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Abstract. Coastal exploitation and human-mediated modifications have markedly altered the commu-
nity composition and functioning of coastal wetlands worldwide. Although recent work has shown that
harnessing positive density-dependent feedbacks can greatly enhance the recovery of habitat-modifying
species in degraded wetlands, the role of these intraspecific feedbacks in explaining the persistence of
altered, unfavorable plant communities remains largely unexplored. Here, we experimentally tested
whether intraspecific facilitation may explain the persistence of common reed (Phragmites australis) in
human-modified coastal wetlands. We performed a full-factorial mesocosm experiment crossing low-den-
sity pioneer versus high-density established development stages with saline (20 psu) versus freshwater
conditions. Results showed a clear shift in plant growth response from intraspecific competition under
freshwater conditions to self-facilitation in saline treatments. We identified two positive feedback mecha-
nisms enabling the established treatment to overcome salinity stress: (1) Enhanced root oxygenation of the
sediment at higher plant density decreased accumulation and intrusion of phytotoxic sulfide, and (2) den-
sity-dependent rainwater infiltration into the soil lowered salinity in the dense root mat, preventing salt
stress. Our study demonstrates that intraspecific facilitation can be an important factor in explaining the
persistence of Phragmites australis in coastal wetlands. We emphasize the importance of integrating positive
interactions in coastal restoration but argue that they should either be harnessed when restoring vegetation
or broken when eradication of nontarget species is the management objective.
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feedbacks; sulfide toxicity.
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INTRODUCTION

Coastal wetlands provide numerous vital
ecosystem services, including coastal flood pro-
tection, carbon storage, water purification, and
the provision of staging, nesting, or nursery habi-
tat for waterbirds and fish species (Beck et al.
2001, Zedler and Kercher 2005, Ma et al. 2010,

Barbier et al. 2011, Hopkinson et al. 2012, Cost-
anza et al. 2014). However, these valuable
ecosystems have degraded extensively over the
last centuries and are still declining at alarming
rates—with over 60% lost in the last century—
primarily as a result of human activities such as
wetland exploitation and conversion to agricul-
tural land (Bertness et al. 2002, Lotze et al. 2006,
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Gedan et al. 2009, Silliman et al. 2012, Davidson
2014, Sheaves et al. 2014, Dixon et al. 2016). For
example, human manipulation of natural hydro-
dynamic processes, through the construction of
dikes or dams, has altered plant community com-
position by reducing the influence of seawater and
preventing the storm-mediated transport of
organic material (Gedan et al. 2009). Shifts in habi-
tat-modifying (i.e., ecosystem engineering) species
abundance can have far-reaching ecological and
economic effects when they affect natural ecosys-
tem processes such as surface accretion, carbon
storage, or food web structure (Kirwan and Mego-
nigal 2013, Osland et al. 2014, Park et al. 2017).

Although it is now increasingly acknowledged
that the loss of natural coastal wetlands should
be reversed, restoration of degraded wetlands
has been proven to be notoriously difficult.
Despite the $1,040,000 (2010 USD) per hectare
investment, ~40% of restoration attempts do not
result in successful rehabilitation of target species
(Bayraktarov et al. 2016). An important underly-
ing reason for this low investment–success ratio
is the tight coupling between habitat-forming
species and their physical environment, in which
a higher density of habitat modifiers improves
environmental conditions accordingly (i.e.,
intraspecific facilitation; Suding et al. 2004, Silli-
man et al. 2015). In degraded and barren wet-
lands, the harsh environmental conditions—for
example, high soil salinity/sulfide levels and
wave exposure—inhibit vegetation re-establish-
ment and restoration is rarely successful (Howes
et al. 1986, Bouma et al. 2009). Recent work has
shown that restoration success in unvegetated
wetlands can be significantly increased by adopt-
ing planting designs that are aimed at maximiz-
ing positive interactions—by clumping plants in
dense aggregations—rather than spacing them
out to minimize potential negative interactions
(Silliman et al. 2015). However, to what extent
intraspecific facilitation increases the persistence
of nontarget plant communities in human-modi-
fied wetlands remains largely unexplored. Yet, if
the nontarget plant community can increase its
environmental tolerance range by modifying its
physical environment, restoration of the original
abiotic conditions by, for example, removing
dikes or lowering nutrient loading may not suf-
fice to restore the pre-disturbance ecosystem
community and functions.

Here, we examined whether intraspecific facili-
tation may be key factor in explaining the persis-
tence of native common reed, Phragmites australis
(Cav.) Trin. Ex Steud., (hereafter Phragmites) in
modified coastal wetlands (see Appendix S1:
Fig. S1 for a graphical representation of our
hypothesis). Phragmites is known as a successful
invader in marine coastal zones and inland salt
marshes, causing extensive ecological and eco-
nomic damage (Zedler et al. 1990, Chambers
et al. 1999, Lynch and Saltonstall 2002, Altartouri
et al. 2014, Hazelton et al. 2014). Although the
well-known invasion of North American coastal
marshes is primarily caused by the introduction
of an aggressive Eurasian genotype (Saltonstall
2002), native strains in both the United States
and Europe are also expanding their ecological
range and are increasingly intruding and attain-
ing dominance in more saline environments
(Lynch and Saltonstall 2002, Altartouri et al.
2014). This habitat expansion has been attributed
to increasing anthropogenic disturbances in
coastal areas, leading to changes in hydrody-
namic processes (e.g., construction of dams or
drainage ditches), increased nutrient loading,
and decreased grazing pressure, that facilitate
the establishment of the species (van Deursen
and Drost 1990, Menard et al. 2002, Silliman and
Bertness 2004, Bart 2006, King et al. 2007). Once
established, however, Phragmites has proven to
be particularly difficult to remove and restoring
the abiotic conditions (e.g., tidal regime and
nutrient loading) alone may be insufficient to
rehabilitate the original halophytic communities
(Konisky and Burdick 2004, V�alega et al. 2008,
Hazelton et al. 2014). Thus far, this persistence
has been ascribed to increased physiological tol-
erance of the Eurasian invasive haplotype (Sal-
tonstall 2002, Vasquez et al. 2005) and mediation
of environmental stress through clonal integra-
tion, (Amsberry et al. 2000, Bart and Hartman
2000, Chambers et al. 2003). However, another
potential, yet untested, explanation could be that
Phragmites relies on density-dependent modifica-
tions of the edaphic conditions to mitigate physi-
ological stress in saline environments. Although
natural establishment of Phragmites in saline con-
ditions is very difficult, low-salinity windows in
disturbed coastal wetlands can promote initial
colonization after which intraspecific facilitation
may cause established Phragmites stands to
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persist after the pre-disturbed hydrodynamic
conditions are restored.

To test our hypothesis, we manipulated native
European common reed (Phragmites australis)
stands to reflect both established (clonally inte-
grated) and pioneer (unconnected rhizomal frag-
ments) stands and assigned them to freshwater
and saline conditions in a full-factorial design.
We used the relative growth and survival rates
as proxies to determine the success of both types
of Phragmites stands in overcoming the physio-
logical stress saline environments provide. In
addition, we collected detailed information on
both soil conditions and plant physiology to
identify possible feedback mechanisms.

MATERIALS AND METHODS

Site description
The experiment was conducted using plant

material from a mesohaline (11.1 � 0.1 psu at
time of collection; Appendix S1: Fig. S2) Phrag-
mites marsh on the Wadden Sea island of Schier-
monnikoog, The Netherlands (53°29051″N,
6°13010.6″E). The coastal Phragmites marsh is situ-
ated on a former beach plain behind a man-made
sand-drift dike, which has altered the inundation
regime of the back-barrier marsh since 1959. The
reduced influence of seawater intrusion and the
increased potential for freshwater seepage in the
area led initially to the establishment of species-
rich mosaics of halophyte and calciphyte plant
communities (van Tooren et al. 1993). However,
over time, the isolated setting of the modified
back-barrier marsh prevented the transport of
organic matter out of the system and favored the
establishment of more late-successional species
such as Phragmites. The first sightings of Phrag-
mites in this area date back to 1982, and since
then, it has rapidly taken over the marsh replac-
ing former biodiverse communities (see
Appendix S1: Fig. S3 for the observed Phragmites
distributions over time; van Tooren et al. 1993,
Pranger and Tolman 2012). Due to the presence
of the artificial sand barrier, which obstructs sea-
water flow from the North Sea, seawater now
only intrudes the marsh during spring-tide-
related storm surges, when the water table is
raised beyond 2.80 m above mean water level
(MWL). The relative low position of the area—
combined with a threshold at 2.80 m MWL at

the entrance of the marsh—prevents seawater
from flowing out of the system, and saline condi-
tions can prevail for several months. Depending
on the rainfall and evaporation rates, this can
result in strongly fluctuating salinity levels in the
upper soil layers (Olff et al. 1993, Reijers et al.
2019a, b; Appendix S1: Fig. S2).

Plant material
Intact winter-dormant (i.e., no live above-

ground biomass) common reed (Phragmites aus-
tralis) sods were cut in March 2015 from the
back-barrier marsh of Schiermonnikoog and
transported in 53 plastic containers (l:w:
h = 50 9 45 9 30 cm) to the greenhouse facility
of the Radboud University. The sods were cut in
close proximity from each other (total area
removed was ~24 m2) to minimize genetic differ-
ences between the experimental units. The dor-
mant culms that had died off after the previous
growing season were cut at ~5 cm above the
ground to standardize starting conditions, while
ensuring that they remained above water level.
The pioneer treatment was created by first care-
fully removing the entire rhizomal network from
a randomly selected subset of half of the experi-
mental units, after which five healthy rhizomal
fragments (12.28 � 2.12 g FW; 21.02 � 1.94 cm
length) were replanted in the original soil of each
manipulated unit. Although the soil of the pio-
neer treatments was inevitably disturbed during
the removal of the rhizomal network, the soil of
the established treatments was likewise dis-
turbed when we manually removed all bulbs,
roots, and rhizomes of other species (e.g., Bol-
boschoenus maritimus, Agrostis stolonifera, and
Potentilla anserina). Both the established and pio-
neer treatments were flushed repeatedly with
rainwater and kept at freshwater (1.2 � 0.1 psu)
conditions during a 10-week acclimation period.

Experimental setup
The potential importance of intraspecific facili-

tation in mitigating the negative effects of saline
conditions was tested by crossing the two Phrag-
mites treatments (pioneer vs. established) with
both saline and freshwater conditions in a 2 9 2
factorial design. This full-factorial design yielded
four treatment combinations: pioneer saline (PS),
pioneer freshwater (PF), established saline (ES),
and established freshwater (EF), with 13 (PS; PF;
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EF) to 14 replicates (ES) per treatment (see
Appendix S1: Fig. S4 for pictures taken at the
end of the experiment). For the saline treatment,
artificial diluted seawater (20 psu) was made by
dissolving synthetic sea salt (Tropic Marin Sea
salt, Tropic Marin, H€unenberg, Switzerland) in
deionized water. At the start of the experiment,
the salinity levels as measured in the porewater
were 19.4 � 3.5 psu for the pioneer saline treat-
ment and 20.3 � 2.7 psu for the established sal-
ine treatment with no significant difference
between the two (t22 = 0.78; P = 0.45). The fresh-
water treatments were kept at the initial salinity
levels obtained during the acclimation period,
which resulted in near-freshwater conditions
with 1.00 � 0.24 psu for the pioneer treatment
and 0.48 � 0.10 psu for the established treat-
ment. Moreover, at the end of the acclimation
period the length of the plants was 17.6 �
1.0 cm for the low-density pioneer treatment and
19.7 � 1.1 cm for the high-density established
treatment with no significant differences between
the two (t50 = 1.36; P = 0.18). The experiment
lasted for 39 d and was conducted at an open
greenhouse facility of the Radboud University,
where the experimental units were placed ran-
domly to control for potential differences in tem-
perature and light. The open greenhouse facility
—which has a roof but no walls—allows for
near-ambient conditions except for the direct
influence of rain. Watering was done manually
using deionized water to keep the plants under
constant waterlogged conditions at ~1 cm above
soil surface. During the experiment, all sods were
weeded once or twice a week to maintain mono-
cultures of Phragmites.

Plant analyses
To calculate their growth rates (cm/d), the

lengths of all individual shoots in the pioneer
treatment were measured at the start and at the
end of the experiment. For the established treat-
ments, ten randomly selected shoots were
marked and measured at the start of the experi-
ment and remeasured at the end. At the end of
the experiment, shoots with more than 20% liv-
ing tissue were classified as being alive, while the
others were considered deceased.

After the final harvest, aboveground tissue from
the measured shoots was pooled into a single sub-
sample (1.90 � 0.44 g FW) per experimental unit,

which was then freeze-dried, ground using a ball
mill (M301; Retsch, Haan, Germany), and stored
for further analyses. Subsequently, C and N con-
centrations were determined using an elemental
analyzer (Carlo Erba NA1500; Thermo Fisher Sci-
entific, Waltham, Massachusetts, USA), and stable
sulfur isotope ratios between 34S and 32S (d34S)
were analyzed using dynamic flash combustion
ratio mass spectroscopy (Thermo Scientific Delta
V Advantage plus EA 1110; Thermo Fisher Scien-
tific) with BaSO4 as a standard. Furthermore, con-
centrations of sulfur (S), sodium (Na), phosphorus
(P), and iron (Fe) were determined on 100 mg of
the aboveground plant material through digestion
with 4 mL of HNO3 (65%) and 1 mL of H2O2

(30%) in a microwave oven (MLS 1200 Mega;
Milestone, Sorisole, Italy), after which the samples
were diluted and analyzed using an inductively
coupled plasma emission (ICP) spectrophotome-
ter (ICP-OES iCAP 6000; Thermo Fisher Scien-
tific). Free proline concentration (a proxy for
osmotic stress) of the aboveground shoots was
determined by extraction using norvaline as inter-
nal standard on 50 mg freeze-dried material
according to van Dijk and Roelofs (1988). The
freeze-dried extracts were dissolved in 0.01 N
HCl and analyzed by high-performance liquid
chromatography (Varian 920-LC Analytical
HPLC; Varian, Palo Alto, California, USA).

Biogeochemical analyses
Sediment porewater samples were anaerobi-

cally collected at the end of the experiment using
60-mL vacuumed syringes connected to 10-cm
Rhizon samplers (Eijkelkamp, Giesbeek, The
Netherlands). Total sulfide concentrations in the
porewater were measured immediately after
sampling in a mixture of 50% sulfide anti-oxida-
tion-buffer and 50% sample, using an ion-specific
silver-sulfide electrode (Lamers et al. 1998). In
addition, concentrations of phosphate (PO4

3�),
nitrate (NO3

�), and ammonium (NH4
+) were

measured colorimetrically on an AutoAnalyzer 3
system (Bran & Luebbe, Norderstedt, Germany,
or Skalar and Seal AutoAnalyzer), using ammo-
nium molybdate-, sulfanilamide-, and salicylate-
based methods, respectively (Lamers et al. 1998).
After diluting (three times) and acidifying the
sample using 1% nitric acid (HNO3), the concen-
tration of iron (Fe) was measured using ICP spec-
trometry (Appendix S1: Fig. S5).
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Statistical analyses
All statistical analyses were performed using

the software program R (version 3.3.2, R Devel-
opment Core Team 2017). The interactive effects
of the saline conditions and Phragmites treatment
on both survival and growth of the shoots were
analyzed using generalized linear mixed models
(GLMMs, lme4 package in R) with a binary logis-
tic and a Gaussian distribution, respectively, and
with experimental unit as a random factor. For
fitting GLMMs, we first started by testing the
complete model with all treatments and interac-
tions and stepwise reduced the model by exclud-
ing nonsignificant interactions. As the complete
statistical models with all treatments and interac-
tions showed significant effects and interaction
for both response variables (i.e., growth and sur-
vival), no further model reduction was required.
Two-way factorial ANOVAs were conducted to
assess the main and interactive effects of saline
conditions and Phragmites treatment on different
biogeochemical and plant physiological parame-
ters. For every test, normality of the residuals
was checked and, if needed, the data were trans-
formed using a square root or Box–Cox transfor-
mation. P-values lower than 0.05 were considered
statistically significant.

RESULTS

Plant growth response
At the end of the experiment, all shoots in the

freshwater treatments were alive. The growth
rate differed between the Phragmites treatments
with the plants in the pioneer treatment having a
higher growth rate than the plants in the estab-
lished treatment (Fig. 1). In contrast, saline con-
ditions negatively impacted both the survival
and growth of Phragmites, but this effect was
much smaller in the established treatment com-
pared to the pioneer treatment (Fig. 1). In the
salinity treatment, shoot survival in the pioneer
treatment was reduced to 62%, whereas survival
in the established units remained very high at
97% (v2(1, N = 1016) = 157,796; P < 0.001; Fig. 1a).
The growth rates of the shoots were on average
80% lower in saline conditions compared to the
freshwater conditions (0.68 cm/d [F] vs. 0.15 cm/d
[S]; v2(1, N = 468) = 446; P < 0.001; Fig. 1b).
However, we found a strong interaction between
the type of Phragmites stand (pioneer vs.

established) and the conditions in which the
plants were grown (v2(1, N = 468) = 64; P <
0.001). Within the saline conditions, we found
plants in the established treatment to grow twice
as fast as the plants from the pioneer treatment
(0.19 cm/d [ES] vs. 0.10 cm/d [PS]). In the fresh-
water treatment, a reversed effect was found:
Plants in the pioneer treatment grew on average
48% faster than the plants in the established
treatment (0.82 cm/d [PF] vs. 0.55 cm/d [EF]).

Soil and plant physiochemical response
The addition of diluted seawater led to

increased salinity, and enhanced dissolved sulfide
levels (Fig. 2a, d). However, we found both stres-
sors to be significantly lower in the established
treatment compared to the pioneer. Porewater
salinity in the pioneer treatment increased over
the course of the experiment from 19.4 � 0.9 to
22.7 � 0.9 psu, whereas the salinity of the estab-
lished treatment decreased from 20.3 � 0.7 to
17.0 � 0.4 psu (F1,49 = 7.08; P = 0.010; Fig. 2a).
Proline concentrations in the shoots were strongly
enhanced in the salinity treatment (21.4 lmol/g
[S] vs. 1.51 lmol/g [F]; F1,49 = 361.14; P < 0.001;
Fig. 2b). In addition, we found an interaction of
type of Phragmites stand with the salinity treat-
ment, with two times higher proline concentra-
tions in the pioneer saline treatment (29.7 lmol/g
[PS] vs. 13.1 lmol/g [ES]; F1,47 = 7.09; P = 0.045).
The same was observed for the Na:K ratio, with
an on average fifteen times higher ratio in the
leaves of the plants grown under saline condi-
tions (0.89 [S] vs. 0.06 [F]; F1,48 = 364.14;
P < 0.001; Fig. 2c). Similar to proline, a strong
interaction effect of type of Phragmites stand with
salinity resulted in a strong increase of Na con-
centrations in the leaves in the pioneer treatment
(1.32 lmol/g [PS] vs. 0.47 lmol/g [ES]; F1,48 =
26.19; P < 0.001).
Porewater sulfide concentrations in the salinity

treatments were, on average, more than twice as
high in the pioneer versus the established units
(802 lmol/L [PS] vs. 315 lmol/L [ES]; F1,49 =
7.34; P = 0.009; Fig. 2d). The lower sulfide con-
centrations in the established units were accom-
panied with a 55% decrease of total sulfur
concentrations in the leaves (141.3 lmol/g [ES]
vs. 219.2 lmol/g [PS]; F1,48 = 12; P = 0.001;
Fig. 2e). Moreover, the d34S value in leaf tissue
was almost twice as low in the saline conditions
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(�17.3 [S] vs. �9.2 [F]; F1,47 = 341.4; P < 0.001;
Fig. 2f), reflecting higher sulfide uptake, and it
was almost 20% higher in the pioneer versus the
established community (�19.2 [PS] vs. �15.5
[ES]; F1,47 = 24.0; P < 0.001).

DISCUSSION

Despite the growing body of literature empha-
sizing the importance of intraspecific facilitation
for the functioning and stability of many natural

Fig. 1. Response of the individual shoots in both Phragmites treatments (pioneer vs. established) to fresh- and
saltwater conditions. (a) Percentage of alive shoots after 39 d and (b) the growth rate of the shoots. S, P, and
S 9 P represent main effects of salinity (S), Phragmites treatment (P), and their interactions, respectively. Error
bars represent +SE.

Fig. 2. Facilitative effects of Phragmites australis on both (a) porewater salinity and (d) porewater sulfide levels.
Intraspecific facilitation led to decreased salinity levels which mitigated osmotic stress as measured by (b) proline
levels and (c) Na:K ratio. Decreased sulfide levels led to (e) a lower total sulfur content of the shoots and (f) a
lower d34S, indicating lower sulfide uptake. S, P, and S 9 P represent main effects of salinity (S), Phragmites treat-
ment (P), and their interactions, respectively. Error bars represent +SE.
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ecosystems (Halpern et al. 2007, Silliman et al.
2015), its significance for explaining the persis-
tence of unfavorable plant communities such as
invasive species or weeds remains largely unex-
plored (Proenc�a et al. 2019). Here, we experi-
mentally demonstrate that, for Phragmites
australis, density-dependent biogeochemical feed-
backs strongly mitigate the negative effects of
seawater flooding and therefore enhance its
potential to persist in saline environments (see
Fig. 3 for a graphical representation of these
feedback mechanisms). In our experiment, we
observed a clear shift from density-dependent
competition in benign conditions to self-facilita-
tion under environmental stress. In the freshwa-
ter treatment, we found the pioneer stands to
have a higher growth rate compared to their
established counterparts. Although seawater
flooding negatively affected both the survival
and growth of Phragmites, we found these nega-
tive effects to be strongly reduced in established
Phragmites stands. Our findings show that in
modified coastal ecosystems, shifts in habitat-
forming species can be hard to reverse when
intraspecific facilitation allows the newly estab-
lished community to persist under a wide range
of environmental conditions. We therefore urge
the need to identify the underlying feedback
mechanisms to design appropriate restoration
efforts when restoration to a pre-disturbed state
is desired.

Environmental conditions in salt marshes are
detrimental to a wide range of species, as inun-
dation by seawater leads to high soil salinity and
anoxia. Both elevated salinity and anoxia-related
high sulfide levels (generated by high rates of
microbial sulfate reduction) are known to stunt
the growth of Phragmites (Chambers et al. 2003).
Whereas the majority of the plants in our pioneer
treatment died or visibly suffered under saline
conditions by losing photosynthetic tissue
(Fig. 1; Appendix S1: Fig. S4), plants in our estab-
lished treatment kept these two stressors at
innocuous levels. Nutrient levels could not
explain the observed effects (Appendix S1:
Fig. S5), but we identified two plausible facilita-
tive mechanisms for the observed stress allevia-
tion: (1) a higher rainwater infiltration rate in the
top layer of the intact Phragmites sods, leading to
a dilution of the dissolved salt levels in the root
mat, and (2) enhanced soil oxygenation

preventing the accumulation of phytotoxic sul-
fide (Fig. 2). Furthermore, measurements on the
physiological responses of the plants confirmed
that these were the most likely stress-alleviating
feedback mechanisms. We found the plants in
the established treatment to be able to overcome
ionic stress and sulfide toxicity, respectively, by:
(1) osmotic adjustment, preventing the uptake of
excess sodium, and (2) a decrease in total sulfur
content and, moreover, a lower fraction derived
from sulfide intrusion (Fig. 2).
Similar to what we observed in our experi-

ment, a positive feedback resulting from high
rainwater infiltration and low evaporation in

a b

 sulfidesalt

anoxic

oxic

inhibits
promotes

W
at

er
 

in
fil

tr
at

io
n

 sulfide

 sulfate

R
ad

ia
l o

xy
ge

n
lo

ss
es

salt 
dilution

Fig. 3. Graphical representation of the positive feed-
back mechanisms that increase the persistence of
established Phragmites communities in coastal wet-
lands that are subjected to seawater flooding. In the
pioneer community (a), the harsh edaphic conditions
(i.e., high salinity and sulfide levels) inhibit the growth
of Phragmites. In the established community (b), how-
ever, Phragmites is able to overcome the detrimental
edaphic conditions by (I) oxidizing the high soil sul-
fide levels by releasing oxygen from its roots and (II)
diluting the high salinity levels by increasing the rain-
water infiltration rate. Some of the symbols used in
this figure were provided and modified with the cour-
tesy of Tracey Saxby, IAN Image Library (ian.um-
ces.edu/imagelibrary).
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dense vegetation stands compared to sparsely
vegetated or bare soils is a well-known, ecosys-
tem-structuring phenomenon in many arid and
salt marsh ecosystems (HilleRisLambers et al.
2001, Qi et al. 2018). The extensive rhizome and
root systems of the plant likely created a more
open soil structure, increasing the soil’s water-
holding capacity and stimulating soil infiltration.
In addition, shading from the much higher plant
density may have also reduced evaporation. At
the start of our experiment, salinity levels in our
pioneer and established treatments were similar
(19.4 � 3.5 and 20.3 � 2.7 psu for the pioneer
and established treatments, respectively). How-
ever, in the pioneer treatments we witnessed a
15% increase in porewater salinity at the end of
the experiment, whereas the salinity levels in the
established treatments decreased by 15%
(Fig. 2a). Elevated salinity levels increase the
osmotic pressure of the porewater, which in turn
impairs the water and nutrient uptake of plant
species and may subsequently lead to ionic
imbalances or even toxicity (Hartzendorf and
Rolletschek 2001). We measured both the foliar
free proline levels and the K+ and Na+ concentra-
tions as a proxy for both osmotic adjustment and
induced ionic toxicity and found large differ-
ences between the two Phragmites treatments in
the saline conditions. Although the plants in the
pioneer treatment accumulated twice as much
proline, their Na+:K+ ratio was substantially
higher due to both a lower contribution of K+

and a twofold increase in Na+, indicating high
salinity stress in these treatments. In contrast,
both proline concentrations and Na+:K+ ratios in
the plant tissue were much lower in established
treatments, suggesting that habitat modification
by increasing infiltration and decreasing evapo-
ration rates can play an important role in escap-
ing salinity stress.

In saline coastal ecosystems, sediment organic
matter is decomposed by bacteria and archaea
that use the abundant sulfate from seawater as
an alternative electron acceptor instead of oxy-
gen and produce toxic sulfide as a metabolic end
product (Lamers et al. 2013). Radial oxygen
losses (ROL) from the roots of many marine
plants, such as cordgrass and seagrass, chemi-
cally oxidize sulfide in the rhizosphere, thereby
preventing the detrimental effects of sulfide
intrusion (Lee 2003, Calleja et al. 2007, van der

Heide et al. 2012). The observed threefold reduc-
tion of sulfide in the established Phragmites treat-
ment (below the value of 400 lmol/L known to be
toxic to Phragmites; Chambers 1997) compared to
the pioneer treatment in saline conditions can be
explained by density-dependent oxidation of the
sediment (Howes et al. 1986, van der Heide et al.
2010; Fig. 2d). This experimental finding links to
previous field studies on sulfide-mediated die-
backs of Phragmitesmarshes in Europe (Armstrong
et al. 1996, Armstrong and Armstrong 2001). The
authors reported a remarkably clumped configu-
ration of surviving plants in these degraded
marshes. Dense Phragmites clumps were some-
times still vigorous and their persistence was
speculated to be the result of locally enhanced
sediment oxygenation, preventing the patches
from succumbing, while high sulfide levels out-
side the patches limited lateral expansion. Our
experimental results support this hypothesis as
we detected a strong decrease in sulfide concen-
tration within the established Phragmites treat-
ments compared to their pioneer counterparts.
Moreover, plants in the pioneer treatment
showed a clear physiological response to sulfide
exposure as indicated by blackened root tips,
enhanced sulfur concentration in the leaf tissue,
and a lower d34S value (Fig. 2e, f), which indi-
cates enhanced sulfide intrusion (Carlson and
Forrest 1982, Holmer and Hasler-Sheetal 2014).
Overall, we conclude that dense Phragmites
stands can overcome sulfide toxicity by joint
detoxification through radial oxygen loss.
We identified two distinct density-dependent

self-reinforcing mechanisms—sulfide detoxifica-
tion and alleviation of salinity stress—that are
likely to act in concert or even synergistically to
increase Phragmites persistence in (restored) saline
coastal marshes. Although many habitat-modify-
ing species generate multiple feedbacks, the
potential importance of interactions between
feedbacks on ecosystem dynamics has only
recently been addressed by two studies (van de
Leemput et al. 2016, Maxwell et al. 2017). For
coastal and inland marshes dominated by Phrag-
mites, salinity stress may lead to sulfide accumu-
lation, because Phragmites plants that suffer from
ionic stress often exhibit stunted growth, which
in turn likely reduces radial oxygen losses to the
rhizosphere (Rolletschek and Hartzendorf 2000).
Furthermore, both sulfide toxicity and ionic stress
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can lead to impaired nutrient (N, P) uptake,
which may restrict plant growth (Lamers et al.
2013). In addition, Phragmites shows high genetic
variability between geographic regions, which
could potentially impact the strength of the
observed intraspecific facilitative mechanisms
(Hansen et al. 2007). Overall, we conclude that
the outcome of facilitative mechanisms is likely
context-dependent and may therefore differ
across contrasting environments and genotypes.
In our mesocosm experiment, for example, we
found a surprisingly strong shift from self-facili-
tation to competition. Whereas facilitation was
the dominant interaction type in the salinity treat-
ment, competition became the main driver in
freshwater conditions, as indicated by a slower
growth response in the established treatment
compared to the pioneer treatment. This finding
is in line with the stress-gradient hypothesis,
which predicts a shift from competition to facili-
tation with increasing physical stress levels (Bert-
ness and Callaway 1994, He et al. 2013). In our
mesocosm experiment, we tested only two salin-
ity levels (~ 0 vs. 20 psu), while in natural condi-
tions, salinity increases along a gradient over
which plant interactions gradually shift from
competition to facilitation with increasing salin-
ity. Facilitation finally collapses at salinity levels
exceeding the physiological tolerance of Phrag-
mites australis (Michalet et al. 2006, Qi et al. 2018;
Appendix S1: Fig. S1). So far, most experiments
on the stress-gradient hypothesis have been per-
formed in the field and focused on interspecific
facilitation enhancing biodiversity and productiv-
ity in plant communities (Bertness and Callaway
1994, Maestre et al. 2009). Recently, however, the
effects of intraspecific or self-facilitation are more
explicitly acknowledged (Fajardo and McIntire
2011, Qi et al. 2018, Proenc�a et al. 2019). Our
experimental setup allowed us to study the
effects of intraspecific facilitation without poten-
tial interactions with other species enabling us to
identify two positive feedback mechanisms that
can increase the persistence of a relatively salt-
intolerant species in saline field conditions.

Our study emphasizes that intraspecific facili-
tation may act as a double-edged sword in
restoration ecology, by increasing the resilience of
management target species but also complicating
the eradication or restoration of nontarget com-
munities. Recently, it was shown that harnessing

positive intraspecific interactions in restoration
designs—by clumping rather than spacing out
individuals—can greatly enhance restoration suc-
cesses of lost habitat-forming species in degraded
systems (Silliman et al. 2015, Harpenslager et al.
2016, de Paoli et al. 2017, Derksen-Hooijberg
et al. 2018). Our study underlines these previous
findings, but also calls for an extension of this
framework: Rather than harnessing positive inter-
actions, efforts to restore target species in ecosys-
tems dominated by unwanted habitat-modifying
species should be aimed at breaking these self-
facilitative feedback mechanisms. This requires a
change in management perspective as current
restoration practices are typically aimed at restor-
ing pre-disturbance abiotic conditions to rehabili-
tate the original plant community and ecosystem
functions (Zhao et al. 2016). This may, however,
be insufficient for coastal ecosystems invaded or
dominated by unwanted habitat-modifying spe-
cies. In such cases, we argue that for successful
restoration to pre-disturbed conditions, the first
aim should be on breaking the intra- or inter-
specific facilitative interactions of the nontarget
community. This can, for instance, be achieved by
temporarily increasing the environmental stress
beyond the species’ buffering capacity or by
actively removing biomass to initiate a collapse of
facilitative bonds (see Appendix S1: Fig. S1 for a
graphical representation; Michalet et al. 2006,
Halpern et al. 2007). Successful removal of the
nontarget community may then be followed up
by restoring the original communities, while tak-
ing their possible dependence on facilitative inter-
actions into account. Our study highlights the
critical role of intraspecific facilitation in coastal
wetlands. We therefore argue that active restora-
tion measures such as sod-cutting, the removal of
tidal restrictions, and extended periods of seawa-
ter intrusion are necessary to restore modified
wetlands to pre-disturbed conditions and rehabil-
itate the original halophytic communities.
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