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Objects have a variety of different features that can be
represented as probability distributions. Recent findings
show that in addition to mean and variance, the visual
system can also encode the shape of feature
distributions for features like color or orientation. In an
odd-one-out search task we investigated observers’
ability to encode two feature distributions
simultaneously. Our stimuli were defined by two distinct
features (color and orientation) while only one was
relevant to the search task. We investigated whether the
irrelevant feature distribution influences learning of the
task-relevant distribution and whether observers also
encode the irrelevant distribution. Although
considerable learning of feature distributions occurred,
especially for color, our results also suggest that adding a
second irrelevant feature distribution negatively affected
the encoding of the relevant one and that little learning
of the irrelevant distribution occurred. There was also an
asymmetry between the two different features:
Searching for the oddly oriented target was more
difficult than searching for the oddly colored target,
which was reflected in worse learning of the color
distribution. Overall, the results demonstrate that it is
possible to encode information about two feature
distributions simultaneously but also reveal considerable
limits to this encoding.

Introduction

Although the natural world around us is highly
complex and rich in information, it is not random, but
composed of regular and structured information. Our
visual field often contains a pool of similar objects like
the individual leaves on a tree. This redundant
information can be compressed and efficiently encoded
as an ensemble. Ensemble perception refers to the
visual system’s ability to reduce and summarize
redundant information and extract compressed, statis-
tical information (e.g., average or variance) of groups
of features, like the average hue of the leaves on a tree
(Alvarez, 2011; Haberman & Whitney, 2012; Whitney
& Leib, 2018). Extraction of summary statistics of
groups of objects has been successfully shown for
various low/midlevel features like orientation (e.g.,
Miller & Sheldon, 1969; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001), hue (e.g., Maule, Witzel, &
Franklin, 2014, Webster et al., 2014), speed and
direction of motion (Watamaniuk & Duchon, 1992;
Watamaniuk & McKee, 1998; Watamaniuk, Sekuler, &
Williams, 1989), or average size (Ariely, 2001; Chong &
Treisman, 2003). Moreover, higher level features like
the average gaze direction, the average emotional
expression or the average head rotation can also be
encoded as summary representations (Haberman &
Whitney, 2009). Also, subjects may have a reliable
representation of the mean of a set without being able
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to reliably recall individual members (Ariely, 2001;
Parkes et al., 2001).

In our daily surroundings objects consist of more
than one feature and are characterized by their color,
shape, orientation, and even more complex material
features like gloss or transparency. Combining several
features is a necessary step for building object
representations (Treisman, 1996, 1998) and to guide
attention in general (see Wolfe & Horowitz, 2017, for a
review). Given that summary statistics are an efficient
way of representing the environment, it is possible that
they are also utilized when several features must be
analyzed simultaneously. A few studies have already
addressed whether observers are able to precisely report
summary statistical information from more than one
feature domain. Chong and Treisman (2005) presented
observers with two sets of stimuli separated either
spatially or by color. Observers could successfully
extract average information from both sets simulta-
neously. The results did not differ by whether the
relevant set was pre- or postcued. Attarha and Moore
(2015) and Attarha, Moore, and Vecera (2014)
corroborated these findings, but they also found that
when multiple groups of stimuli were presented
simultaneously, judgments of mean orientation were
less accurate than for sequential presentation. Emma-
nouill and Treisman (2008) examined the simultaneous
statistical representation of multiple dimensions. They
presented observers with moving circles varying in size
and speed. Observers were instructed to select the set
with either the larger size or faster speed. They were
either informed before or after the trial whether to
judge size or speed. Performance was worse if observers
had to attend to both dimensions simultaneously
(postcueing condition). These results were replicated
using size and orientation. Although performance was
worse, the overall results indicate that summary
statistical information of multiple features can be
represented.

In the real world, however, feature probability
distributions are rarely simple enough to be adequately
summarized by mean and variance. This point was
clearly demonstrated in Girshick, Landy, and Simon-
celli (2011) who extracted local orientation distribu-
tions from natural images and found a predominance
along the cardinal axes over the oblique angles. But it is
still unclear whether observers can simultaneously
encode information about different feature distribu-
tions over and above the mean.

As Chetverikov, Campana, and Kristjánsson,
(2017a, 2018) have discussed, groups of objects have a
variety of different features that can be represented as
probability distributions that can have varied shapes.
But only a few studies have addressed whether
observers perceive other statistics such as variance,
skewness or kurtosis of visual ensembles. Observers

seem to be able to quickly and accurately compute the
variability of features (Atchley & Anderson, 1995;
Dakin & Watt, 1997). But feature distributions
differing in skewness and kurtosis have not been
successfully discriminated. Atchley and Anderson
(1995) presented observers with four different clouds of
moving dots. In an odd-one-out search task, observers
successfully detected the dot cloud that had a different
mean velocity or a different variance. However,
observers were not able to discriminate between
distributions based on different skewness or kurtosis.
Dakin and Watt (1997) found similar results for
orientation distributions. While observers were able to
distinguish between distributions with different means
or variance, they were unable to discriminate between
differently skewed orientation distributions. Morgan,
Chubb, and Solomon (2008) and Norman, Heywood,
and Kentridge (2015) argued in favor of an explicit
mechanism that estimates variance with neurons
broadly tuned to low and high levels of variance. In
Norman, et al. (2015) observers adapted to a set of
Gabor patches with high and low variance in orienta-
tion. Perceptual aftereffects were reported in which the
perceived variance of subsequent Gabor patches shifted
away from the adapting texture. Although these results
show that the mean and variance can be extracted from
a variety of different distributions, there was no
evidence of the perception of other properties of
distributions.

Recently Chetverikov, Campana, and Kristjánsson
(2016, 2017a, 2017b, 2018) introduced a new approach
for studying internal representations of feature distri-
butions, using priming in visual search (Kristjánsson &
Campana, 2010). The well-known ‘‘priming of pop
out’’ effect involves a decrease in response time after
repeated presentation of target and distractor features
(Maljkovic & Nakayama, 1994; see Kristjánsson &
Ásgeirsson, 2019 for a recent review). Switching the
target and distractor features leads to an increase in
response time that is even larger than for new target
and distractor features (Kristjánsson & Driver, 2008).
If a target is blue and distractors are red, search is
slowed down more if the target becomes red than if it
would switch to green. Chetverikov et al. (2016) used
this role-reversal effect to assess the internal represen-
tation of orientation distributions by probing the target
at different points in feature space, revealing the
internal model of the distractor distributions. Their
observers saw search displays containing 36 lines drawn
from a predefined distribution and observers searched
for an oddly oriented line. After a certain number of
learning trials with a constant distractor distribution,
the target was placed at different probe points within
and around the previous distractor distribution. They
found that search time was slower when the target
feature was suddenly drawn from within the preceding
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distractor distribution, compared to when it was drawn
from the feature space outside the preceding distractor
distribution. Chetverikov et al. were therefore able to
use the target as a probe of the learned distractor
distribution. Moreover, they found that response times,
as a function of the distance between the learned
distractor mean and the target, resembled the shape of
the distractor distribution. RT functions that followed
Gaussian distractor distributions monotonically de-
creased, and RT functions following uniform distribu-
tions consisted of a flat part followed by a linear
decrease. Furthermore, their results revealed that the
visual system also encodes skewed feature distributions,
resulting in skewed RT functions. Observers needed
only a few exposures to the distractor distributions to
develop an internal feature representation of them, but
the minimum number of repeated search displays
needed to encode the distribution depended on its
complexity. While two to three repetitions were
sufficient for a Gaussian or a uniform distribution,
observers needed additional learning trials to encode a
bimodal distribution (Chetverikov et al., 2017a).
Subsequent experiments showed that a minimum
number of exemplars (set size in visual search displays)
are needed for robust distribution encoding (Chetver-
ikov, Campana, & Kristjánsson, 2017c). Encoding the
shape of feature distributions has been shown to occur
for both color (Chetverikov et al., 2017b) and
orientation (Chetverikov et al., 2016) separately. That
is, while the explicit judgments of summary statistics do
not seem to reveal any pick-up of more complex
distribution properties (e.g., Atchley & Anderson,
1995; Dakin & Watt, 1997), implicit distribution
learning during visual search shows that observers
implicitly encode the distribution shape, indicating that
the method of probing distribution representations may
affect the results.

Importantly, this feature distribution learning oc-
curred for distractors. This suggests that explicitly
attending to the stimuli is not necessary for extracting
statistical information. For example, Alvarez and Oliva
(2008) encouraged observers to find the centroid of a
dot cloud, finding that performance was similar when
observers attended to the cloud and when they did not.
On the other hand, attention may influence statistical
estimates such as of the average or may even bias their
estimates (Chong & Treisman, 2005; de Fockert &
Marchant, 2008). Thus, attention might be important
when more than one feature distribution needs to be
encoded. Encoding one feature in the presence of a
second feature involves selectively attending to that
feature. The nature of encoding more than one feature
and the interactions between two features was studied
intensively by Garner and colleagues (Garner &
Felfoldy, 1970; Garner, 1976, 1978; or see Algom &
Fitousi, 2016 for a review). They distinguished between

integral and separable dimensions. Separable dimen-
sions are features that can be attended to without
interference from the unattended feature (e.g., color
and shape). Integral dimensions are feature dimensions
that the visual system cannot selectively attend to
without interference from the second dimension; the
two seem to be processed together (e.g., lightness and
saturation). Moreover, some dimension pairs are
asymmetrical integral, where one dimension can be
attended to independently of the other, but not vice
versa. It remains an open question, however, whether
implicit learning of feature distributions is affected by
the presence of a second, irrelevant feature distribution.

Current aims

In the current study, we will address whether
observers can learn two probability distributions
simultaneously using a search task with lines that have
a particular orientation and a particular color drawn
from Gaussian or uniform distributions. Observers are
instructed to either search for an oddly oriented line or
for an oddly colored line making only one of the
features task-relevant at a time. Firstly, we expect
observer to learn the relevant distribution even in
presence of irrelevant features. Thus, we expect search
times in the test trials to follow the shape of the
distractor distribution as shown in previous experi-
ments (Chetverikov et al., 2016, 2017a, 2017b, 2018).
However, although we expect them to learn the features
that are currently relevant, we do not know whether
they can also learn the irrelevant feature distribution
and if so, to what extent (mean, variance, distribution
shape).

Material and methods

Overview

Observers performed simple visual search tasks,
searching for the odd-one-out target among a 636 grid
of lines. That target line was distinguishable either by
color or orientation. We used a similar design as in
Chetverikov et al. (2016, 2017a, 2017b, 2017c) by
blocking the trials into learning and test streaks. Test
trials were used to probe distribution shape learning.
Since only one of the two features was task-relevant,
this allows us to investigate the influence of the
irrelevant feature distribution on distribution learning.
Colors and orientations were drawn from either a
Gaussian or a uniform distribution. Distribution
characteristics (mean, SD, and shape) were held
constant during learning streaks. In different condi-
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tions we tested the influence of a secondary feature and,
moreover, also the possible internal representation of
that task-irrelevant feature. The detailed procedure and
the design of the stimulus display are described below.

Procedure/task

All participants took part in three experimental
sessions lasting about 45 to 60 minutes. These sessions
were preceded by an initial training session consisting
of 288 blocks. Data from this training session was
collected, but is not part of the analysis. Each session
consisted of 288 blocks, 72 blocks per condition. Each
block consisted of three to four learning trials and a
single test trial. Participants searched for the odd-one-
out target and indicated its position in a search grid.
Participants pressed the up-arrow key if the target was
positioned in the upper three rows of the grid, and the
down-arrow if the target was positioned in the lower
three rows of the search grid. The experiment consisted
of four different conditions (see Table 1) with respect to
which feature was relevant in the search task (learning:
orientation; test: orientation; the conditions were the
same for color, but there were also conditions in which
the feature switched between learning and test trials).
However, observers were not aware of which condition
was relevant on a particular trial and whether the
current trial was a learning or a test trial. Observers
were simply asked to search for the oddest looking line.

Stimulus sets were presented for an unlimited time,
but participants were encouraged to respond as quickly
and accurately as possible. After the button press the
next trial began. Feedback was provided throughout
the experiment. If observers made a mistake, the word
ERROR appeared on the screen for 1 s. For
motivational purposes, participants’ performance was
scored and their score on the last trial was presented in
the upper left corner of the screen. The score was
computed as Score¼ 10 þ (1� RT) 3 10 for a correct
response and Score¼�jScorej � 10 for an error, where
RT is the response time in seconds. Individual sessions
were interrupted by three breaks, in which the total
score was displayed on the screen.

Stimuli

Search displays consisted of 36 colored, oriented
lines (Figure 1) that appeared on a 6 3 6 grid that
subtended 17.58 3 17.58 of visual angle on the screen.
Individual lines had a length of about 1.48.

The specific orientation and color of each distractor
line were drawn from either a Gaussian or a uniform
distribution. Orientation distributions had an SD of 158
(distribution range: 608; values outside this range of the

Gaussian distribution were removed). All parameters
were based on previous research using uniform and
Gaussian distractor distributions of orientation and
color (Chetverikov et al., 2016, 2017a, 2017b). All
distractor lines on the test trial were drawn from a
Gaussian distribution with an SD of 108. The color
space was based on 48 isoluminant (in DKL color
space) hues. Adjacent hues were approximately sepa-
rated by one average just-noticeable-difference, JND
(based on data provided by Witzel, from Witzel &
Gegenfurtner, 2013, 2015). That is, the color space was
perceptually linearized with respect to the average
differences in color discrimination thresholds. This
color space has already successfully been used to
examine feature distribution learning (Chetverikov et
al., 2017b). The color distribution during learning
streaks was either uniform or Gaussian with an SD of 6
JND and 3 JND during test trials. The distractor mean
was chosen randomly at the beginning of a block and
kept constant during a learning streak.

The color and orientation of the target were chosen
randomly for each trial. The irrelevant target feature
was chosen from within the distractor distribution, and
the relevant feature was chosen randomly from a range
of values with a minimum and maximum distance from
the distractor mean (18–24 JND for color, 608–908 for
orientation). Choosing the feature of the irrelevant
target from within the distractor distribution resulted in
a target that was undistinguishable from distractors
based on that feature, ensuring that only the relevant
distribution in each case defined the target. The
learning streak was followed by a single test trial to
assess the learning of the distractor distribution. We
used nine equally spaced probe points to ensure the
uniformity of testing with some random variation
around each point. Probe points in color space ranged

Learning streak (3–4 trials) Test trial

Condition 1

Relevant color color

Irrelevant orientation orientation

Condition 2

Relevant orientation orientation

Irrelevant color color

Condition 3

Relevant orientation color

Irrelevant color orientation

Condition 4

Relevant color orientation

Irrelevant orientation color

Table 1. Overview of all four different experimental conditions
and the relevant and irrelevant features during the learning and
test trials. Notes: A relevant feature refers to a feature that
determines the identity of the target. The target could not be
identified through the irrelevant feature.
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from�24 JND to þ24 JND relative to previous
distractor mean in steps of 6 JNDs with a random value
between �3 and 3 added to each probe point. Probe
points in orientation space ranged from�808 toþ808 in
steps of 208, and a random value between�108 toþ108

was added. We refer to this as the current target to
previous distractor distance (CT-PD).

The distractor mean during test trials was chosen
randomly with the restriction that the target-to-
distractor-distance was 18–24 JND for color and 608–
908 for orientation. For the irrelevant feature during
the test trial, we used the distribution mean from the
learning streak, and the irrelevant feature of the target
was again chosen from within the distractor distribu-
tion. Figure 1 shows an example of a block where
orientation is the task relevant feature on both learning
and test trials, and all distractors are drawn from a
Gaussian distribution.

Apparatus

All stimuli were displayed on a 24-in calibrated LCD
monitor (ASUS, VX248h). The resolution was set to
1920 3 1080. All stimuli were displayed using MAT-
LAB (R2016a; MathWorks, Natick, MA) and Psych-
toolbox-3 (Brainard, 1997) that ran on a Desktop PC
with Windows 10. The screen was color calibrated
using a Cambridge Research Systems ColorCal MK2
photometer.

Observers

Ten observers (mean age: 30, five male, five female)
participated in the experiment. All observers (except for
two authors) were naı̈ve to the purpose of the study and
all had normal or corrected-to-normal vision. Partici-
pants with red-green color vision deficiencies were
excluded through Ishihara plates (Ishihara, 2004) and
in a few cases by self-report. They all gave written,
informed consent. All experiments were done in
agreement with the local ethics committee from the
University of Iceland and the Declaration of Helsinki.

Data analysis

Reaction times were log-transformed for the final
data analysis. Trials with incorrect responses and the
trial immediately following an incorrect response were
deleted from the analysis (because of potential poster-
ror slowing). Trials in which search times exceeded the
mean response time 62 SD were removed. To assess
the influence of distribution shape and the effects of
repetition within a learning streak, we conducted two-
way repeated-measures ANOVAs, with Greenhouse–
Geisser corrections, where applicable, after testing for
sphericity using Mauchly tests. ANOVAs were con-
ducted in the open source software R (R Development
Core Team, 2012) using a random effects model from
the ez package (Lawrence, 2016). We compared the
shapes of the RT CT-PD function using a segmented

Figure 1. Example of a block in which the distractor distribution of orientation was learned and tested. All features during learning and

testing were drawn from a Gaussian distribution. The upper row shows the color and orientation distribution during learning trials

and the lower row shows the color and orientation distribution during test trials. The target is distinguishable through orientation

only while its color is drawn from within the distractor distribution. The stimulus displays on the right refer to example sets during

learning and test trials.
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regression in R (Muggeo, 2008). Confidence intervals
are presented on the nonlog data, but all statistical tests
are done on log-transformed search times.

Results

Performance

During learning trials, search for a target among
distractors from the Gaussian distribution was slightly
easier than among distractors from the uniform
distribution for both features (Figure 2a through d).
Observers were faster and more accurate when
searching for an oddly colored line among colors
drawn from the Gaussian distribution (RT ¼ 730 ms,
SD¼ 119, accuracy¼ 0.96, SD ¼ 0.02) than when
features were drawn from a uniform distribution (RT¼
797 ms, SD¼ 148, accuracy¼ 0.95, SD¼ 0.02). Search
times within a learning streak decreased rapidly after
the first repetition (Figure 2b and 2d). A two-factor
(distribution shape 3 trial number within learning

streak) repeated-measures ANOVA revealed a main
effect of distribution shape, F(1, 9)¼ 68.9, p , 0.001, g2

¼ 0.05, and a main effect of trial number within
learning streaks, F(1.36, 12.22)¼226.98, p , 0.001, g2¼
0.3. We found a small, but significant interaction
between the distribution shape and trial number within
learning streak, F(3, 27)¼ 6.49, g2 ¼ 0.003. Searching
for an oddly oriented line yielded similar results.
Observers were faster and more accurate when
orientations were drawn from a Gaussian distribution
(RT ¼ 940 ms, SD¼ 166, accuracy¼ 0.90, SD¼ 0.05)
compared to a uniform distribution (RT¼ 1002 ms, SD
¼ 189, accuracy¼ 0.86, SD ¼ 0.06). Search times also
decreased rapidly after the first search trial within a
learning streak (Figure 2a and 2c). A two-factor
(distribution shape 3 trial number within learning
streak) repeated-measures ANOVA revealed a main
effect of distribution shape, F(1, 9)¼ 43.86, p , 0.001,
g2 ¼ 0.03, and a main effect of trial number in the
learning streak, F(3, 27)¼ 80.72, p , 0.001, g2¼ 0.084.
We found no significant interactions between the
distribution shape and the trial number within learning
streaks.

Figure 2. Mean accuracy (upper row) and response time (lower row) across all observers against the trial number within learning

streaks and distribution type. (a) and (c) Targets defined by orientation. (b) and (d) Targets defined by color. Error bars correspond to

the 95% CI adjusted for within-subject variability (Morey, 2008).
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Distribution shape learning

The main goal of the current study was to investigate
distractor distribution learning in the presence of a
secondary, irrelevant distribution and moreover, to
investigate whether any aspects of that irrelevant
distribution were also encoded. Previous research has
shown (Chetverikov et al. 2016, 2017a, 2017b, 2018)
that search times as a function of the distance between
the learned distractor mean and the target resemble the
shape of the distractor distribution (such as the
distributions shown in Figure 3). RT functions that
followed Gaussian distractor distributions monotoni-
cally decreased while RT functions following uniform
distributions consisted of a flat part followed by a
linear decrease.

Two main analysis methods have been proven to
successfully assess the similarity between the RT
functions and the underlying distribution shapes (see
Chetverikov, Hansmann-Roth, Tanrikulu, &
Kristjánsson, 2019, for an overview of the possible
analyses). Firstly, since the Gaussian distractor distri-
bution leads to a monotonic decrease in RT, but the
uniform one has a flat part and then a sudden decrease
in RT, segmented regression analyses have been used to
search for significant changes in the RT function.
Previous experiments consistently found a significant
breakpoint for the uniform distractor distribution
around the ‘‘edge’’ of the distribution wheras there was
no breakpoint in the RT functions following a
Gaussian distractor distribution. Secondly, RT func-
tions have been tested against models that correspond
to actual distribution shapes. Comparing the quality of
the fits to the actual data reveals which distribution
shape appears most similar to the observed data. If the
irrelevant distribution does not hamper the encoding of
the relevant one, we expect search times in the test trials
to follow the shape of the distractor distribution as

previously shown. However, if the irrelevant distribu-
tion is detrimental to the learning of the relevant one,
the distinction between the two different distribution
shapes might be affected and not even visible anymore.
In the following results section, we apply both analysis
types to our four different conditions.

Color task

In one quarter of all blocks participants searched for
an oddly colored line on both learning and test trials.
We expected search times for targets close to the mean
of the previous distractor distribution to be slower than
search times for targets further away from the mean of
the previous distractor distribution (role reversals in
visual search). Figure 4a plots search times as a
function of the distance between the current target and
the previous distractor distribution separately for the
two different distractor distribution shapes. Both
distribution shapes are reflected in the shape of the RT
CT-PD function. Search times for targets within the
range of the previous distractor distribution are slower
than search times of targets outside the previous
distractor distribution. A Gaussian distractor distribu-
tion led to a gradual decrease of search times whereas
the uniform distractor distribution produced equally
slow search times within the range of the distractor
distribution and faster search times outside the
distractor distribution. A segmented regression con-
firmed these observations: Search times following the
uniform distractor distributions are best described with
a two-part linear function with a breakpoint found at
around 7 JNDs away from the distribution mean. A
Davies test (Davies, 1987) confirmed that the difference
between the two slopes was indeed significant, p ,
0.001 (the Davies test tests the hypothesis that the
segmented regression provides a better fit compared to
a simple linear model). We tested the slope before and
after the breakpoint against zero. The slope, b ¼ 2.73,
CI ¼ [�9.72, 15.19], of the first part did not differ
significantly from zero. The slope after the breakpoint
was significantly negative: b ¼�11.60, CI ¼ [�13.70,
�9.51]. Conversely, search times following a Gaussian
distractor distribution did not reveal any significant
breakpoints: Davies’ p . 0.05. Search times as a
function of the target to distractor distance monoton-
ically decreased, and the slope was significantly
negative: b ¼�9.33, CI ¼ [�10.65, �8.01].

In addition to the segmented regression we also fitted
prespecified models to our data. The prespecified
models corresponded to actual distribution shapes: a
uniform model with a fixed range of 12 JNDs, a half-
Gaussian model with SD ¼ 6, a linear model and a
‘‘uniform with decrease model,’’ which contains a flat
part within the distribution range and a linear decrease
outside the distribution range. Each model includes a

Figure 3. Shape of distractor distributions for color. The two

lines correspond to the Gaussian and uniform distractor

distribution. Here, we plot only the absolute CT-PD distance

since both distributions are symmetrical.
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Figure 4. Search time in test trials of condition one, where color was the relevant feature in both the learning and the test trials. (a)

Mean response time across all participants during test trials against the distance between the target and the previous distractor

mean. Response times include only blocks in which color was the relevant feature on both learning and test trials. Gray areas show

the 95% CIs based on fitted loess functions. Each fitted line corresponds to one particular distribution shape. (b) Observed data and

modelling fits using maximum likelihood estimation. Observed data are plotted in orange, and the best fit of different models to the

observed data is plotted in red, green, purple, and blue.
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Gaussian-distributed error term (see Chetverikov et al.,
2017b, for equations for the models). We fitted the
different models to our data and obtained the best
fitting parameters using Maximum Likelihood Esti-
mation and used the Bayesian Information Criterion
for comparison. Figure 4b shows participants data and
the resulting fits. Following a Gaussian distribution,
the best fit we obtained was with the linear model (BIC
¼ 418.18), followed by the ‘‘uniform with decrease
model’’ (DBIC¼ 24.81). We also fitted the same models
to individual participants. Following the Gaussian
distribution, the best fit was provided by the linear
model (N ¼ 6 subjects) and for four subjects the
uniform with decrease model provided better fits.
Following a uniform distribution, the best fits were
obtained with the ‘‘uniform with decrease’’ model (BIC
¼ 515.33), followed by the linear model (DBIC¼ 2.78).
When the models were fitted for individual subjects, the
best fit was provided by the ‘‘uniform with decrease’’
model (N¼ 6 subjects) and for four subjects the linear
(N ¼ 3) or the uniform (N ¼ 1) model provided better
fits.

Orientation task

In another quarter of all blocks, participants
searched for an oddly oriented line during both
learning and test trials. The performance on the
orientation task was worse than for color search.
Average search times on test trials for the orientation
search were 916 ms, CI¼ [906, 926], while for the oddly
colored target they were 743 ms, CI¼ [736, 750]. As in
the color search, we expected search times for targets
close to the mean of the previous distractor distribution
to be slower than search times for targets further away
from the mean of the previous distractor distribution.
Figure 5a plots search times as a function of the
distance between the current target and the previous
distractor distribution separately for the two different
distractor distribution shapes. Figure 5a shows that
both distribution shapes are reflected in the shape of
the RT CT-PD function. Search times of targets within
the range of the previous distractor distribution were
slower than search times of targets outside the previous
distractor distribution. A Gaussian distractor distribu-
tion led to a gradual decrease of search times whereas
the uniform distractor distribution produced equally
slow search times within the range of the distractor
distribution and faster search times outside the
distractor distribution. A segmented regression and
modeling analyses confirmed these observations.

The segmented regression showed that search times
following the uniform distractor distributions are best
described with a two-part linear function. A breakpoint
was found around 19 degrees away from the distribution
mean. A Davies test confirmed that the difference

between the two slopes was indeed significant, p¼ 0.047.
We tested the slope before and after the breakpoint
against zero. The slope, b¼ 2.49, CI¼ [�2.37, 7.71], of
the first part did not differ significantly from zero. The
slope after the breakpoint was significantly negative: b¼
�1.00, CI¼ [�1.59,�0.42]. Search times following a
Gaussian distractor distribution did not reveal any
significant breakpoint: Davies test: p . 0.05. Search
times as a function of the target to distractor distance
monotonically decreased. The slope was significantly
negative: b¼�0.95, CI¼ [�1.53,�0.38].

As previously described for color, we compared
prespecified models to actual distribution shapes in our
results. We used a uniform model with a fixed range of
308, a half-Gaussian model with SD ¼ 15, a linear
model and a ‘‘uniform with decrease model,’’ which
contains a flat part within the distribution range and a
linear decrease outside the distribution range. Each
model includes a Gaussian-distributed error term. We
fitted the different models to our data and obtained the
best fitting parameters using Maximum Likelihood
Estimation and used the Bayesian Information Crite-
rion for comparison. Figure 5b shows participants’
data and the resulting fits. Following a Gaussian
distribution shape, both the linear (BIC¼ 1096.05) and
the ‘‘uniform with decrease’’ model (BIC¼ 1096.04)
provided equally good fits (DBIC ¼ 0.0039). We also
fitted the same models to individual participants, and
for the majority of subjects a Null model provided the
best fit (N ¼ 7). This suggests that for a majority of
participants the orientation search was difficult and did
not yield distribution shape learning, or that the results
for individual participants contain too much noise.
Following a uniform distribution, the best fit was
provided by the ‘‘uniform with decrease’’ model (BIC¼
920.44), followed by the linear model (DBIC ¼ 2.45).
However, fitting these models to individual participants
revealed that again most participants yielded best fits
with a Null model (N¼ 8), that does not presume any
distribution shape learning.

Distribution shape learning of the irrelevant
feature

On 50% of trials the relevant feature for the search
task switched from the learning streak to the test trial.
The odd-one-out stimulus was an oddly oriented line
during the learning streak but was an oddly colored line
on the test trial and vice versa. This was a crucial aspect
of our design since it allowed us to assess whether
observers implicitly learned the statistics of the
irrelevant feature distribution. Figure 6a shows the
response times plotted against the distance between the
target on the test trial and the mean of that feature
distribution on the learning trials. Figure 6 contains
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Figure 5. Search times in test trials of condition two. Response times include only blocks where orientation was the relevant feature

both on learning and test trials. (a) Mean response time across all participants during test trials against the distance between the

target and the previous distractor mean. Gray areas show the 95% CIs based on fitted loess functions. Each fitted line corresponds to

one particular distribution shape. (b) Observed data and modelling fits using maximum likelihood estimation. Observed data are

plotted in orange, and the best fit of different models to the observed data is plotted in red, green, purple, and blue.
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Figure 6. Search times in test trials of condition three where orientation was the relevant feature in the learning streak, and color was

the relevant feature during the test trial. Response times include only blocks in which color was the relevant feature during testing

but preceded by learning streak in which orientation was the relevant feature (condition three in Table 1). (a) Mean response time

across all participants during test trials against the distance between the target and the previous mean of the color distribution. Gray

areas show the 95% CIs based on fitted loess functions. Each fitted line corresponds to one particular distribution shape. (b) Observed

data and modelling fits using maximum likelihood estimation. Observed data are plotted in orange, and the best fit of different

models to the observed data is plotted in red, green, purple, and blue.
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only trials of condition three where participants
searched for an oddly oriented line during learning
streaks and for an oddly colored line during test trials.
Overall search times for targets within the range of the
previous distractor distribution were slower than search
times of targets outside the previous distractor distri-
bution. However, participants also responded faster
when the target was close to the mean of that feature
distribution in the preceding learning streak.

For both distractor distributions we found a
significant breakpoint at around 8 JND (uniform
distractor distribution) and 4 JND (Gaussian distractor
distribution). A Davies test confirmed that the differ-
ence between the two slopes was indeed significant, p ,
0.001 for both the uniform and the Gaussian distribu-
tions. We tested the slopes preceding and following the
breakpoint against zero. Following a uniform distri-
bution, the slope, b ¼ 7.84, CI ¼ [�3.52, 19.20], of the
first part did not differ significantly from zero. The
slope following the breakpoint was significantly nega-
tive: b ¼�4.45, CI ¼ [�7.17, �1.90].

Following a Gaussian distribution, the slope, b ¼
8.49, CI¼ [1.00, 15.98], of the first part was significantly
positive, and the slope after the breakpoint was
significantly negative: b ¼�8.49, CI ¼ [�11.72, �5.27].
During learning streaks the color of the lines was
irrelevant to the search task, but participants responded
faster when the target on the test trials had a color very
similar to the mean color of the lines in the learning
streak, indicated by the drop in search time close to 0 in
Figure 5b (Note that this preceding distribution was
not the distractor distribution, since color was not the
relevant feature).

Fitting our prespecified models revealed that for a
small subset of participants (N ¼ 4) the ‘‘uniform with
decrease’’ model provided the best fit for both
distribution shapes (Gaussian: BIC ¼ 688.19; uniform:
BIC ¼ 583.19), whereas for the remainder of partici-
pants (N ¼ 6) the null model yielded the best fit,
showing that the distribution shape of the irrelevant
feature during learning was not encoded (Figure 6).

Figure 7a plots the response time of all test trials
where the oddly oriented line was the odd-one-out
target, but the test trial was preceded by searches where
the oddly colored line was the odd-one-out. The
segmented regression did not reveal any significant
breakpoints for any of the two distribution shapes:
Davies test p . 0.05. Following a Gaussian distribu-
tion, search times as a function of the target to
distractor distance also did not significantly decrease: b
¼�0.095, CI ¼ [�0.66, 0.47]. However, we found a
significant negative slope for the uniform distribution:
b¼�0.61, CI ¼ [�1.11, �0.11].

Fitting our prespecified models revealed that for all
participants except one, the null model yielded the best
fit for both distribution shapes (Gaussian: BIC ¼

152.69, uniform: BIC ¼�12.48), showing that the
distribution shape of the irrelevant feature during
learning was not encoded (Figure 7b).

Discussion

We investigated whether observers would be able to
learn a probability distribution of stimulus features in
the presence of another, task-irrelevant feature distri-
bution, and whether this task-irrelevant distribution
would also be encoded. To this end, we used the
feature-distribution learning paradigm introduced by
Chetverikov et al. (2016) with stimuli that combined
two different features, color and orientation.

The most important result is that feature distribution
learning occurs even in the presence of a secondary
irrelevant feature. We also found that the color
distribution was encoded more precisely than the
orientation distribution. Note that this was only
noticeable when the models were fitted on individual
subjects’ data while the group-level performance was
similar. This probably reflects the addition of color.
Oddly colored lines were apparently more salient than
oddly oriented lines in our task and distributions of
distractor orientations could seemingly not be pro-
cessed without interference from the color distribution
similar to the description of integral feature dimensions
by Garner and colleagues (Garner & Felfoldy, 1970;
Garner, 1976, 1978). Integral dimensions are often
dimensions that are processed together, but as Garner
noted, this is not the case for color and orientation. We
therefore speculate that better distribution learning for
color reflects that color was more salient than
orientation in our paradigm.

Our task was identical to previous orientation search
tasks that have revealed learning of distractor distri-
butions (Chetverikov et al., 2016, 2017a, 2017c), except
that the color of the lines varied. In these previous
experiments the distractor lines were all white. The
color differences in the present experiment may have
made orientation search more difficult (Figure 8 shows
examples of different search displays with homoge-
neous and inhomogeneous line colors). In agreement
with this hypothesis, search times on learning trials
were indeed faster in Chetverikov et al. (2016); RT ¼
820 ms, SD¼ 106) than in our experiment (RT ¼ 940
ms, SD¼166), although comparisons between different
studies must be made with caution because of different
samples and testing conditions.

Additionally, on a subset of trials we tested
participants’ learning of the irrelevant feature distri-
bution by switching the relevant target feature between
the learning and test trials. This allowed us to assess
whether participants also encoded information about
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Figure 7. Search times in test trials of condition four, in which color was the relevant feature in the learning streak and orientation was

the relevant feature during the test trial. (a) Mean response time across all participants during test trials against the distance between

the target and the previous distractor mean. The two colors (red and blue) correspond to the two different distribution shapes. Gray

areas show the 95% CIs based on fitted loess functions. (b) Observed data and modelling fits using maximum likelihood estimation.

The observed data is plotted in orange, and the best fit of different models to the data is plotted in red, green, purple, and blue.

Journal of Vision (2019) 19(9):2, 1–17 Hansmann-Roth, Chetverikov, & Kristjánsson 13

Downloaded from jov.arvojournals.org on 10/14/2019



that irrelevant feature distribution. For example,
consider the case when observers search for an oddly
oriented line during learning trials and the color of the
lines was constantly drawn from the same color
distribution with a mean color of green similar to the
search display in Figure 8b. This color distribution
defines both the distractor and target colors. For color
we found significant breakpoints using a segmented
regression. For the Gaussian distribution we even
found a positive slope for small CT-PD distances,
indicating that search times were lower for colors close
to the mean of the previous distribution and far away
from the distribution mean. Participants found the
oddly colored line faster when the color of the line was
similar to the mean color of the lines during learning
trials. During learning trials, participants were repeat-
edly exposed to the same average line color (green in
our hypothetical example). These faster search times on
the test trials might therefore be a result of priming.
The mean of a Gaussian distractor distribution
corresponds to the color that is the most probable color
in stimulus set. This suggests that participants were
primed by the repeated exposure to the same average
color green, and if on a subsequent trial the target was
distinguishable from its green color, participants
responded faster than for a different color. Observers
were also faster when the target was furthest away from
the previous distribution mean. In that case the target
color was very different from the distribution mean on
the learning trials. But in that case the distractors were
close to the previous mean. Given that the difference
between target and distractor mean varied between 18
and 24 JND (in color space), the distractors on the test
trials in our hypothetical example would most likely be
greenish if the target color was far away. This means
that although color was not relevant during the
preceding learning trials, some statistical information
was still encoded. However, this information was
associated both with the target and the distractors,
presumably resulting in either target priming or
distractor priming (Kristjánsson & Driver, 2008).

Bronfman, Brezis, Jacobson, and Usher (2014) and
Ward, Bear, and Scholl (2016) showed that during a
modified version of the Sperling partial report task
(Sperling, 1960), subjects reported letters of cued rows,
but were also able to recall the color diversity of
noncued rows. They concluded that participants still
encode statistical information like color diversity even
in the absence of focal attention. Although it is unclear
whether the representation of the colors was conscious,
these findings clearly demonstrate an ability for
representing summary statistical information of colors
outside the focus of attention and even with only a
coarse representation of individual items (Ward et al.,
2016). However, in both studies, judging the color
diversity was part of the task, and participants might
have split their attention between the different rows of
colored letters. Conversely, in our study, participants
were unaware of the structure of the experiment
(learning and test trials). And although only orienta-
tion was task relevant in this part of the experiment, we
still found learning of the average color of the lines,
indicating that even in the absence of attention and task
relevance, information about ensemble statistics can be
processed and represented.

Conversely, our data shows that the irrelevant
orientation distribution was not encoded. For the
encoding of the relevant distribution of distractor
orientation, we found worse learning at the individual-
level analysis compared to color. It is therefore unlikely
that the orientation distribution is encoded if it is not
relevant to the search task.

Our results also seem to indicate that the unicolored
oddly oriented line pops out more easily than the oddly
oriented line among differently colored lines. Previous
research has shown that extracting summary statistical
information from sets of stimuli is easier during pop-
out searches that presumably involve more global
attention. Chong and Treisman (2005) combined two
different tasks: Participants initially performed either
serial search (closed circle among open ones) or parallel
search (open circle among closed ones). In a subsequent
task, observers were presented with two test circles and
either performed a member identification task or a
mean discrimination task. They judged which test circle
corresponded to the mean size of the circles, and in the
member identification task, they decided which test
circle had been presented at a particular location on the
screen. The results showed that performance on the
mean discrimination task was better if it was preceded
by a parallel search task that allows more global
attention than a serial search task. Performance in the
member identification task was, on the other hand,
better if it was preceded by a serial search task that
requires more local attention. Consistent with this, De
Fockert and Marchant (2008) found that attention can
bias average size estimates.

Figure 8. Example of a stimulus set (a) with only a single color

and (b) with colors drawn from a Gaussian distribution but

orientation is the relevant feature (condition two and three).
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If the colored lines prevent parallel search and
participants instead have to apply more local attention
and serially search for the target, this may inhibit the
distribution learning. Similar to the results earlier
described by Chong and Treisman (2005), orientation
distribution learning might have been affected by
locally applied attention which was needed to find the
target. Although research has shown that attention is
not a necessary prerequisite for ensemble perception,
attention does, however, modulate summary statistical
representations (see also Haberman & Whitney, 2011).
Our results therefore may suggest that attention also
modulates learning of more complex properties of
feature distributions.

Search times for an oddly colored target were similar
to those in our previous experiment with color
singletons (Chetverikov et al., 2017b). Speculatively,
this suggests that search for a color pop-out was not
affected by the orientation of the lines and the oddly
colored line popped-out independently of its orienta-
tion. Mean RT’s during learning trials were even faster
than in Chetverikov et al. (2017b). However, the task in
the previous work was different since we only asked
participants about the position of the target. In
Chetverikov et al. (2017b) the task was to find the
target and then report its shape.

Overall, our results show that distribution learning
in the presence of other features is possible. However,
they also reveal that distribution learning differs
between the two tested features. Seemingly, the colored
lines prevented the oddly oriented target from imme-
diately popping out, and observers were therefore
unable to encode information about the irrelevant
feature distributions. How more complex object
properties are encoded that actually consist of multiple
components like the color and the transmittance of a
transparent object remains to be studied.

Conclusions

Our results show that feature distribution learning
can occur in the presence of a secondary feature. But
the results also highlight how distribution learning is
modulated by the salience of the items. More specifi-
cally, if the colored lines prevent parallel search and
participants instead have to apply more local attention
and serially search for the target, distribution learning
is diminished. Attention also seems to modulate more
complex distribution learning. Although only a single
feature was relevant for the search, we still found
learning of some summary statistical information of the
color of the lines, indicating that even in the absence of
attention and relevance, statistical information can be
represented. It remains to be studied whether other

combinations of features would yield similar results.
Other feature distributions that do not influence pop-
out or saliency might be encoded without interference
from a secondary feature if the features are separable
(Garner & Felfoldy, 1970; Garner, 1976, 1978).
Moreover, how multiple feature distributions interact
for integral features that are processed together like
lightness and saturation or lightness and hue remains
an open question.

Keywords: ensemble perception, statistical learning,
perceptual learning, perceptual organization
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