,
longitudinal/pitch and lateral/roll.

A. Platform dynamics

The driving simulator in this study is considered as an
ideal one, i.e., the dynamics of the platform is made by the
manufacturer and is perfect, therefore, the system could be
represented by a unit gain. However, in order to introduce
directly the platform position, velocity and acceleration, the
model for each linear x, y, z and rotational accelerations is
a double integrator with direct feed-through.

xsim(k + 1) =

Asim︷ ︸︸ ︷
1 ts 0 0
0 1 0 0
0 0 1 ts
0 0 0 1

xsim︷ ︸︸ ︷
p(k)
v(k)
θ(k)
ω(k)

+

Bsim︷ ︸︸ ︷
t2s
2 0
ts 0

0
t2s
2

0 ts

u︷ ︸︸ ︷[
ulin
urot

]

ysim =

[
1 0
0 1

] [
ulin
urot

]
(1)

We opted for this representation rather than a simple unit
gain in order to integrate the platform constraints into the
optimization problem. The states are the position p, speed
v, angle θ and angular speed ω. The outputs are the linear
ulin and rotational urot accelerations. Table I exposes the
performance of the dynamic platform along all degrees of
freedom.

TABLE I: Performance of Renault’s ULTIMATE simulator

Actuator/Rail limits Displacement Velocity Acceleration
Longitudinal/x 0.28m 0.7m/s 7.5m/s2

Lateral/y 0.26m 0.7m/s 7.5m/s2

Vertical/z 0.20m 0.4m/s 5.0m/s2

Roll 15◦ 40◦/s 300◦/s2

Pitch 15◦ 40◦/s 300◦/s2

Yaw 15◦ 60◦/s2 600◦/s2

X rail 2.6m 2m/s 5m/s2

Y rail 2.6m 3m/s 5m/s2

B. Human perception motion

In this part we use human perception to drive the motion
simulation, i.e., instead of taking the accelerations directly
from the virtual dynamic model, we will track the path of
the motion accelerations perceived in the simulator using a
human perception model.

The main motion sensors in humans are found in the
vestibular system which comprises two components. The
first is the semi-circular canals used to indicate rotational
accelerations and the second is the otoliths organs which
sense linear accelerations. The total perceived acceleration
(the rotational acceleration and the linear acceleration) leads
to a force, called the specific force.

For the semicircular canals a transfer function that links
the angular velocity perceived by the driver ω̂ and the real
angular velocity ω is used as follows:

ω̂

ω
=

GcscτLτas
2(1 + τls)

(1 + τas)(1 + τLs)(1 + τss)
(2)

This model contains different time constants that are
mostly based on subjective responses: the long time constant

τL, the short time constant τs, an adaptation operator τa and
the lead term τl to avoid vibration effects. We use the values
and model described in more detail in [11]. This transfer
function is implemented as a filter for the three rotations
angles along the x, y, z axes; roll, pitch and yaw respectively.
The result is added to the tilt angles from the specific forces
and then saturated to avoid exceeding the limits in Table I.

For the otoliths model, the input is the specific force
f (head linear acceleration) and the output is the sensed
specific force f̂ . The transfer function that best represents
the relationship between these two stimuli is:

f̂

f
=

Goto(τaotos+ 1)

(τLotos+ 1)(τsotos+ 1)
(3)

The parameters in (3) are taken from the same reference as
the one used for the semicircular canals [11].

The otoliths perceive both linear acceleration and head
inclination, as a linear acceleration. This discrepancy allows
us to restore an illusory sensation of linear accelerations by
tilting the platform as shown in Fig. 1. A threshold for motion
perception must be integrated so that the driver does not
perceive the vestibular cues.

Fig. 1: Tilt platform along the longitudinal acceleration

In that sense, the linear specific force along the three axes
is perceived by the otoliths as

fx = ax + gsin(θ) (4)
fy = ay − gsin(φ)cos(θ) (5)
fz = az − gcos(θ)cos(φ) (6)

where ax, ay , az , represents the translation acceleration
vector components along the x, y and z axes, φ and θ are
respectively, the rotation angle around the y and x axes and
g represents the gravity.

Now, we will only take the x axis as an example since the
others are done in the same way. Assuming small angles, the
Laplace form for the specific force is

fx(s) = ulin(s) +
g

s2
urot(s) (7)

Replacing (7) into (3) we obtain

f̂x =
Goto(τaotos+ 1)

(τLotos+ 1)(τsotos+ 1)

[
ulin(s) +

g

s2
urot(s)

]
(8)

and the system space states form

˙xoto =

Aoto︷ ︸︸ ︷
−T3oto 1 0 0
−T4oto 0 1 0

0 0 0 1
0 0 0 0

xoto +

Boto︷ ︸︸ ︷
T1oto 0
T2oto 0

0 gT1oto
0 gT2oto

[ulinurot

]

yoto =

Coto︷ ︸︸ ︷[
1 0 0 0

]
xoto

(9)

where

T1oto =
Gotoτaoto
τLotoτsoto

, T2oto =
Goto

τLotoτsoto
,

T3oto =
τLoto + τsoto
τLotoτsoto

, T4oto =
1

τLotoτsoto

The system (9) is augmented with the platform dynamics
(1) in order to include each simulator state and thus add the
physical constraints in each period of time. With this mod-
ification, we get a unique system for the longitudinal/pitch
and the lateral/roll DOFs in which the output f̂ is obtained
from the inputs, ulin and urot.

˙Xforce =

Aforce︷ ︸︸ ︷[
Aoto 0

0 Asim

] Xforce︷ ︸︸ ︷[
xoto
xsim

]
+

Bforce︷ ︸︸ ︷[
Boto
Bsim

] u︷ ︸︸ ︷[
ulin
urot

]

Yforce =

Cforce︷ ︸︸ ︷[
Coto 0

] [xoto
xsim

]
+

Dforce︷ ︸︸ ︷[
0 0

] [ulin
urot

] (10)

III. CONTROL DESIGN

The system (10) is represented as a linear time-invariant
(LTI) discrete-time system and is augmented with an embed-
ded integrator to give offset free tracking (see Appendix).

xk+1 = Axk +B∆uk

yk = Cxk +D∆uk
(11)

with state vector xk ∈ Rs, control ∆uk ∈ Rl, output yk ∈ Rt
and matrices (A,B) of compatible dimensions.

The vectors of the predicted output Y , the states X and
the future control ∆U are defined as follows:

X =
[
x(k + 1) x(k + 2) · · · x (k +Np)

]T
Y =

[
y(k + 1) y(k + 2) · · · y (k +Np)

]T
∆U =

[
∆u(k) ∆u(k + 1) · · · ∆u (k +Nu − 1)

]T
(12)

where Np denotes the prediction horizon (1 ≤ Np), Nu
denotes the control horizon (0 < Nu ≤ Np).

In terms of current states and future control increments,
the predictions take the form:

Y = Fxk +G∆U

X = Fxxk +Gx∆U
(13)

The matrices F, Fx, G,Gx are found recursively and depend
on the state space matrices. Then, the tracking objective

function implemented as a 2 DOF optimization to improve
motion fidelity is defined in the vector notation as

J = (Y −Rs)T Qδ (Y −Rs) + ∆UTQλ∆U +XTQqX
(14)

subject to:

xmin ≤ X ≤ xmax
ymin ≤ Y ≤ ymax

∆umin ≤ ∆U ≤ ∆umax

(15)

where Qδ > 0, Qλ > 0 and Qq > 0 are symmetric weighting
matrices of compatible dimensions for the tracking error (the
specific force deviation perceived during the simulation), the
control rate and the states respectively. With a given set-point
signal r(k) at sample time k, we get the reference trajectory
Rs. Since in most cases it is difficult to have the future
reference available as it depends on the driver’s behavior,
Rs remains constant over the prediction horizon Np.

RTs = r(k)× [1, · · · , 1]1×Np
(16)

Replacing from (14) the predicted output Y , the predicted
states X and removing all the terms that do not depend on the
decision variables vector ∆U [12], the cost function obtained
has the form

J = ∆UT
(
GTQδG+Qλ +Gx

TQqGx
)

∆U

+2
(

(Fx (k)−Rs)T QδG+ (Fxx (k))
T
QqGx

)
∆U

The QP problem with constraints remains:

minimize J =
1

2
∆UTH∆U + fT∆U

subject to Ac∆U ≤ b
(17)

where,

∆U ∈ Rn, f ∈ Rn, b ∈ Rm, Ac ∈ Rm×n

The H matrix is symmetric positive definite n × n. The
matrix equation Ac∆U ≤ b contains all the linear inequality
constraints (15), therefore the feasible set is polyhedral.

We consider two different constraints types: hard and soft
constraints. The first one cannot under any condition be
violated and they include all platform physical constraints
(15). The second one should be satisfied if possible and
are relaxed when the hard constraints are conflicting; the
weighting matrices are part of this group and these are
presented in the cost function to penalize their violation. In
our problem the states and input constraints are referred as
both hard and soft constraints.

In the MPC, an open-loop control action sequence ∆U is
obtained by solving, at each sampling time, a cost function
(17) over a finite horizon Np. Only the first optimal control
in the sequence is applied to the plant to ensure a feedback
loop while the remaining optimal inputs are discarded. The
next time step, a new optimal control sequence is solved with
a different initial state, leading to a receding horizon control
[13]. An active set method implemented in the qpOASES
tool [14] has been chosen to deal with the optimization.

A. Nonuniform prediction window

When the reference signal is a positive acceleration and the
platform is close to its limits, the platform must slow down
with an acceleration below the human motion threshold to
prevent the driver from perceiving false cues. This technique
is called washout. Based on the literature we use −0.2m/s2

as the acceleration limit in the washout phase [15].
According to previous MPC-based MCAs [16] and taking

into account the limits of the platform shown in Table
I, an Np between 7-14 seconds can be enough for the
platform with our technical conditions to stop moving before
reaching its limits in position. Considering this interval and
a control frequency of 100 Hz (required for a real-time
implementation), we get an optimization problem that cannot
been solved in real time due to high computational cost.

For this purpose, we use a nonuniform sampling frequency
along the prediction window. The method consists in apply-
ing two different frequencies when dicretizing the system and
the constraints (11). The first sampling period ts1 is the same
as the optimization step (0.01s) and will be fixed in the first
10 steps. For the second ts2 a simulation is performed: we fix
the prediction time to 7.1s, and vary the prediction horizon
Np and ts2 in order to achieve the required prediction time.
Table II summarizes the simulation conditions.

TABLE II: Different sampling frequencies for a same pre-
diction time

ts1*(size) ts2*(size) Np size Prediction time (s)
0.01*(10) 0.5*(140) 150 7.1
0.01*(10) 0.1*(70) 80 7.1
0.01*(10) 0.15*(47) 57 7.1
0.01*(10) 0.2*(35) 45 7.1

Figure 2 shows the closed-loop responses using different
frequencies in the nonuniform prediction horizon. The input
corresponds to scenario 3 defined in section V. We see that
the smaller ts2, the greater the reference tracking, however
it generates a higher computational cost since the size of
Np is bigger. We choose then 0.1 for ts2, as it is small
enough to capture adequately the dynamics of the process
without any oscillations, allowing real-time implementation
and good trajectory tracking. We also note from Fig. 2
that the reference is not fully followed, as there are strong
restrictions in the states.

B. Algorithm tuning

The states and human motion thresholds are too restrictive
and have influence on the region for which the problem can
find a valid solution ∆U . Therefore we use tuning parameters
that will define the control law and therefore the behavior of
the closed-loop system.

Tuning consists in choosing the weighting matrices Qδ ,
Qλ, Qq and the horizons Np, Nu from the target function
(14). Unfortunately, decision making is intuitive and based
on trial-error experiences. In this study, all parameters will
remain the same for Section IV.

Fig. 2: Closed-loop responses using different frequencies in
the nonuniform prediction horizon

IV. COMPARATIVE STRATEGIES
This section aims at explaining and showing some of

the strategies applied in the MPC-based MCA to enforce
feasibility and possibly ensure stability, since the Lyapounov
stability proof applies in the presence of constraints if the
solution is feasible over the whole prediction horizon. Nor-
mally two techniques are used, the terminal constraints and
the terminal penalties in the cost function. We consider for
all techniques the same tuning parameters mentioned in the
previous section. The terminal penalty may vary depending
on the implemented technique.

A. Terminal zero state constraints

This is the first method to guarantee stability to nonlinear
MPC problems. The idea is to force all platform physical
limits to return to the origin (zero in this case). The condition
is applied directly in the optimization problem (17) in the
form of hard constraints:

x(t+Np) = 0 (18)

B. Invariant set

The equality zero terminal constraint can be relaxed by
using a potential constraint set for the constrained LQ optimal
control problem. There is a possible set of initial states
in which the constraints are respected along the system
trajectory. It is set around the origin and constrains the
terminal state to stay in the set. The set is polyhedral, i.e.,
defined by linear inequalities, thus it can easily be put into
the QP problem.

This region XF aims at changing the states constraints
at every sample time by following a washout technique
condition [3]:

Xf =

{
pk ≤ pmax − v2k

2as
, vk ≥ 0

pk ≤ v2k
2as
− pmax, vk < 0

(19)

where pk and vk represent the position and velocity at sample
time k and as is the acceleration threshold. The same analogy
is implemented for the angle constraints.

C. Braking law

Fang et al. proposed a different stability condition [16].
Their approach can verify a solution along the prediction
horizon using a braking law once the platform approaches
its limits. This law can be compared to an adaptive filter that
modifies the acceleration limits at each sample time depend-
ing on the current position pk/θk, the current velocity vk/θ̇k
and their respective limits. This law allows the platform to
return to its neutral position with a certain threshold while
respecting the limits in position, velocity and acceleration.
This condition is summarized as:

pmin ≤ pk + cvTvk + ca
T 2ulink

2
≤ pmax (20)

θmin ≤ θk + cvTωk + ca
T 2urotk

2
≤ θmax (21)

where cv , ca and T are tuning parameters that prevent the
platform from exceeding its limits. We chose the parameters,
so that there would always be a valid solution along the
prediction horizon, these are: cv = 4, ca = 2 and T = 1.2.
The difference between this technique and the invariant set
one is that here the constraints are applied more strictly to
the control inputs.

D. Terminal weighting matrix based on the LQR theory

Consider the following infinite unconstrained optimal con-
trol problem for the system (A, B) to be stabilizable

Jk =
1

2

Np−1∑
j=1

xTkQxk + ∆ukR∆uk +
1

2
xTNpPxNp (22)

where P is the solution for an infinite horizon and the unique
positive solution of the discrete algebraic Riccati equation

P = ATP −KT (R+BTPB)K +Q (23)

and K = (R+BTPB)−1BTPA is the corresponding gain.
Using P as the terminal state weighting matrix for the

finite time predicted horizon implies that the cost functions
is Lyapunov and then guarantees nominal stability in closed
loop. Here, the receding horizon controller with a large
enough control and prediction horizon behaves like an LQ
optimal control [13].

In the presence of constraints, the controller ∆U = Kx
does not necessarily satisfy the limits of the platform. In
that case, it is necessary to change the choice of Q and R
weighting matrices as these are the ones that will determine
the performance of the system in closed loop.

V. SIMULATION RESULTS

The SCANeR studio driving simulation software is applied
to generate different test scenarios and reference signals like
longitudinal and rotational accelerations. These signals are
sent from a virtual vehicle model to be processed by the
MCA and then sent to the simulation platform.

Three different scenarios that last 50 seconds each are
compared to evaluate the feasibility of the optimal solution
for the different techniques of Section IV. All scenarios

require both longitudinal motion with braking/acceleration
and lateral motion with steering vehicle control.

The first scenario Sce1 is a urban simulation consisting in
one intersection in which the vehicle must stop and then turn
left. The second scenario Sce2 is a highway simulation: the
vehicle goes at a constant speed following a car, passing it
and cutting into the right lane. The last scenario Sce3 is a
slalom type scenario with a constant acceleration of 2m/s2

during 10 seconds then a stop until null acceleration.
Table III shows the number of infeasibilities for all strate-

gies of Section IV and for each scenario described above.

TABLE III: Number of infeasibilities per strategy in different
scenarios

Strategies Infeasibilities number
Sce1 Sce2 Sce3

Zero terminal (S1) 0 8 1
Invariant condition 0 112 4
Invariant with P matrix (S2) 0 17 3
Braking law (S3) 0 0 0
Normal constraints 12 1212 345
Normal with P matrix (S4) 0 18 2

Restricting the states to be zero at the end of the horizon
(S1) results in very bad tracking as we can see in Figs. 3a,
3b and 3c since the limits on human perception prohibit high
variations in acceleration. With this condition, the feasibility
of the algorithm is not guaranteed as the region set for the
admissible states is very restrictive in the last step.

Invariant conditions generate more possible solutions but
by itself does not generate safe strategies. The ”normal
constraints” strategy refers to keeping a constant value for
the constraints; it is the most undesirable strategy as it leaves
a large number of unfeasible solutions. Adding the terminal
P matrix for invariant conditions (S2) and normal constraints
(S4) greatly improves the number of solutions but does not
ensure a solution over the entire prediction horizon.

The strategy with the braking law (S3) always finds a
solution and consequently it is assumed that the cost function
is a Lyapunov function ensuring closed loop stability. This
is a consequence of a constant change in the restrictions
directly to the control action, i.e., each sample is saturating
the control.

In the simulations (Fig. 3) we can observe the specific
force perceived in each scenario. Comparing this figure with
Table III we can observe the trade off between performance
and the number of feasible solutions.

Taking as an example only the second scenario, and eval-
uating the capabilities and limitations along x with respect
to the working space, we can see in Fig. 4 that the braking
law strategy does not completely maximize the workspace
and also does not provide the most optimal response for the
control and trajectory tracking. However, it is the only strat-
egy that ensures closed-loop stability through feasibility. It
should be noted that this depends greatly on the choice of the
parameters in the control law, consequently the performance
can be increased with the appropriate tuning.

(a)

(b)

(c)

Fig. 3: Comparison of the simulator outputs for all different
strategies in scenarios 1 (a), 2 (b) and 3 (c)

VI. CONCLUSION

In this paper different methodologies to handle feasibility
issues and possible stability in MPC-based MCA schemes
have been presented and discussed. A non-linear sampling
frequency is implemented in the system to obtain a long
enough prediction horizon and to achieve real-time execution.

Simulation results demonstrated that it is necessary to

Fig. 4: Longitudinal motion comparison: position,velocity
and acceleration in scenario 2

find a balance between maximizing the simulator’s working
space and the feasibility of the optimization problem. The
different strategies compared in this paper reflect that it is
recommended, if not necessary, to modify the way in which
restrictions are posed at each step time in the optimization
problem. If this is not possible, at least it is recommended to
apply a strong weight at the end of the prediction horizon.
Only an adequate constraint law applied directly in the
control input provides conditions to guarantee feasibility and
closed loop stability.

Future work will consist in performing experimental tests
to validate the level of acceptability of the optimization
method and the perception model used as the basis for predic-
tion. Also we aim at modifying the braking law parameters
in order to get optimal performance and ensure stability of
the system even in the most critical driving situations.

APPENDIX

Consider the LTI system

xm(k + 1) = Amxm(k) +Bmu(k)

y(k) = Cmxm(k) +Dmu(k)

Then, the system is augmented to include an integral action
in the plant model ensuring offset free tracking in the steady
state [17]. Now, the model input ∆uk is the control increment
instead of the control signal u(k). In the next system, Im
represents the unit matrix.

xk+1︷ ︸︸ ︷[
xm(k + 1)
u(k)

]
=

A︷ ︸︸ ︷[
Am Bm
0m Im

] xk︷ ︸︸ ︷[
xm(k)
u(k − 1)

]

+

B︷ ︸︸ ︷[
Bm
Im

]
∆uk

yk =

C︷ ︸︸ ︷[
Cm Dm

] [xm(k)
u(k − 1)

]
+D∆uk

REFERENCES

[1] W. Kwon and A. Pearson, “A modified quadratic cost problem and
feedback stabilization of a linear system,” IEEE Transactions on
Automatic Control, vol. 22, pp. 838–842, Oct. 1977.

[2] W. H. Kwon, A. M. Brucktein, and T. Kailath, “Stabilizing State-
Feedback Desing Via The Moving Horizon Method,” in 21st IEEE
Conference on Decision and Control, pp. 234–239, 1982.

[3] M. Dagdelen, G. Reymond, A. Kemeny, B. M., and N. Mazi, “MPC
Based motion cueing algorithm: developpement and application to the
ULTIMATE driving simulator,” in DSC 2004 Europe, pp. 221–233,
2004.

[4] P.-O. Gutman and M. Cwikel, “An algorithm to find maximal state
constraint sets for discrete-time linear dynamical systems with bounded
controls and states,” IEEE Transactions on Automatic Control, vol. 32,
pp. 251–254, Mar. 1987.

[5] Z. Fang and A. Kemeny, “Explicit MPC motion cueing algorithm for
real-time driving simulator,” in Power Electronics and Motion Control
Conference (IPEMC), 2012 7th International, vol. 2, pp. 874–878,
IEEE, 2012.

[6] Z. Fang and A. Kemeny, “An efficient Model Predictive Control-based
motion cueing algorithm for the driving simulator,” SIMULATION,
vol. 92, pp. 1025–1033, Nov. 2016.

[7] F. Maran, M. Bruschetta, and A. Beghi, “Study of a real-time,
MPC based motion cueing procedure with time-varying prediction for
different classes of drivers,” in American Control Conference (ACC),
pp. 1711–1716, IEEE, July 2016.

[8] B. D. C. Augusto, “Motion cueing in the Chalmers driving simulator:
An optimization-based control approach,” Master’s thesis, Technical
University of Lisbon, 2009.

[9] A. Beghi, M. Bruschetta, and F. Maran, “A real time implementation
of MPC based Motion Cueing strategy for driving simulators,” in
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
pp. 6340–6345, IEEE, 2012.

[10] M. Baseggio, A. Beghi, M. Bruschetta, F. Maran, and D. Minen, “An
MPC approach to the design of motion cueing algorithms for driving
simulators,” in Intelligent Transportation Systems (ITSC), 2011 14th
International IEEE Conference on, pp. 692–697, IEEE, 2011.

[11] R. J. Telban and F. M. Cardullo, “Motion cueing algorithm develop-
ment: Human-centered linear and nonlinear approaches,” Tech. Rep.
CR-2005-213747, NASA, 2005.

[12] C. Rengifo, J.-R. Chardonnet, D. Paillot, H. Mohellebi, and A. Ke-
meny, “Solving the Constrained Problem in Model Predictive Control
based Motion Cueing Algorithm with a Neural Network Approach,” in
17th Driving Simulation & Virtual Reality Conference & Exhibition,
pp. 63–69, Sept. 2018.

[13] C. Bordons and E. Camacho, Model predictive control. Springer Verlag
London Limited, 2007.

[14] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic pro-
gramming,” Mathematical Programming Computation, vol. 6, no. 4,
pp. 327–363, 2014.

[15] S.-H. Chen and L.-C. Fu, “An optimal washout filter design for a
motion platform with senseless and angular scaling maneuvers,” in
American Control Conference (ACC), 2010, pp. 4295–4300, IEEE,
2010.

[16] Z. Fang, M. Tsushima, E. Kitahara, N. Machida, D. Wautier, and
A. Kemeny, “Motion cueing algorithm for high performance driving
simulator using yaw table,” IFAC-PapersOnLine, vol. 50, pp. 15965–
15970, July 2017.

[17] J. A. Rossiter, Model-based predictive control: a practical approach.
Control series, Boca Raton: CRC Press, 2003.

