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Gastric cancer is the fifth most common malignancy in the 
world, with nearly one million new cases of gastric cancer 
diagnosed every year.1 Curative treatment of gastric ad-
enocarcinoma consists of partial or total resection of the 
stomach combined with lymphadenectomy.2 Over the last 
years, multimodality treatment strategies such as neoad-
juvant chemo(radio)therapy, perioperative chemotherapy 
and adjuvant chemotherapy have gained importance in the 
treatment of gastric cancer by improving the likelihood of 
a radical tumor resection, disease free survival and overall 
survival.3–8 Unfortunately, the overall 5 year survival rate 
still remains poor (35–45%).4,9

Accurate staging of gastric cancer allows for selection of the 
most appropriate therapy, minimizes unnecessary surgery 
and maximizes the likelihood of benefit from the selected 
treatment. After initial diagnosis by gastroscopy with tumor 
biopsy, diagnostic work-up can consist of endoscopic 

ultrasonography (EUS), computed tomography (CT) and 
18F-fluorodeoxyglucose positron emission tomography 
(18F-FDG PET). However, these techniques all have their 
limitations. EUS is an invasive, highly operator-depen-
dent technique and does not detect distant metastases.10,11 
CT exposes patients to ionizing radiation and has poor 
soft-tissue contrast. 18F-FDG PET is impaired by the fact 
that not all gastric carcinomas are 18F-FDG-avid (avidity 
ranging from 42–96%) and has a low spatial resolution.12

Historically, the role of magnetic resonance imaging (MRI) 
in gastric cancer has been limited, since relatively long 
acquisition times and technical challenges of peristaltic 
motion and respiration artifacts resulted in poor imaging 
quality.13,14 With the continuous technical improvements 
in MRI scanning, including fast imaging techniques, 
(respiratory) motion compensation techniques, use of anti 
peristaltic agents and the introduction of functional MRI 
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Abstract

Accurate preoperative staging of gastric cancer and the assessment of tumor response to neoadjuvant treatment is 
of importance for treatment and prognosis. Current imaging techniques, mainly endoscopic ultrasonography (EUS), 
computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), have their limi-
tations. Historically, the role of magnetic resonance imaging (MRI) in gastric cancer has been limited, but with the 
continuous technical improvements, MRI has become a more potent imaging technique for gastrointestinal malig-
nancies. The accuracy of MRI for T- and N-staging of gastric cancer is similar to EUS and CT, making MRI a suitable 
alternative to other imaging strategies. There is limited evidence on the performance of MRI for M-staging of gastric 
cancer specifically, but MRI is widely used for diagnosing liver metastases and shows potential for diagnosing peri-
toneal seeding. Recent pilot studies showed that treatment response assessment as well as detection of lymph node 
metastases and systemic disease might benefit from functional MRI (e.g. diffusion weighted imaging and dynamic 
contrast enhancement). Regarding treatment guidance, additional value of MRI might be expected from its role in 
better defining clinical target volumes and setup verification with MR-guided radiation treatment.
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features (such as diffusion-weighted imaging [DWI]), MRI has 
become a more potent imaging technique for gastrointestinal 
malignancies.15,16 However, MRI is generally associated with 
higher costs, longer examination times and a lower robustness 
compared to other staging modalities.17

Numerous studies have addressed the diagnostic performance 
of MRI in preoperative staging for gastric cancer in recent liter-
ature. However, due to heterogeneity among studies in applied 
methodology and reported outcomes, the role of MRI for gastric 
cancer remains controversial. The aim of this review article is to 
outline the value of different imaging techniques for preopera-
tive staging and treatment response assessment in patients with 
gastric cancer, with an emphasis on the current role and future 
potential of MRI.

T- staging
Importance
Accurate assessment of local tumor invasion, or T-staging in the 
TNM classification system, is of importance to determine treat-
ment and prognosis for individual patients. Understaging might 
lead to tumor-positive resection margins and futile surgical 
attempts. Overstaging, however, could impair optimal care 
when a potentially curable patient is incorrectly categorized as 
incurable.17 In addition, specific knowledge of potential serosal 
involvement provides useful information regarding patient prog-
nosis.18–20 Finally, with the development of minimally invasive 
treatments for early gastric cancer (EGC), such as endoscopic 
mucosal resection, and the possibilities of neoadjuvant treat-
ment, the necessity of a precise imaging tool to evaluate the 
tumor invasion depth preoperatively is increasing.21

Current imaging
Endoscopic ultrasound (EUS) is frequently applied for preoper-
ative local staging of gastric cancer in patients without evidence 
of metastatic disease.22 EUS has the advantage that it can be 
combined with fine-needle aspiration (FNA) of suspected lymph 
nodes, but it remains highly operator dependent.23 In a system-
atic review including 23 EUS studies, diagnostic accuracy for 
overall T-staging in gastric cancer varied between 65 and 92.1%.22 
A pooled meta-analysis including 22 articles confirmed these 
results, with a pooled accuracy for T-staging with EUS of 75% 
(95% confidence interval [CI]: 71–80%).24 Sensitivity and speci-
ficity for assessing serosal involvement varied between 77.8 and 
100% and between 67.9 and 100%, respectively.22 These results 
are similar for a Cochrane meta-analysis including 50 studies (n 
= 4397), describing a sensitivity of 86% (95% CI: 81–90%) and 
specificity of 90% (95% CI: 87–93%) in differentiating between 
tumors with and without serosal invasion.25

CT is another commonly used technique to assess local tumor 
invasion. Advantages include short scanning times and visual-
ization of both the thorax and abdomen at the same time. Yet, 
CT provides poor soft-tissue contrast, requires intravenous 
contrast material and adequate distention of the stomach for 
dedicated image evaluation, and is always accompanied by expo-
sure to radiation.22 In terms of diagnostic accuracy in T-staging 
of gastric cancers, CT achieves similar results to EUS. The 

performance of CT for overall T-staging based on a review of the 
results of 6 studies found a diagnostic accuracy varying between 
77.1 and 88.9%.22 Sensitivity and specificity for assessing serosal 
involvement varied between 82.8 and 100% and between 80 and 
96.8%, respectively.22

A recent meta-analysis including eight studies (n = 1736) that 
compared EUS with CT in the same cohort, demonstrates equiv-
alent sensitivity and specificity for T-staging for both modali-
ties, with the exception of a significantly higher sensitivity for 
T1-staging for EUS (82% vs 41% for CT, p = 0.03).26

18F-FDG PET is currently not routinely indicated for evaluating 
the exact depth of tumor invasion, partly due to its low spatial 
resolution. Sensitivity rates for primary detection of gastric cancer 
using 18F-FDG PET varied between 58 and 94% among seven 
studies included in a review.27 Specificity ranged from 78–100% 
in this same review. Assessment of gastric cancer with 18F-FDG 
PET can be influenced by the absence of 18F-FDG-avidity of 
some gastric tumors, with percentages varying between 42–96% 
for 18F-FDG-avidity based on 18 studies included in a review.12 
This variance is associated with several clinicopathologic param-
eters, such as tumor stage, size, location and subtype.12,27

MRI
MRI is a promising technique with high performance in depicting 
different gastric wall layers and differentiation of tumor tissue 
from fibrosis, as described in an ex-vivo study using 7.0T MRI.28 
Gastric cancers appear as heterogeneous soft tissue masses on 
T1 weighted (T1W) MR images and show either decreased or 
increased enhancement relative to the background stomach on 
dynamic contrast-enhanced (DCE-)MRI.29 Gastric linitis plas-
tica tends to have a lower signal intensity than normal adjacent 
stomach tissue on T2W images due to its desmoplastic nature 
and enhances only modestly after intravenous gadolinium-based 
contrast. Furthermore, DCE-MRI can aid the identification of 
transmural spread, including peritoneal involvement.29 There 
is no worldwide consensus regarding the anatomical criteria 
that should be used to define tumor invasion on any imaging 
modality. The classification of the T-stages varies within the 
studies included in this review, and depends on the degree of 
enhancement of the tumor and different gastric wall layers.

An illustration of a primary gastric tumor on T2W images, as 
well as on DW-MRI and DCE-MRI, can be found in Figures 1A, 
B, 2A and B, respectively.

In total, 18 prospective studies describing the diagnostic perfor-
mance of MRI in determining tumor detection and stage are 
described in Table 1.30–47 Data on accuracy, sensitivity, speci-
ficity, predictive values, and over- and understaging are included. 
All studies used histopathology as reference standard.

The detectability of gastric cancer is strongly influenced by 
tumor size, T-stage, histologic subtype and enhancement pattern 
of the gastric wall.44 In one study, both anatomical MRI and 
DW-MRI were unable to locate the area of pathological tissue in 
all patients with pT1 tumors,35 another study reported detection 
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in 16% (7/43) of pT1 tumors by anatomical MRI and 21% (7/43) 
by combined anatomical MRI and DW-MRI.48 This was similar 
for CT (16%, 7/43) in a direct comparison between both modal-
ities in the latter study.48

The accuracy for correct assessment of T-stage varied from 64 to 
88%.32,34–47 With the addition of DWI to anatomical MRI (T1W 
and T2W) in one study, an increase of 7% in the accuracy of 
T-staging was reported.35 The accuracy for overall T-staging was 
significantly better for T2W, DCE and DW-MRI combined, than 
for T2W with only one of the functional sequences (either DCE 
or DW-MRI).37 Regarding DCE-MRI, a significant correlation 
between the parameter Ve (extravascular extracellular volume 
fraction) and T-stage was found.49 The use of a positive oral 
contrast agent (gadopentetate dimeglumine) instead of water did 
not increase diagnostic accuracy of T-staging.45

The detectability of gastric cancers, as well as the correct assess-
ment of T-stage, is likely to be influenced by knowledge of the 
gastroscopy results on tumor extent and location. In three studies, 
the readers were informed about the tumor location, which 
most likely increases the detectability of small and superficial 

gastric cancers.30,31,37 In two other studies, it was stated that 
the readers were blinded for clinical findings, however, it was 
unclear whether this includes gastroscopy results.41,45 All other 
included studies in Table  1 do no not report any information 
regarding blinding or non-blinding of the readers for gastros-
copy results.

The reported percentages of over- and understaging of the local 
tumor extent with MRI ranged between 0–33% and 0–21% 
across study populations, respectively (Table 1). Correct diag-
nosis of invasion of adjacent structures on MRI varied from 
40% (2/5) to 80% (8/10) in earlier studies, partly due to over-
looking the invasion of the mesocolon, transverse colon and 
pancreas in some cases.43,44 In one of these studies, only 20% 
of tumors that invaded adjacent structures were correctly iden-
tified by CT.43

The accuracy of MRI for correct identification of serosal inva-
sion varied between 77 and 100%, with positive predictive 
values (PPV), negative predictive values (NPV), sensitivities and 
specificities ranging from 67–100%, 71–100%, 50–100% and 
63–100%, respectively.32–35,37–43,46,47

Figure 1.Axial T2 weighted magnetic resonance images (A) and corresponding high signal on diffusion-weighted images (b = 800 
s/mm²) (B) of the primary gastric tumor and pathologic lymph node (red marking), as well as a coronal T2 weighted magnetic 
resonance image in one patient with cT3N1 gastric adenocarcinoma (C).

Figure 2.Preoperative dynamic contrast enhanced (DCE) magnetic resonance images in axial plane approximately 1.25 min after 
intravenous contrast injection of two patients with gastric cancer (A and B). Figure B shows increased motion-related artifacts 
compared to Figure A.
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The performance of MRI in T-staging was directly compared 
with CT in three independent studies.31,41,43 Accuracies were 
generally higher for MRI, however this difference was only 
proven to be statistically significant in one of these studies (85% 
for MRI versus 83% for CT [p = 1.00],31 73% for MRI versus 67% 
for helical CT [p > 0.05]43 and 81% for MRI versus 73% for spiral 
CT [p < 0.05].41 In addition, the performance of MRI was also 
directly compared with EUS in one of these studies.31 Although 
not statistically significant, a lower accuracy was demonstrated 
for EUS (85% for MRI versus 71% for EUS, p = 0.12).31 Sensi-
tivity rates of MRI and CT were significantly lower than of EUS 
(76% for MRI versus 94% for EUS [p = 0.08], and 65% for CT 
versus 94% for EUS [p = 0.02]). On the other hand, specificity 
rates were significantly higher for MRI and CT compared with 
EUS (89% for MRI versus 60% for EUS [p < 0.01], and 91% for 
CT versus 60% for EUS [p < 0.01]).31 The addition of either MRI 
or combined 18F-FDG PET/MRI to CT or EUS did not result in 
a significant increase in diagnostic performance.31,50 Integrating 
PET with MRI will most likely be clinically relevant in cases 
where the soft-tissue contrast of MRI outperforms that of CT.51

Overall, the accuracy of MRI is similar or slightly better when 
compared to the currently most frequently used imaging modal-
ities (i.e. EUS and CT) in the evaluation of T-staging. However, 
its limited availably and higher costs would only make MRI an 
alternative imaging modality when CT is contraindicated or 
when CT results are ambiguous. Table 2 provides an overview 
of the imaging modalities and their indications, advantages and 
limitations in the management of gastric cancer.

N-staging
Importance
Preoperative assessment of lymph node involvement in patients 
with gastric cancer is of great importance for indicating prog-
nosis,52–56 and selecting the appropriate treatment strategy, 
especially when assessing lymph node involvement outside the 
intended resection field.57,58 Accurate mapping of the anatomic 
location of positive lymph node metastases could lead to a 
focused extended lymphadenectomy, or to omission of surgery 
when the location of the lymph node metastases makes the lymph 
node metastases oncologically equivalent to distant metastases.59 
In patients with N0 gastric cancer, the 5 year survival rate after 
surgical treatment is 86.1%, whereas in patients with N1, N2 and 
N3 gastric cancer, survival rates dramatically decrease to 58.1%, 
23.3 and 5.9%, respectively.19 Moreover, lymph node metastases 
are an independent risk factor for gastric cancer recurrence in 
patients following curative resection.60 Therefore, adequate 
lymph node assessment is important to prevent understaging 
and subsequently determine eligibility for adjuvant therapy.61

Current imaging
Regional lymph node involvement is currently most frequently 
evaluated using EUS, CT and/or 18F-FDG PET/CT. The basic 
strategy for diagnosing metastatic lymph nodes on imaging is 
measuring size, of which no conclusive criteria exist. Using size 
criteria may induce false negative and false positive findings 
because pathological nodes are not always enlarged and lymph 

nodes can be enlarged due to inflammation instead of malig-
nancy, respectively.62,63

The performance of EUS is not optimal for confirmation or exclu-
sion of regional lymph node involvement: a recent Cochrane 
meta-analysis of 44 studies (n = 3573) showed a pooled sensi-
tivity and specificity for EUS of 83% (95% CI: 79–87%) and 
67% (95% CI: 61–72%), respectively.25 An advantage of EUS is 
that cytological material can be obtained via FNA.64 However, 
no studies directly comparing EUS with EUS-FNA within one 
cohort of gastric cancer patients are available thus far.

CT is a frequently used imaging modality to evaluate the pres-
ence of lymph node metastases in patients with gastric cancer. 
Sensitivity ranges from 62.5–91.9% (median 80.0%) and spec-
ificity ranges from 50.0–87.9% (median 77.8%) according to a 
systematic review including 10 studies.65 Since the detection 
of lymph node metastases on CT is anatomy-based, non-en-
larged tumor-harboring lymph nodes and enlarged inflamma-
tory nodes impair both sensitivity and specificity. Integrated 
18F-FDG PET/CT provides better diagnostic accuracy for the 
detection of distant lymph node metastases through the addi-
tion of metabolic information. The high positive predictive value 
(>90%) makes 18F-FDG PET/CT useful when CT findings are 
equivocal, however, 18F-FDG PET is shown to have a relatively 
low sensitivity varying from 41 to 80% for diagnosis of nodal 
involvement.66–68

Another, not so frequently used technique for evaluating lymph 
node status is abdominal ultrasound. According to a recent 
systematic review and meta-analysis that evaluated six studies, 
the performance of abdominal ultrasound is rather disap-
pointing, with reported sensitivities ranging between 12.2–80% 
(median 39.9%) and specificity of 56.3–100% (median 81.8%).65

MRI
An overview of the current literature on MRI with reported or 
calculated predictive values, sensitivity, specificity and accu-
racy for the assessment of nodal involvement is shown in T
able  3.30–33,35,38,40,41,43,44,69–73 All 15 studies were prospective 
in nature and used histopathology as reference standard. As 
with other imaging modalities, size was the most frequently 
applied criterion on MRI to diagnose metastatic lymph nodes. 
The definition of pathologic lymph nodes on anatomical MRI 
varies from a short-axis diameter of >5 mm to >10 mm within 
the included studies. This definition will in turn influence 
sensitivity and specificity (i.e. a smaller threshold will increase 
sensitivity at the expense of specificity, and vice versa).59 On 
DWI, lymph nodes were generally considered metastatic when 
showing high signal intensity. An illustration of pathologic 
lymph nodes of gastric cancer on T2W images, as well as on 
DW-MRI, can be found in Figures 1A, B, 3A and B.

The accuracy of MRI for correct differentiation between 
node-negative and node-positive patients varied between 65 and 
100%, with PPV, NPV, sensitivities and specificities ranging from 
72–100%, 29–100%, 69–100% and 40–100%, respectively. The 
accuracy for correct differentiation between N-stages (N0 versus 
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N1 versus N2 versus N3) was moderate (55–57%) for two older 
studies that did not use DWI.40,43 A recent study using solely 
DWI showed higher PPV, NPV, sensitivities and specificities up 
to 86%, 91%, 79 and 98%, respectively.30

Four studies directly compared diagnostic performance of high 
resolution T2W and DWI, all demonstrated a higher accuracy 
for DWI.33,35,70,71 Measurements of the apparent diffusion coef-
ficient (ADC), as determined with DWI, performed better than 
combined morphological criteria including short-axis diameter, 
border irregularity and DCE-enhancement patterns.71 Meta-
static lymph nodes showed significantly lower median ADC 
values (1.28 × 10−3 mm2/s) compared to that of benign nodes 
(1.55 × 10−3 mm2/s). With a cut-off value of 1.39 × 10−3 mm2/s, 
the ADC measurement showed a sensitivity of 85.7% and spec-
ificity of 79.4% in distinguishing metastatic nodes.71 However, 
another study did not find a significant difference in ADC values 
between non-metastatic and metastatic lymph nodes.69

On DCE-MRI scans, voxelwise parametric maps of the volume 
transfer coefficient (Ktrans), reverse reflux rate constant (Kep), 
Ve and initial area-under the-gadolinium-concentration-curve 
during the first 60 sec (iAUC) of the primary tumor did not show 
significant differences between lymph node negative and lymph 
node positive patients.49

Overall, the diagnostic performance tended to increase with 
higher N-stages30,38 and although no direct comparison was 
available, 3.0T MRI resulted in a higher accuracy for lymph node 
staging than studies performed on 1.5T MRI (93% [28/30]35 
versus 52% [24/46],44 respectively).

Two studies used ultrasmall superparamagnetic iron oxide 
(USPIO) enhancement instead of size to determine whether 
lymph nodes were metastatic or not and reported remark-
ably higher accuracies, PPV, NPV, sensitivities and specificities 
compared to other studies.72,73 However, to date, USPIO is only 

approved as a therapeutic agent, and a greater awareness of its 
adverse event profile has evolved which limits its current use as 
MRI contrast agent.74 The same studies stress the limitations of 
the use of size as a criterion to diagnose metastatic lymph nodes 
on imaging. According to their findings, 61.0% (36/59) of the 
histologically proven metastatic lymph nodes were normal-sized 
(<10 mm) or even less than 5 mm in size (13.6%, 8/59) on MRI. 
Also, smaller lymph node metastases are more difficult to detect, 
and detection highly depends on the resolution of the scans. On 
MRI, only 12.7% of lymph nodes < 5 mm could be identified, 
42.8% of lymph nodes 5–10 mm and 68.9% of lymph nodes > 
10 mm.73

The performance of MRI for the detection of metastatic lymph 
nodes was directly compared with EUS and/or CT in six 
studies.30,31,33,38,41,43 Two out of three studies that compared 
T2W and DW-MRI to CT reported (non-significant) higher 
diagnostic performance for MRI,30,33 whereas two studies 
that compared anatomical T2W to CT reported slightly lower 
accuracies for MRI compared to CT (however, also not signifi-
cant).41,43 Accuracies for CT and EUS (77 and 75%, respectively) 
did not significantly differ from the accuracy of MRI (71%) in 
a study that directly compared all three imaging modalities.31 
However, EUS showed a significantly superior sensitivity 
(92%) in the depiction of pathological nodes compared to CT 
(73%) and anatomical and functional (DCE and DWI) MRI 
(69%).31 Specificities of MRI (73%) and CT (81%) were higher 
compared to EUS (58%, MRI versus EUS p = 0.15, CT versus 
EUS p = 0.03). A second study compared the performance of 
anatomical and functional (DCE and DWI) MRI with EUS in 
correct assessment of N-stage and found the highest accuracy 
when combining both modalities, compared to MRI or EUS 
alone (71.1% vs 68.4% versus 65.8%, respectively).38 Lastly, 
when integrated 18F-FDG PET/MRI was compared with CT, 
the diagnostic performance for N-staging was not significantly 
different.50

Figure 3.Preoperative T2-weighted magnetic resonance images in axial planes with pathologic lymph nodes (red markings) in one 
patient with gastric cancer.
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Several studies describe that the lymph nodes identified by 
imaging were not exactly matched to those assessed by histopa-
thology.33,41,69 Therefore, there could be a mismatch between the 
lymph nodes that were considered metastatic on MRI versus the 
lymph nodes that were histologically proven metastatic, resulting 
in a correctly assessed preoperative N-stage. This way of assessing 
accuracy of staging with imaging is, however, the closest resem-
blance to regular clinical practice. So far, only two studies applied 
a node-by-node comparison.72,73

In general, there were no statistically significant differences 
reported in the included studies between MRI and CT or EUS 
for correct detection of lymph node metastases.30,31,33,38,41,43 
Thus, when contraindications such as renal insufficiency exist 
for the most commonly used lymph node staging modality 
(contrast-enhanced CT) or when CT results are ambiguous, MRI 
and EUS could be used to provide similar diagnostic information 
(Table 2).

M-staging
Importance
Preoperative diagnosis of distant metastatic disease such as peri-
toneal metastases or liver metastases guides treatment strategies 
in gastric cancer and is essential in order to avoid unnecessary 
surgery in patients who would not benefit from gastrectomy. 
This is illustrated by the fact that around a third of patients (29%) 
present with liver metastases at diagnosis75 and that approxi-
mately 23% of patients clinically and radiologically free of distant 
metastases appeared to have peritoneal metastases upon surgery, 
which underlines that there is still significant room for improve-
ment of preoperative diagnostic evaluation.76 Detecting these 
metastases would divert patients from a futile attempt at curative 
local therapy, and prevent the potential reduced quality of life 
and increased health care costs associated with such treatment 
strategies.

Current imaging
The modality of first choice for M-staging is currently CT of the 
abdomen and pelvis.77 A recent review of four studies reported 
sensitivities for the detection of M1 disease on CT ranging from 
14.3–59.1%, and specificities ranging from 93.3–99.8%.78 Sensi-
tivity of CT for the detection of peritoneal metastasis was only 
28.3% (15 of 53), with a specificity of 98.9% (440 of 445).79

A diagnostic accuracy of EUS for M-staging (location of distant 
metastasis not otherwise specified) of 90.0% was reported, with 
a very limited sensitivity of 10.6% but excellent specificity of 
99.6%.80 Ascites detected by EUS increased the probability of the 
presence of peritoneal metastases in two studies, with a sensi-
tivity of 61–73% and specificity of 84–99%.81,82 Direct compar-
ison of CT and EUS in diagnosing ascites favored CT regarding 
sensitivity (59.1% vs 10.6%), whereas specificity did not signifi-
cantly differ (99.8% vs 99.6%).80

Although widely used in oncology for the evaluation of meta-
static disease, 18F-FDG PET/CT is not routinely indicated 
yet for gastric adenocarcinoma.77 However, recent studies 
showed significantly higher accuracy in the detection of distant 

lymph node metastases with 18F-FDG PET/CT compared to 
contrast-enhanced CT (CECT) alone in 106 patients with locally 
advanced gastric cancer (86.0% vs 75.6%, respectively).67 No 
statistically significant difference in the performance of CECT 
and the combination of CECT and 18F-FDG PET/CT was seen 
for diagnosis of overall distant metastases.67 Another study, 
however, reported that 18F-FDG PET/CT provides additional 
diagnostic information over standard staging (CT, EUS and 
laparoscopy), leading to a reduction of 10% in futile attempts of 
surgical exploration in patients that were found to have meta-
static disease.83

Lastly, a review including 15 studies reporting on the perfor-
mance of diagnostic laparoscopy for M staging, reported 
an overall accuracy, sensitivity, and specificity ranging from 
85.0–98.9%, 64.3–94%, and 80.0–100%, respectively. The use 
of a diagnostic laparoscopy altered treatment in 8.5–59.6% of 
cases, avoiding laparotomy in 8.5–43.8% of cases.84 As such, 
laparoscopy with or without peritoneal washings for malignant 
cells to exclude occult metastatic disease is recommended in all 
advanced stage (i.e. stage IB-III) gastric cancers that are consid-
ered to be potentially resectable.85

MRI
The currently available literature describing the diagnostic 
performance of MRI in determining metastatic disease is limited. 
The few studies that have been conducted to assess the perfor-
mance of MRI mostly have a low prevalence of metastatic disease 
and did not specifically focus on gastric cancer metastases.

For detection of peritoneal seeding in gastrointestinal and gastric 
cancer cases, the diagnostic performance of (DW-)MRI did not 
significantly differ from 18F-FDG PET/CT or CT.33,86 When 
directly comparing the performance of DW-MRI to 18F-FDG 
PET/CT in a study concerning 30 patients with gastrointestinal 
malignancies, of which five primary gastric cancers, accuracy, 
PPV, NPV, sensitivity and specificity for detection of peritoneal 
seeding were respectively 80%, 84%, 73%, 84 and 73% for 18F-
FDG PET/CT and 83%, 89%, 75%, 84 and 82% for DW-MRI.86 
This supports the fact that diagnosis of peritoneal seeding 
remains a challenge for imaging techniques because of its vari-
able appearance and the small size of lesions.

The performance of MRI for the assessment of liver metastases 
is only reported by a few studies, including a small number of 
gastric cancer metastases. DW-MRI was able to differentiate 
liver metastases from adjacent liver parenchyma, based on ADC 
values, in two cases of liver metastases from gastric cancer in 
one of the previously mentioned studies.35 In another study 
that did not specifically focus on gastric cancer (49 patients 
with primary adenocarcinomas of the gastrointestinal tract, of 
which four patients with gastric cancer), MRI was proven to be 
significantly superior to 18F-FDG PET/CT for the detection of 
small liver metastases (≤10 mm).87 In a recent pilot study of 12 
patients with colorectal cancer (n = 9) or gastric cancer (n = 3), 
chemotherapy-induced focal hepatopathy (which could mimic 
metastases in patients with gastrointestinal malignancy during 
chemotherapy) could be differentiated from metastases on the 
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basis of DCE and DW-MRI findings.88 Furthermore, DW-MRI 
could aid in the prediction of response of liver metastases to 
chemotherapy as researched in a cohort of 86 patients with 
liver metastases from gastrointestinal tract cancers (of which 28 
patients with primary gastric cancers), resulting in a sensitivity 
of 94.3% and specificity of 76.7% using a cutoff value of 1.14 
× 10 mm2/s for the ADC value of the liver metastases before 
treatment.89

Lastly, even though the combination of 18F-FDG PET/MRI did 
not improve diagnostic accuracy in T- and N-staging in a group 
of 42 patients compared to CT as mentioned before, it did signifi-
cantly improve correct preoperative M-staging compared to CT 
(92.9% vs 73.9–81.0%).50 However, it was not reported whether 
this improvement derived from the information of the 18F-FDG 
PET scan or MRI scan. However, it is possible that M-staging 
with 18F-FDG PET/MRI will benefit from MRI accuracy, espe-
cially in the brain and the liver.51

Overall, for the evaluation of systemic disease, CT is currently 
the primary staging tool for distant metastases, with a relatively 
low sensitivity (ranging from 14.3–59.1%), but high specificity 
(ranging from 93.3–99.8%).78 The results of MRI for M-staging 
in gastric cancer specifically are limited to date, but the addition 
of DWI might be promising in the future33,35,86,88,89 as well as the 
recent integration of PET and MRI hardware.50 Also, DW-MRI 
and DCE-MRI have been proven valuable for M-staging in other 
cancers, such as the detection of liver metastases of colorectal 
and gynecologic cancers.90–93

Treatment response assessment
Importance
Although the optimal way to integrate chemo(radio)therapy 
within the treatment of gastric cancer has not been globally 
established yet, the benefit of multimodality treatment has 
become evident.7,94,95 Neoadjuvant chemotherapy improves 
microscopically radical resections, reduces residual tumor-pos-
itive lymph nodes and improves survival.27 Currently up to 
30–40% of gastric carcinoma patients respond to the available 
chemotherapy regimens as defined by any form of tumor regres-
sion.96,97 For preoperative chemoradiotherapy, radical resec-
tion rates of 67–92% and pathologic complete response rates of 
5–29% have been reported.98 Accurate differentiation between 
responders and non-responders could assist in individualized 
therapeutic decision-making. Ineffective chemo(radio)therapy 
regimens could potentially be omitted, terminated early or 
switched to more effective regimens. Furthermore, reliable 
treatment response assessment regarding metastatic disease, 
for example by assessment of peritoneal cytology (as obtained 
by staging laparoscopy) before and after neoadjuvant treat-
ment, could guide clinical decision-making with respect to the 
consideration of hyperthermic intraperitoneal chemotherapy 
(HIPEC) procedures.99 Since pathological complete response 
to neoadjuvant therapy is not frequently observed in gastric 
cancer, correct assessment of pathologic complete response 
with the goal to pursue organ-preserving strategies (without 
surgery) does not seem realistic in the near future for gastric 
cancer patients.4,96,100

Current imaging
Anatomical as well as molecular imaging modalities have been 
used for tumor response assessment to neoadjuvant chemo-
therapy, including endoscopy, EUS, contrast-enhanced ultraso-
nography, CT, 18F-FDG PET and combined 18F-FDG PET/CT. 
Assessment of dimensional changes in tumor volume according 
to the response evaluation criteria in solid tumors (RECIST) 
is frequently used.101 These criteria require the presence of 
a measurable lesion, which is not always the case in diffuse 
growing gastric cancers. Also, volume analysis can be affected by 
tumor shape irregularity, different grades of visceral distension 
and the inability of dimensional criteria to differentiate residual 
viable tumor from therapy-induced fibrosis.102

Overall, studies concerning CT and/or EUS in the assessment 
of response to neoadjuvant chemotherapy demonstrate that 
there is an association between anatomical tumor response (i.e. 
volume changes of the primary tumor) and histopathological 
response.103,104 However, these volume changes take time to 
become apparent. Alternatives for anatomical changes include 
morphological changes of the primary lesions evaluated by 
endoscopy,105 perfusion parameters on CT106 or a molecular 
imaging approach such as 18F-FDG PET. Proportional changes 
in tumor glucose consumption assessed by 18F-FDG PET have 
been found to be associated with neoadjuvant chemotherapy 
induced response and survival,96,97 but these findings are equiv-
ocal.103 Moreover, the use of 18F-FDG PET could be somewhat 
limited since not all gastric carcinomas are 18F-FDG-avid.12

MRI
Tumor response evaluation to (neo)adjuvant therapy with the 
use of DW-MRI has been subject of research for a great variation 
of cancer types.107–113 In two relatively small studies (n = 32 and 
n = 17, respectively) focusing on the relation between ADC of 
the primary tumor and response to neoadjuvant chemotherapy 
in patients with gastric cancer, significantly higher ADC values 
were found in responders (defined as tumor regression grades 
[TRG] 1–3 at histopathology) compared to non-responders after 
neoadjuvant treatment.102,114 The significant increase in ADC 
values in responders to neoadjuvant therapy can be explained by 
the presence of necrosis and fibrosis after successful treatment, 
which should correspond to an increase in water diffusivity and, 
consequently, in ADC values.114

With regard to MRI, the same limitations apply to anatomical 
measurements to evaluate tumor response as mentioned earlier 
for CT and EUS. In a study of 32 patients, tumor volume changes 
using DW-MRI was not found to be of value in assessing response 
to neoadjuvant chemotherapy in gastric cancer.102

When assessing the response of histologically proven metastatic 
lymph nodes to neoadjuvant chemotherapy in patients with 
advanced gastric cancer on DW-MRI, all lymph node groups 
showed an increase in ADC values during chemotherapy.115 
This effect was visible after the third day of chemotherapy, 
which occurred earlier than change in lymph node diam-
eter.115 However, no statistically significant difference was found 
between complete responders, partial responders and the stable 
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disease group based on RECIST criteria when comparing mean 
ADC values of lymph nodes.115

Fully-integrated 18F-FDG PET/MRI could add to the perfor-
mance of MRI in evaluating treatment response in the future: 
one preliminary study (n = 11) reports the feasibility in patients 
with unresectable gastric cancer.116 However, no significant 
difference was found in ADC and SUVmax values prior to treat-
ment between responders and non-responders, as determined 
based on follow-up CT scans after 2–3 cycles of chemotherapy.116

Overall, all currently available imaging modalities show only 
moderate sensitivity and specificity with regard to response 
assessment in gastric cancer, generally making them insuffi-
cient to justify changes in treatment decision-making. In this 
context, the performance of (functional) MRI is currently a topic 
of research. However, convincing high-quality studies regarding 
differentiation of responders and non-responders based on MRI 
are lacking so far. Lastly, since the included studies do not report 
on oncological outcomes, it is unclear if earlier of more accu-
rate assessment of response to treatment changes outcome in 
patients.

Treatment guidance
Currently, radiotherapy does not have a clearly defined role in the 
treatment of gastric cancer.85 Although postoperative chemora-
diotherapy is an evidence-based strategy,3 perioperative chemo-
therapy is considered standard treatment.4 Recently however, 
there is growing interest to evaluate the clinical advantages of 
preoperative chemoradiotherapy to induce tumor downstaging 
and improve surgical results (i.e. the TOPGEAR trial117 and the 
CRITICS-2 trial [​ClinicalTrials.​gov Identifier NCT02931890]). 
These regimens strongly rely on accurate delineation of the clin-
ical target volumes, as one of the greatest challenges is to deliver 
radiation dose accurately to the tumor while minimizing toxicity. 
The stomach is surrounded by a number of critical organs that are 
at risk and considered dose-limiting during radiation therapy. To 

deliver a tumoricidal dose of radiation, large volumes of healthy 
tissues in the abdomen are also irradiated (including pancreas, 
duodenum, great vessels, and vertebrae). With the recent devel-
opment of an integrated MR system with a radiotherapy accel-
erator however, MRI-guided adaptive radiotherapy could allow 
for more precise delineation of clinical target volumes, radi-
ation treatment delivery, and even dose escalation in the near 
future.118–121 Especially in preoperative (chemo)radiotherapy 
for gastric cancer, MRI evaluation of setup accuracy could be 
of great benefit.122 Daily adaptation of treatment plans based on 
intra- and interfraction anatomical variation becomes possible, 
allowing better normal tissue sparing and/or radiation dose 
escalation. A recent case-report already provided insightful 
results on large inter fraction variation and deformations that 
were observed during MRI-guided radiotherapy for a gastric 
cancer patient.123 However, whether MRI actually contributes to 
a better definition of target volumes for radiotherapy planning 
and delivery remains to be established.. An illustration of clinical 
target volume delineation on MRI and CT images in a patient 
with gastric cancer can be found in Figure 4.

MRI protocols for gastric cancer
Visualization of the gastric wall strongly depends on its diam-
eter, MRI scanner characteristics, organ motion, and distention 
of the gastric wall. To overcome some of these obstacles, a consis-
tent approach to MR imaging of the stomach described in the 
literature involves gastric distention by drinking water (up to 
1000 ml), administration of scopolamine or glucagon to reduce 
artifacts from peristalsis, the use of breath-hold MR techniques, 
and multiplanar image acquisition.29 Especially adequate disten-
tion of the gastric wall is crucial to differentiate between wall 
layers, and thus specification of the exact depth of tumor inva-
sion.35 Gadolinium-based contrast agents are currently the most 
frequently used for MR imaging. However, they lack specificity 
for target organs and have a short imaging lifetime.124 In the 
future, gastric tumor visualization on MRI might be improved 
with new contrast agents that are subject of in vitro and in vivo 

Figure 4.Preoperative T2-weighted magnetic resonance images (A) and planning CT images (B) of one patient with gastric cancer 
in axial planes. The red contouring reflects the clinical target volume (CTV) that could be used for preoperative radiation therapy.
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research, such as coupled Gd-DPTA and anti EGFR-iRGD (a 
recombinant protein).124

Since MRI is not yet widely accepted as a standard imaging 
modality for staging gastric cancer, there are no generally accepted 
protocols for gastric MRI.125 In our institution, we compared 
several anatomical and functional sequences on a 3T MR system 
(Ingenia; Philips Medical Systems, Best, The Netherlands).126 To 
improve stomach distention and to suppress signal from physio-
logic stomach filling, approximately 400 ml pineapple juice was 
given orally. Gadolinium was used as the intravenous contrast 
agent. As an anatomical sequence, an exhale navigator triggering 
during the acquisition of a high resolution T2W turbo spin echo 
MRI, rather than respiratory sensor triggering, provided excellent 
contrast with limited motion artifacts in both axial and coronal 
view. For functional MRI imaging, which can be used for staging 
and treatment response assessment, free-breathing, single-shot 
echo planar DWI using b-values of 0, 200 and 800 s/mm2, and a 
free-breathing, 4D THRIVE DCE provided good temporal reso-
lution and limited motion artifacts. For the purpose of radiation 
treatment guidance and delivery, we furthermore developed 
a sequence for treatment planning and intra fraction motion 
monitoring. For treatment planning purposes, a fast 3D high 
resolution mDixon with a large field of view and a high signal to 
noise ratio within one exhale breathhold is feasible. For motion 
monitoring, 4D T2W MRI with retrospective self-sorting recon-
struction resulted in a high resolution, high signal to noise ratio 
and good slice ordering. For intra fraction motion, turbo spin 
echo cine-MRI resulted in a better signal to noise ratio and high 
resolution without artifacts compared to a 2D T1W dynamic 
turbo field echo or fast field echo. Figures 1–4 represent images 
from our institution, in accordance with the abovementioned 
protocol.

Challenges and future perspectives in 
gastric cancer staging
Despite advances in the staging and treatment of gastric 
cancer, several challenges still lie ahead. First, there is no 
worldwide consensus regarding the anatomical criteria that 
should be used to define tumor invasion or a metastatic lymph 
node on any imaging modality. In case of lymph node assess-
ment, imaging techniques for detection of lymph node metas-
tases rely on uncertain size criteria, except for 18F-FDG PET/
CT, which is in turn accompanied by a limited sensitivity. With 
adequate mapping of pathologic lymph nodes during staging, 
a more precise lymphadenectomy might become reality in 
combination with the possibilities of intraoperative lymphatic 
drainage imaging.127 However, a better imaging technique for 
accurate detection of lymph node metastases, and subsequent 
individualized treatment based on these findings, is yet to be 
found.

Second, there is an unmet need for standardization of reli-
able criteria to accurately evaluate response to perioperative 
therapy, as well as for the evaluation of oncological outcomes 
after treatment response assessment. Given the absence of reli-
able criteria for evaluating the treatment response, most multi-
disciplinary teams will continue treatment with perioperative 

therapy in patients without evidence of disease progression 
on imaging. As a result, overtreatment occurs in a substantial 
part of patients, leading to a reduction in quality of life and an 
increase in health care costs. However, if accurate detection of 
non-response without disease progression would be possible, 
these patients would not be exposed to the side-effects of 
continued perioperative therapy without the benefit. Accurate 
assessment of response might furthermore increase compli-
ance in the responding patients, as currently only around 40% 
of patients completes the entire perioperative chemotherapy 
regimen.4,128

Third, accurate diagnosis of the presence of distant metastases 
(especially peritoneal metastases) in patients presenting with 
gastric cancer remains challenging. Currently a diagnostic lapa-
roscopy has the highest performance. As a consequence, patients 
are subjected to an invasive surgical procedure, which also puts 
pressure on health resources.

In the upcoming years, the preoperative staging and treatment 
response assessment in gastric cancer might benefit from 
imaging biomarkers derived from functional MR imaging 
such as DWI.129 DWI depends on the mobility of water 
protons within tissues, which is measured with ADC values 
and can provide specific information about cellular density 
of tumors.102 ADC values help to differentiate between 
normal gastric wall and pathological tissue,35,37,48,69,114,130,131 
gastric adenocarcinoma and lymphoma,130 and liver metas-
tases and adjacent liver parenchyma.35 Furthermore ADC 
values increase gradually with the degree of histologic 
tumor differentiation32,37,132 and there is an inverse correla-
tion between the ADC value and the T- and N-stage.133,134 
Its correlation with the Her2Neu status of gastric tumors has 
been described135,136 and it could also be useful in response 
prediction to neoadjuvant treatment as discussed before.133 
Lastly, lower tumor ADC values are associated with a negative 
prognosis (i.e. overall survival) and could potentially serve as 
prognostic factor in the evaluation of aggressiveness of gastric 
cancer.134,137,138

One of the challenges specifically for the use of ADC values 
of DW-MRI in clinical practice, is that there is no consensus 
how to calculate and interpret ADC values. ADC values 
are calculated based on a region of interest (ROI), but the 
approach of determination of this ROI varies greatly between 
studies. An ROI can either be manually drawn or semi-auto-
matic, and can be based on T2W images or DWI images of 
varying b-values. This can especially be relevant when using 
ADC values for diagnosis of lymph node metastases or perito-
neal seeding, since the small size of the nodes/nodules influ-
ence the setting of the ROI, which in turn could influence the 
ADC values measured.35 Furthermore, some authors suggest 
the use of minimum ADC-values and others have taken into 
account mean ADC. Thereby, direct comparison of DW-MRI 
results across studies is greatly impaired, which underlines 
the need for standardization of scan protocols, image analysis 
and careful review of reproducibility of measurement across 
centers before implementation.
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Conclusion
Gastric cancer management requires a multimodality staging 
strategy in which CT remains the primary staging modality 
due to its relatively high accuracy rates and wide availability. To 
date, preoperative locoregional staging of gastric cancer does not 
significantly benefit from the use of MRI, despite its high contrast 
resolution and characteristic soft-tissue contrast.

In addition, this review demonstrates that additional value of 
MRI might be expected for detection of lymph node metas-
tases and systemic disease, for defining clinical target volumes 
and setup verification with MR-guided radiation treatment, and 
for treatment response prediction, especially with continuous 
technical improvements (e.g. organ-motion compensation tech-
niques) and the possibilities of functional MRI (e.g. diffusion 
weighted imaging and dynamic contrast enhancement). Further, 
large studies are needed to establish the role of MRI for these 
applications in clinical practice.

Essentials

•	 Gastric cancer management requires a multimodality staging 
strategy in which CT remains the primary staging modality 
due to its relatively high accuracy rates and wide availability.

•	 The accuracy of MRI for T- and N-staging of gastric cancer 
is similar to EUS and CT, making MRI a suitable alternative 
when contraindications are present for the primary staging 
modalities.

•	 MRI is widely used for diagnosing liver metastases and shows 
potential for diagnosing peritoneal seeding.

•	 Treatment response assessment remains challenging and all 
imaging modalities are currently insufficient to justify changes 
in treatment decision making.

•	 Treatment response assessment as well as detection of 
lymph node metastases and systemic disease might benefit 
from imaging biomarkers derived from functional MRI 
(e.g. diffusion weighted imaging and dynamic contrast 
enhancement) in the future.

•	 Additional value of MRI might be expected from its role in 
better defining clinical target volumes and treatment setup 
verification for preoperative radiation treatment.
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