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Quantization and the Resolvent Algebra∗†

Teun D.H. van Nuland
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Netherlands. E-mail: t.vannuland@math.ru.nl

Abstract

We introduce a novel commutative C*-algebra CR(X) of functions on a sym-
plectic vector space (X,σ) admitting a complex structure, along with a strict de-
formation quantization that maps a dense subalgebra of CR(X) to the resolvent
algebra introduced by Buchholz and Grundling [2]. The associated quantization
map is a field-theoretical Weyl quantization compatible with the work of Binz,
Honegger and Rieckers [1]. We also define a Berezin-type quantization map
on all of CR(X), which continuously and bijectively maps it onto the resolvent
algebra.

The commutative resolvent algebra CR(X), generally defined on a real inner
product space X, intimately depends on the finite dimensional subspaces of X.
We thoroughly analyze the structure of this algebra in the finite dimensional
case by giving a characterization of its elements and by computing its Gelfand
spectrum.

1 Introduction

The resolvent algebra is a C*-algebra modelling the canonical commutation relations.
Just as the better known Weyl (C*-)algebra is characterized by the canonical com-
mutation relations in exponentiated form, the resolvent algebra is characterized by
the corresponding relations between resolvents. This simple change turns out to give
the resolvent algebra a much richer structure, and makes it better suited for model-
ling dynamics, compared to the Weyl algebra. The resolvent algebra, introduced and
thoroughly investigated by Buchholz and Grundling in [2], appears to be useful for
many aspects of quantum mechanics and quantum field theory, but has left us one
important question. This question, posed by Buchholz in a personal communication,
concerns the classical limit of the resolvent algebra, or, equivalently (at least within a
C*-algebraic framework), its emergence from strict deformation quantization theory.

∗This is an author generated post-print of the following article, to appear in Journal of Functional
Analysis (Creative Commons licence CC BY NC ND). Van Nuland, T.D.H.: Quantization and the
Resolvent Algebra. J. Funct. Anal., (2019) (in press)
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We answer this question in this paper, in a way that seamlessly extends quantization
in the setting of the compact operators to infinite dimensions.

To explain this, we will view the resolvent algebra in light of different quantization
procedures, the first of which is the procedure introduced by Weyl. In a C*-algebraic
framework [6, 7, 8], Weyl quantization typically starts from a dense subalgebra of
C0(R2n), like the Schwartz space S(R2n), which is then mapped to a dense subalgebra
of the compact operators K(L2(Rn)). The Weyl quantization of f ∈ S(R2n) is the
operator on L2(Rn) defined by

QW
~ (f) =

∫
R2n

d2nx

(2π)n
f̂(x)eiφ(x) , (1)

where φ(x) is a linear combinations of position and momentum operators with coef-
ficients x1, . . . x2n, and f̂ is the Fourier transform of f . (The precise definitions can
be found in Section 3.) Motivated by quantum field theory, we also wish to quantize
functions on an infinite dimensional phase space X. Because S(X) = 0 for infinite
dimensional X, our suggestion is to replace S(X) by

SR(X) := span {g ◦ PV | g ∈ S(V ), V ⊆ X finite dimensional} ,

where PV is the (orthogonal) projection onto V . Our generalization of Weyl quantiz-
ation is then defined as

QW
~ (g ◦ PV ) :=

∫
V

drx

(2π)r/2
ĝ(x)eiφ(x) , (2)

where r = dimV and φ(x) =
√
~(a∗(x) +a(x)) is the sum of creation and annihilation

operators, weighted by
√
~.

Definition (2) relates well to other generalizations of Weyl quantization. Firstly,
when X = R2n, (2) is related to (1) by a unitary, where we observe that (1) is defined
for a large class of functions f [3, 7], in particular for f = g ◦ PV . Secondly, (2) is
formally an extension of the quantization map on the Weyl algebra, as defined in [1].
Indeed, suppose that g(PV (y)) = eix·y. Then (2) formally dictates QW

~ (g◦PV ) = eiφ(x),
and these operators eiφ(x) generate the Weyl algebra in the Fock representation. In fact,
Binz, Honegger and Rieckers proved in [1] that this field-theoretical Weyl quantization
constitutes a strict deformation quantization, with the almost periodic functions (the
C*-algebra generated by the functions y 7→ eix·y) on the classical side, and the Weyl
algebra on the quantum side.

This paper proves the following new fact. Weyl quantization gives a strict deform-
ation quantization of SR, and the image of SR under QW

~ is a dense subalgebra of the
resolvent algebra. In particular, this result entails a continuous field of C*-algebras
over I = R, with the resolvent algebra R(X, σ) as the constant fiber above I \ {0},
and CR(X) := SR(X) as the fiber above 0.

The known continuous field of C*-algebras {A~}~≥0, where A0 = C0(R2n) and
A~ = K(L2(Rn)) for each ~ > 0, only applies to finite dimension. As we have now
extended this by A0 ⊆ CR(R2n), and A~ ⊆ R(R2n, σ) for ~ > 0, we can view the
resolvent algebra as an elegant way to work in arbitrary dimension.

In addition to Weyl quantization, we also study Berezin quantization in the setting
of the resolvent algebra. It turns out that Berezin quantization, defined by extension

2



of

QB
~ (g ◦ PV ) :=

∫
V

drx

(2π)r/2
e−

~
4
x2 ĝ(x)eiφ(x) ,

is a continuous positive linear isomorphism QB
~ : CR(X)→ R(X, σ), which is equival-

ent to Weyl Quantization in the sense of [6]. Again, and perhaps more clearly in this
second quantization procedure, CR(X) is seen to be the classical limit of R(X, σ). We
will therefore refer to CR(X) as the commutative resolvent algebra, and devote most
of this article to an investigation of its structure.

It turns out that the commutative resolvent algebra is generated by the functions
hλx(y) := 1/(iλ− x · y). This gives an equivalent, more direct definition

CR(X) := C∗
(
hλx
∣∣ λ ∈ R \ {0}, x ∈ X

)
,

which also relates nicely to the definition of the resolvent algebra. In this way, hλx is
the classical analogue of the generators R(λ, x) := (iλ− φ(x))−1 of R(X, σ).

This analogy between classical and quantum can be quite useful. Many results of
the resolvent algebra turn out to have a classical analogue, which can be understood
through simple geometric pictures. For instance, for linearly independent x, y ∈ X,
the result (from [2])

‖R(1, x)−R(1, y)‖ ≥ 1 , (3)

has a very easy classical counterpart∥∥h1
x − h1

y

∥∥
∞ ≥ 1 . (4)

An important aspect of the commutative resolvent algebra is that

CR(X) = lim−→CR(V ) ,

for finite dimensional V ⊆ X, where the connecting maps defining the colimit are
P ∗V : CR(V ) → CR(W ) for V ⊆ W . This is one of the reasons why much of our
analysis is done on finite-dimensional spaces X.

In the last two sections of this paper we show the power and flexibility of the
commutative resolvent algebra on Rm. Arbitrary elements of CR(Rm) are infinite
sums of functions g ◦ PV , usually converging conditionally. We will make clear how
these sums can be decomposed into a finite number of unconditional parts. We will
end up with a characterization of the elements of CR(Rm) that behaves nicely with
respect to its algebraic structure.

The Gelfand spectrum is a useful way of understanding a commutative C*-algebra.
For this reason we will identify the Gelfand spectrum of CR(Rm) with the set of affine
subspaces of Rm, equiped with an interesting new topology. We characterize this
topology by a convergence criterion as well as by providing a neighborhood basis.
Either way, one easily identifies Rm with its 0-dimensional affine subspaces. Thusly,
we show that the Gelfand spectrum of CR(Rm) is a compactification of Rm.

This paper is organized as follows. Section 2 gives the main definitions and the
crucial results. These include a direct definition of CR and a proof that SR is a Poisson
*-algebra. For the reader with a specific interest it is useful to know that Sections 3,
4 and 5 each depend solely on Section 2 and are independent otherwise. In Section 3,
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we discuss Weyl quantization, Berezin quantization, and the Resolvent algebra in the
setting of Fock space. Section 4 characterizes the elements of CR(Rm) in a way that
suits its algebraic structure. Finally, Section 5 establishes a precise characterization
of the Gelfand spectrum of CR(Rm).

2 Commutative Resolvent Algebra

Let X be a real inner product space. We define the commutative resolvent algebra
CR(X), similar to the definition of the resolvent algebra R(X, σ) of Buchholz and
Grundling [2], but without assuming the existence of a compatible symplectic struc-
ture σ on X. The classical analogues of the resolvents R(λ, x) (defined in [2], and
equivalently in our Section 3,) are the functions

hλx(y) := 1/(iλ− x · y) (y ∈ X) ,

for x ∈ X, λ ∈ R \ {0}. The inner product · gives rise to a norm ‖ ‖ and a topology
(the standard ones for real pre-Hilbert spaces X), making hλx a continuous function.

Definition 2.1. The commutative resolvent algebra on X, denoted by CR(X),
or simply by CR, is the C*-subalgebra of Cb(X) generated by the functions hλx.

This C*-algebra CR is unital, since ih1
0 = 1. Let us write hλx = gλ ◦ px for gλ :=

1/(iλ− ·) and
px(y) := x · y .

For x 6= 0, the pull-back p∗x : C0(R) → Cb(X) is an isometric *-homomorphism,
allowing for an equivalent definition of CR. Indeed, the Stone–Weierstrass theorem
gives C∗(gλ|λ ∈ R\{0}) = C0(R), implying C∗(hλx|λ ∈ R\{0}) = p∗x(C0(R)), for any
x. Hence, CR is the C*-algebra generated by {g ◦ px | g ∈ C0(R), x ∈ X}.

We will see that these g ◦ px generate more general functions g ◦ PV , when we
generalize px by the (orthogonal) projection PV onto any finite dimensional subspace
V ⊆ X, and let g ∈ C0(V ). It will sometimes be useful to assume that g is a Schwartz
function, by which we mean g ∈ S(V ).

Lemma 2.2. Let V1, V2 ⊆ X be linear and gi ∈ C0(Vi) for i ∈ {1, 2}. Then

(i) (g1 ◦ PV1)(g2 ◦ PV2) = g ◦ PV1+V2 for some g ∈ C0(V1 + V2),

(ii) if g1 and g2 are both Schwartz, then g is Schwartz as well.

Proof. Since PVi = PVi ◦ PV1+V2 , we find (g1 ◦ PV1)(g2 ◦ PV2) = g ◦ PV1+V2 for g :=
(g1 ◦ PV1)(g2 ◦ PV2)�V1+V2 . Now decompose V1 + V2 = U1 ⊕ U2 ⊕ U3 for linear Ui ⊆ X
with V1 = U1 ⊕ U3, V2 = U2 ⊕ U3. Then

g(u1 + u2 + u3) = g1(u1 + u3)g2(u2 + u3)

for ui ∈ Ui. When g1 and g2 are Schwartz, bounding the Schwartz norms of g (with
respect to any reasonable basis of U1 ⊕ U2 ⊕ U3) is a matter of applying the general
Leibniz rule. This gives (ii), and by density of S in C0, (i) follows.
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We will relate the structure of CR to the functions of the form g ◦P , so let us give
this type of functions a name.

Definition 2.3. A levee f : X → C is a composition f = g ◦ P of some finite
dimensional projection P and some function g ∈ C0(ranP ).

The terminology is explained in Section 4, and illustrated by Figure 1. Instead
of the term levee, one could call a function of the form g ◦ P cylindrical, relating
to cylindrical sets and measures. However, this might cause confusion, as the term
‘cylindrical function’ in some contexts refers to a Bessel function.

Levees for which g is Schwartz will be very useful when working with Weyl quant-
ization. We therefore define

SR(X) := span {g ◦ P levee | g ∈ S(ranP )} .

This space of finite sums of levees turns out to be an algebra.

Proposition 2.4. The space SR(X) is a dense *-subalgebra of CR(X).

Proof. Let g ◦ PV be a levee with g ∈ S(V ), and fix an orthonormal basis v1, . . . , vk
of V . Because the algebraic tensor product S(R)⊗k is densely embedded in S(V )
(with respect to the Schwartz topology), we may assume that g(t1v1 + . . . + tkvk) =
g1(t1) · · · gk(tk) for gi ∈ S(R). We obtain g ◦ PV =

∏
gi ◦ pvi ∈ CR and conclude that

SR ⊆ CR.
The set SR is clearly closed under linear combinations and involution. Furthermore,
closure under multiplication follows by Lemma 2.2, and we may conclude that SR is
a *-subalgebra.
Finally, any generator hλx is approximated by functions g ◦ px ∈ SR where g ∈ S(R)
approximates gλ = 1/(iλ− ·) ∈ C0(R). This proves density.

2.1 CR-functions at large scale

We will specify the behavior of an arbitrary function f ∈ CR(X) at infinity. To this
purpose, we assume X is finite dimensional, but we will shortly see that this gives us
information about the general case as well. Let V +w ⊆ X be an affine subspace, with
space of directions S(V ) := {v ∈ V | ‖v‖ = 1} when V 6= {0}, and S({0}) := {0}. We
equip S(V ) with the spherical measure µ. The convergence at infinity of f is captured
by the following lemma.

Lemma 2.5. Take f ∈ CR(X) for a finite dimensional X. Then the limit

fV,w(v) := lim
t→∞

f(tv + w) (5)

exists for all v ∈ S(V ) and hence defines a function fV,w : S(V ) → C. Furthermore,
fV,w takes a constant value µ-almost everywhere. If f = g ◦ P is a levee, then this
value is 0 if V * kerP , and this value is g(Pw) if V ⊆ kerP .

Proof. If f is a levee, then the lemma can be checked by a case distinction. So when
(fi) ⊆ SR(X) converges to f ∈ CR(X), then we have a well-defined function fV,wi with
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fV,wi = ci µ-a.e. for some ci ∈ C. The sequence (ci) converges to some c ∈ C, because
(fi) is Cauchy in ‖·‖∞. If

Γ := {v ∈ S(V ) | ∀i : fV,wi (v) = ci} ,

then µ(S(V ) \ Γ) = 0 by countable additivity of µ. Now for arbitrary v ∈ Γ we have

lim
i→∞

lim
t→∞

fi(tv + w) = lim
i→∞

ci = c ,

and for any v ∈ S(V ) we have fi(tv+w)→ f(tv+w) uniformly in t. Therefore, fV,w

is a function with fV,w = c µ-a.e.

Apart from its use in Sections 4 and 5, this lemma shows us that levees that
are constant in different directions are linearly independent. Indeed, suppose that∑k

i=1 gi ◦ PVi = 0 for levees gi ◦ PVi with distinct Vi. One can assume without loss of
generality that X = V1 + . . . + Vk (thereby reducing to the finite dimensional case),
and see that

0 =
(∑

gi ◦ PVi
)V,w

= gj(w) µ-a.e.,

for V = V ⊥j a maximal element of {V ⊥1 , . . . , V ⊥k }. It then follows that each gi◦PVi = 0.
Thanks to this linear independence, it is allowed to linearly extend a function

defined on levees g ◦ P , as long as this definition is linear in g. This will precisely be
the case for our two quantization maps in Section 3.

2.2 Poisson structure

If X has a compatible complex structure (and therefore in particular a symplectic
structure), we can put a canonical Poisson structure on SR(X) (which will be neces-
sary for strict deformation quantization). Equipping X = R2n with the symplectic
structure σ(x, y) =

∑
xn+jyj − xjyn+j, the *-algebra SR(R2n) is a Poisson subalgebra

of C∞(R2n), because any partial derivative of a levee is again a levee. Let {·, ·}2n be
the Poisson bracket of C∞(R2n), and hence of SR(R2n). If a compatible hermitian
form is fixed on R2n, then any surjective, continuous, partial isometry p : X → R2n

(for any n ∈ N) induces a Poisson structure on the image of p∗ : SR(R2n) → SR(X).
In effect, we are defining

{f ◦ p, g ◦ p} := {f, g}2n ◦ p .

It can be shown that this bracket does not depend on p, using the equivariance of
{·, ·}2n under symplectic transformations and the tensor product. This gives us a
Poisson structure on the whole of SR(X), because any three levees g1 ◦ PV1 , g2 ◦ PV2 ,
g3 ◦ PV3 are in the image of a single p∗, namely for the p with (ker p)⊥ ⊇ V1 + V2 + V3.

3 Quantization

Now that we have introduced the classical setup (postponing the more advanced results
until Sections 4 and 5), we will connect classical with quantum. We begin by defining
the core concepts we need.
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3.1 Fock space, the resolvent algebra, and quantization

Let (X, σ) be a symplectic vector space admitting a compatible hermitian form 〈·, ·〉
(i.e. σ(x, y) = 2=〈x, y〉). For analyzing the resolvent algebra, Buchholz and Grundling
use a field φ that can be defined in multiple ways. Since the field φ plays an important
role for field theoretic quantization as well as for the resolvent algebra, let us define
φ concretely in the setting of Fock space. That is, our Hilbert space is F(X), the
bosonic Fock space (symmetric Hilbert space) of the completion of X with respect to
its complex inner product. We refer to [4] for details on the Fock space, as well as for
the details of the following remarks. Throughout this section, we fix ~ ∈ R \ {0}. As
a common domain for φ(x), we take

C := span

{√
Exp(w) :=

∞∑
k=0

⊗kw√
k!

∣∣∣∣∣ w ∈ X
}
,

on which we define, for any x ∈ X,

φ(x)
√

Exp(w) := i
√
~
(
〈x,w〉

√
Exp(w)− d

dt

√
Exp(w + tx)

∣∣∣∣
t=0

)
,

where the derivative exists because of (
√

Exp(w),
√

Exp(z)) = e〈w,z〉. Note that our
inner product is linear in the second argument, as opposed to [4]. By Stone’s theorem
and some calculation, one obtains

eiφ(x)
√

Exp(w) = e−
~
2
‖x‖2−

√
~〈x,w〉√Exp(w +

√
~x) . (6)

It then also follows that φ(x) is essentially self-adjoint. From (6) it can easily be
checked that

eiφ(x)eiφ(y) = e−
i~
2
σ(x,y)eiφ(x+y) .

The resolvent algebra was defined by Buchholz and Grundling in [2], through abstract
relations. We write this definition down in Fock representation, where it becomes
shorter and more suited to our purposes.

Definition 3.1. The resolvent algebra R(X, σ) is the C*-subalgebra of B(F(X))
generated by the resolvents R(λ, x) := (iλ− φ(x))−1 for λ ∈ R\{0} and x ∈ X.

The resolvent algebra can be thought of as the commutative resolvent algebra,
with the functions y 7→ x · y replaced by the operators φ(x). This analogy alone can
already yield helpful intuition, as exemplified by (3) and (4). However, to establish a
rigorous relation between the two algebras, we will use the concept of strict deformation
quantization, defined below. This definition is equivalent to [6, Definition 1.1.1], other
definitions of strict deformation quantization are reviewed in [5].

Definition 3.2. Let Ã0 be a complex Poisson algebra, densely contained in a C*-
algebra A0, with {f, g}∗ = {f ∗, g∗}. A strict deformation quantization of Ã0

consists of a subset I ⊆ R with 0 ∈ I ∩ I\{0}, a collection of C*-algebras {A~}~∈I
(with norms ‖·‖~), and a collection of injective linear *-preserving maps

{Q~ : Ã0 → A~}~∈I ,
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such that Q0 is the identity map, Q~(Ã0) is a dense *-subalgebra of A~ (for each ~ ∈ I),
and for all f, g ∈ Ã0:

~ 7→ ‖Q~(f)‖~ is continuous on I, (I)

lim
~→0
‖Q~(f)Q~(g)−Q~(fg)‖~ = 0 , (II)

lim
~→0

∥∥ i
~ [Q~(f), Q~(g)]−Q~({f, g})

∥∥
~ = 0 . (III)

We also give a definition of a new type of deformation, which is intended to fit into
the C*-algebraic framework more smoothly.

Definition 3.3. A strict C*-deformation of a C*-algebra A0 consists of all data of
a strict deformation quantization of Ã0 := A0 except a Poisson structure, and satisfies
all properties of Definition 3.2 except for (III), such that Q~ : A0 → A~ is continuous
and surjective.

Our purpose for Definition 3.3 is to more concretely relate a classical C*-algebra
to a quantum C*-algebra. In line with this philosophy, Definition 3.3 gives bijective
quantization maps Q~, defined on the whole C*-algebra, largely preserving analytic
and algebraic structure. Since C*-algebras are never Poisson algebras, we let go of the
Poisson structure and hence of the requirement (III). This weakening can be seen as a
disadvantage, as condition (III) determines the direction in which we quantize, but for
us this is besides the point. In any case, both Definition 3.2 and Definition 3.3 imply
that {A~}~∈I is a continuous field of C*-algebras, under reasonable assumptions, as
formulated in [6, Theorem 1.2.4]. We will show that both definitions can be applied
to the resolvent algebra: in our setting Weyl quantization is a strict deformation
quantization, whereas Berezin quantization is a strict C*-deformation.

3.2 Weyl quantization

We are interested in a generalization of Weyl quantization, defined on a dense subset of
the commutative resolvent algebra. As argued in the introduction, it makes intuitive
sense to define Weyl quantization of a levee g ◦ PV ∈ SR(X) as

QW
~ (g ◦ PV ) :=

∫
V

/dx ĝ(x)eiφ(x) , (7)

and we will now explain how to mathematically interpret this definition. We write
/dy := (2π)−m/2dmy whenever y runs over an m-dimensional space, in particu-
lar simplifying the notation of our Fourier transform, ĝ(x) =

∫
V
/dy g(y)e−ix·y. All

operator-valued integrals in this section are of the form
∫

dµ(x)Ax, where µ is a fi-
nite complex measure and x 7→ Ax is strongly continuous. These can be defined by
(
∫

dµ(x)Ax)ψ :=
∫

dµ(x)Axψ, where the latter integral is a (complex) Pettis integral.
In our situation dµ(x) = /dx ĝ(x), and Ax = eiφ(x), so our expression (7) is defined.
Notice that the ~-dependence of QW

~ comes from φ.
We can linearly extend (7), as was discussed after the proof of Lemma 2.5. Fur-

thermore, any QW
~ (f) is bounded because of the estimation∥∥QW

~ (g ◦ PV )
∥∥ ≤ ‖ĝ‖1 , (8)

8



and we therefore have a well-defined linear map QW
~ : SR(X) → B(H). In order to

show that this map determines a strict deformation quantization, our main task is to
prove that QW

~ (SR(X)) is a dense *-subalgebra of R(X, σ).
To this purpose, we first restrict ourselves to V = span{x}. In this case, it is nicer

to replace PV by the function px : y 7→ x ·y. If g ∈ S(R), then the levee g◦px ∈ SR(X)
is quantized by the operator

QW
~ (g ◦ px) =

∫
R
/dt ĝ(t)eitφ(x) ,

which turns out to behave nicely as a function of g.

Proposition 3.4. Weyl quantization applied to levees of one variable coincides with
the continuous functional calculus of φ(x). That is,

QW
~ (g ◦ px) = g(φ(x)) .

Proof. Define ρ : L1(R) → B(F(X)) by ρ(f) :=
∫
/dt f(t)eitφ(x). Let C∗(R) be the

group C*-algebra of R, with associated norm ‖·‖∗. The definition of ‖·‖∗ in particular
implies ‖ρ(f)‖ ≤ ‖f‖∗, giving us a continuous extension ρ : C∗(R) → B(F(X)). It
is known that the Fourier transform ·̂ : C0(R) → C∗(R) is continuous, and therefore
ρ(̂·) : C0(R) → B(F(X)) is continuous as well. Since ρ(ĝ) = QW

~ (g ◦ px) (g ∈ S(R)),
we are left to show that ρ(̂·) coincides with the functional calculus of φ(x). With
the basic rules for Fourier transforms, ρ(̂·) can be shown to be a *-homomorphism
on a dense subset, and hence on all of C0(R). Furthermore, from [2, Corollary 4.4]
it straightforwardly follows that ρ((1/(iλ − ·))̂ ) = (iλ − φ(x))−1 = R(λ, x). This
completes the proof.

Proposition 3.5. The set QW
~ (SR(X)) is a *-subalgebra of B(H).

Proof. Let V1, V2 ⊆ X be finite dimensional subspaces, and gi ∈ S(Vi). Decompose
V1 + V2 = U1 ⊕ U2 ⊕ U3 for linear Ui ⊆ X with V1 = U1 ⊕ U3, V2 = U2 ⊕ U3. We find
that

QW
~ (g1 ◦ PV1)QW

~ (g2 ◦ PV2) =

∫
V1

/dx

∫
V2

/dy ĝ1(x)ĝ2(y)e
−i~
2
σ(x,y)eiφ(x+y)

=

∫
U1

/du1

∫
U2

/du2

∫
U3

/du3 ĝ(u1 + u2 + u3)eiφ(u1+u2+u3),

where we have defined, for ui ∈ Ui,

ĝ(u1 + u2 + u3) :=

∫
U3

/du′3 ĝ1(u1 + u3 − u′3)ĝ2(u1 + u′3)e
−i~
2
σ(u1+u3−u′3,u2+u′3) .

By bounding the Schwartz norms of ĝ with respect to an appropriate basis, one finds
that ĝ ∈ S(V1 + V2) and therefore g ◦ PV1+V2 ∈ SR(X). Hence

QW
~ (g1 ◦ PV1)QW

~ (g2 ◦ PV2) = QW
~ (g ◦ PV1+V2) ∈ QW

~ (SR(X)) .

One easily sees that QW
~ (g ◦ PV ) = QW

~ (g ◦ PV )∗, so the proposition follows.
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Theorem 3.6. We have QW
~ (SR(X)) = R(X, σ), for every ~ 6= 0.

Proof. Since QW
~ (SR) is a *-algebra, we want its closure to contain R(λ, x). Take a

sequence (gj) in S(R) converging uniformly to 1/(iλ− ·). Then gj(φ(x)) converges to

R(λ, x), and therefore R(λ, x) ∈ QW
~ (SR) by Proposition 3.4. By Proposition 3.5 we

may conclude that R(X, σ) ⊆ QW
~ (SR).

We are left to show that QW
~ (g ◦ PV ) ∈ R(X, σ) for every levee g ◦ PV ∈ SR(X).

We do this by induction in dimV . We choose a unit vector v ∈ V and write elements
of V as tv + w, for t ∈ R and w ⊥ v. Let f : V → S1 be the function such that
eiφ(tv+w) = f(tv + w)eitφ(v)eiφ(w). Notice that the span of functions of the form

tv + w 7→ g1(t)g2(w) (t ∈ R, w ⊥ v)

lies dense in S(V ) with respect to the Schwartz topology. Because of (8), it suffices
to assume that ĝf is of this form, and we therefore write (ĝf)(tv + w) = ĝ1(t)ĝ2(w)
for some g1 ∈ S(R), g2 ∈ S({v}⊥). By virtue of Proposition 3.4 we find that

QW
~ (g ◦ PV ) =

∫
R
/dt

∫
{v}⊥

/dw ĝ1(t)ĝ2(w)eitφ(v)eiφ(w)

= g1(φ(v))

∫
{v}⊥

/dw ĝ2(w)eiφ(w) .

By the induction hypothesis the latter integral is in R(X, σ), and by the Stone–
Weierstrass theorem we can approximate g1 by polynomials in 1/(iλ− ·). Functional
calculus now gives g1(φ(v)) ∈ R(X, σ), thus proving that QW

~ (g ◦ PV ) ∈ R(X, σ).

We will now relate our generalization of Weyl quantization QW
~ to the usual fi-

nite dimensional Weyl quantization, and show why this gives us a strict deformation
quantization.

By usual convention, Weyl quantization of a suitable function f : R2n → C is

Q̃W
~ (f) :=

∫
/dx f̂(x)ei

∑
(xjPj+xn+jQj) , (9)

where Pjψ(y) = −i~ ∂ψ
∂yj

and Qjψ(y) = yjψ(y).

Rieffel, in his memoir [7], defines a very broad generalization of Weyl quantization,
and, in Chapter 9, discusses strict deformation quantization. In particular, as is writ-
ten in [8, Chapter 1], (9) is defined and determines a strict deformation quantization of
B(R2n), where by definition f ∈ B(R2n) is a smooth function all of whose derivatives
of all degrees are bounded. In that same chapter, Rieffel writes B~ for the completion
of B with respect to some new C*-norm ‖·‖~ and equiped with a different product
×~. Around [8, equation (1.3)], Rieffel shows that a certain map B~ → B(L2(Rn)),
f 7→ Lf is a *-representation, and that the inclusion B ↪→ B~ is a strict deforma-
tion quantization. What we call Q̃W

~ is actually the composition of this inclusion and
f 7→ Lf .

We will now relate the strict deformation quantization map Q̃W
~ to our QW

~ . Let
us fix a continuous surjective partial isometry p : X → R2n, as we have done in
Section 2.2. Now (ker p)⊥ → B(F(X)), x 7→ eiφ(x) is a representation of the canonical
commutation relations in exponential form, so by the Stone–von Neumann theorem

10



there exists a subspace W ⊆ F(X) invariant under {eiφ(x)}x⊥ker p, together with a
unitary U : W → L2(Rn) such that

eiφ(x) = U∗ei
∑
p(x)jPj+p(x)n+jQjU . (10)

Now for every f ∈ SR(R2n) ⊆ B(R2n), we have

QW
~ (f ◦ p) =

∫
(ker p)⊥

/dx f̂(px)eiφ(x)

= U∗
∫
R2n

/dx f̂(x)ei
∑
xjPj+xn+jQjU ≡ U∗Q̃W

~ (f)U . (11)

This link between QW
~ and Q̃W

~ can now be used to prove this paper’s most crucial
result.

Theorem 3.7. Let A0 := CR(X) and A~ := R(X, σ) for ~ 6= 0. Then I = R, together
with the collection of C*-algebras {A~}~∈I , and the maps QW

~ : SR(X) → R(X, σ),
constitute a strict deformation quantization of SR(X).

Proof. We already know that QW
~ is linear and *-preserving. For checking injectivity

and (I), (II) and (III) of Definition 3.2, we choose f, g ∈ SR(X). Then we can find a
surjective continuous partial isometry p with f, g ∈ p∗SR(R2n), and apply (11).

The last remaining requirement of Definition 3.2 is that QW
~ (SR) is a dense *-

subalgebra of A~. This is exactly the statement that we have worked towards. For
~ = 0 it follows from Proposition 2.4, and for ~ 6= 0 it is a combination of Proposition
3.5 and Theorem 3.6.

This result rigorously establishes the commutative resolvent algebra as the classical
limit of the resolvent algebra. It is a welcome fact that quantization in the setting
of the resolvent algebra can be done with Weyl quantization, about which much is
known, also in the infinite dimensional case [1, 9].

We will now prove a similar result for Berezin quantization, which allows us to
quantize the entire commutative resolvent algebra.

3.3 Berezin quantization

Let ~ > 0. Define, for an arbitrary levee g ◦ PV ∈ SR(X), its Berezin quantization
QB

~ (g ◦ PV ) by

QB
~ (g ◦ PV ) :=

∫
V

/dx e−
~
4
‖x‖2 ĝ(x)eiφ(x) . (12)

The discussion after Lemma 2.5 justifies us in linearly extending this map.
Using the partial isometry p : X → R2n and the unitary U : W → L2(Rn) from

before (satisfying (10)), it can be shown that the operator UQB
~ (f ◦ p)U∗ coincides

with the Berezin quantization of f ∈ SR(R2n) ⊆ L∞(R2n) as defined by Landsman in
[6, Section II.2.3]. As a consequence of [6, Theorem II.1.3.5], QB

~ uniquely extends to
a continuous positive linear map

QB
~ : CR(X)→ B(F(X)) .

11



The positivity of QB
~ is a bonus. Although it is not a requirement in Definition 3.3, it

will become useful at the end of this section.
Let us introduce the space D̂(V ) of Schwartz functions f ∈ S(V ) of which the

Fourier transform f̂ is compactly supported. We also need the associated space

D̂R(X) := span
{
g ◦ P levee

∣∣∣ g ∈ D̂(ranP )
}
.

We define the suggestively written operator e
~
4
∆ : D̂R(X)→ D̂R(X) by linear extension

of

e
~
4
∆(g ◦ P ) := (e−

~
4
‖·‖2 ĝ)̌ ◦ P , (13)

where ˇ denotes the inverse Fourier transform. The notation e
~
4
∆ is justified when

X = Rm and ∆ =
∑

j ∂
2
j is the Laplace operator. It should be clear that e

~
4
∆ is a

bijection. Furthermore, (13) immediately gives us

QB
~ (f) = QW

~ (e
~
4
∆f) , (14)

for all f ∈ D̂R(X), and therefore QB
~ (D̂R(X)) = QW

~ (D̂R(X)). In fact, because D̂ lies
dense in S with respect to the Schwartz topology, equation (8) implies that

QB
~ (D̂R(X)) = QW

~ (SR(X)) ,

and we conclude, by Theorem 3.6 and continuity of QB
~ , that

QB
~ (CR(X)) = R(X, σ) .

We now proceed to prove (I) and (II) for Berezin quantization.

Lemma 3.8. For any f ∈ CR(X), the function ~ 7→ QB
~ (f) is continuous on (0,∞).

Proof. For a levee g ◦ P ∈ D̂R(X) we have, as we have seen,

QB
~ (g ◦ P ) = QW

~ ((e−
~
4
‖·‖2 ĝ)̌ ◦ P ) .

Furthermore, QW
~ (f) = QW

1 (f~), when we define f~(x) := f(
√
~x). We obtain

QB
~ (g ◦ P ) = QW

1 ((e−
~
4
‖·‖2 ĝ)̌ ◦ P )~) = QW

1 ((e−
‖·‖2
4 ĝ~)̌ ◦ P ) .

A bit of analysis yields that ~ → g~ is Schwartz-continuous on (0,∞). Therefore, by
(8), we find that ~ → QB

~ (g ◦ P ) is continous. By continuity of QB
~ and density of

D̂R(X) ⊆ CR(X), the lemma follows.

It should be stressed that the continuity of ~ 7→ QB
~ (f) rests on our specific

definition of φ(x). For instance, when X = R2, with the usual definitions of the
quantum mechanical operators Q and P in Fock space F(R2), our definition reads
φ(x) := x1√

~P + x2

√
~Q. If we use φ(x) := x1P + x2Q in (12), we recover Landsman’s

definition of QB
~ in [6, Section II.2.3]. The two possible definitions of φ(x) are related

by an ~-dependent unitary transformation. One should be warned that, when using
the latter formula for φ(x), Lemma 3.8 is no longer true. A similar comment applies
to Weyl quantization.
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Lemma 3.9. Weyl and Berezin quantization are equivalent in the sense that, for all
f ∈ SR(X), the map

~ 7→
∥∥QW

~ (f)−QB
~ (f)

∥∥
is continuous on I = [0,∞).

Proof. For a levee g ◦ P ∈ SR(X) we have

QB
~ (g ◦ P )−QW

~ (g ◦ P ) = QW
~ ((e−

~
4
‖·‖2 ĝ − ĝ)̌ ◦ P ) .

Because ~ 7→ e−
~
4
‖·‖2 ĝ is L1-continuous, the bound (8) implies that we have∥∥QB

~ (g ◦ P )−QW
~ (g ◦ P )

∥∥ → 0 as ~ → 0. For ~ > 0, we can apply an argument
similar to the proof of Lemma 3.8.

The final result of this section gives the C*-algebraic relation between the com-
mutative resolvent algebra and the resolvent algebra.

Theorem 3.10. Let A0 := CR(X) and A~ := R(X, σ) for ~ > 0. The set I = [0,∞),
together with the collection of C*-algebras {A~}~∈I , and the maps QB

~ : CR(X) →
R(X, σ), constitute a strict C*-deformation of CR(R2n).

Proof. We have already found QB
~ (CR(X)) = R(X, σ), and so we are left to prove

(I), (II) and injectivity of QB
~ . Continuity of ~ 7→ QB

~ (f) for ~ > 0 is achieved by
Lemma 3.8, and because lim~→0

∥∥QW
~ (f)

∥∥ = ‖f‖∞, the same holds for QB
~ by Lemma

3.9. Similarly, (II) holds for QW
~ , so by Lemma 3.9 also for QB

~ .
Suppose QB

~ (f) = 0 for a nonzero f ∈ CR(X). Because QB
~ is a positive map, we

may as well assume f ≥ 0. Because QW
~ is injective, and e

~
4
∆ extends to an injection

SR → SR, it suffices to find a nonzero f ′ ∈ SR(X) with 0 ≤ f ′ ≤ f . We leave it to
the reader to pick their favorite f ′.

One could wonder whether Berezin quantization also satisfies Definition 3.2, i.e.
determines a strict deformation quantization of some Poisson subalgebra of CR(X).
This is indeed the case with, for instance, D̂R(X). One can calculate the Fourier

transforms of e
~
4
∆{f, g} and {e ~

4
∆f, e

~
4
∆g}, to see that they get arbitrarily close in L1-

norm as ~→ 0. In this way one can prove that QB
~ indeed satisfies (III), and therefore

Definition 3.2. Even though this was not the main point of this section, it does justify
the word ‘quantization’ in Berezin quantization (and in the title of this article).
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4 Function Spaces

This section aims to give a concrete description of CR(Rm). The results of Sections
4 and 5 are simplified by the finite dimensionality of Rm, while staying applicable in
an infinite dimensional setting, since CR(X) is the direct limit of CR(Rm), m → ∞.
Another advantage of the finite dimensional case is that it can be visualised in 3D, see
Figure 1.

Figure 1: The sum of two levees.1

For m = 2 and nulP (= dim kerP ) = 1, the surface plot of the absolute value of
g ◦ P resembles a physical levee with top height of ‖g‖∞ stretching out indefinitely
in the direction of kerP and - in the perpendicular direction - descending into the
flat surrounding landscape. The function g determines the shape of the levee and P
determines the direction into which it extends. For general values of nulP and m, it
is helpful to imagine an affine space of dimension nulP , around which the support of
g ◦ P is concentrated.

Proposition 2.4 displays a dense subset of CR(Rm), consisting solely of finite sums
of levees. This implies that the elements of CR(Rm) are precisely the uniformly con-
vergent series

f =
∞∑
i=1

gi ◦ Pi . (15)

The convergence of this sum is conditional, and this makes the representation (15)
less useful regarding products and sums in CR(X). In fact, as this chapter will make
clear, if the terms in (15) are rearranged, the sum often diverges pointwise. To obtain
a useful representation of f ∈ CR, avoiding conditionally convergent sums, we will
define function spaces Cr(Rm), consisting of countable sums of levees gi ◦Pi for which
nulPi = r, modulo levees g ◦ P with nulP < r.

1Plotted using Wolfram Alpha LLC: Wolfram|Alpha, http://www.wolframalpha.com/input/

?i=plot+0.5e%5E(-10(x-y%2F6)%5E2)%2Bcos(2x%2B2y)e%5E(-(x%2By)%5E2),+x%3D-2+to+2+

and+y%3D-2+to+2 (access July 6, 2018).
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Definition 4.1. For 0≤r≤ m, define the spaces Cr(Rm) as follows. First, C0(Rm) is
the usual space of continuous functions vanishing at infinity (showing the consistency
of our notation). Assuming Cr−1(Rm) is a vector space, we denote the equivalence
class of f ∈ Cb(Rm) in Cb(Rm)/Cr−1(Rm) by [f ]r−1, and use the topology induced by

‖[f ]r−1‖r−1 := inf
ξ∈Cr−1

‖f − ξ‖∞ .

We define

Cr(Rm) :=

{
f ∈ Cb(Rm)

∣∣∣∣ [f ]r−1 =
∑

i[gi ◦ Pi]r−1 for Pi distinct (m-r)-
dimensional projections, and gi ∈ C0(ranPi)

}
,

where the sum is over an arbitrary countable set (and hence unconditional).

We often write ‖f‖r−1 := ‖[f ]r−1‖r−1 for convenience. The function spaces Cr build
up the commutative resolvent algebra, as made precise by the following theorem. We
will postpone its proof for a short while.

Theorem 4.2. We have
CR(Rm) = Cm(Rm).

Moreover, C0 ⊂ C1 ⊂ . . . ⊂ Cm is a chain of closed ideals in CR.

If we want to check whether a given function f is in Cr(Rm) (and hence in the
commutative resolvent algebra), Definition 4.1 demands the existence of a certain
unconditionally convergent sum

∑
[gi◦Pi]r−1. It would be convenient if the assumption

of unconditional convergence is not necessary, and this is indeed what the following
lemma proves.

Lemma 4.3. Let I ⊆ N be any subset, and let
∑

i∈I [gi ◦ Pi]r be a (possibly condition-
ally) convergent sum of levees with different Pi of nullity nulPi = r + 1. Then∥∥∥∥∥∑

i∈I

[gi ◦ Pi]r

∥∥∥∥∥
r

= sup
i∈I
‖gi‖∞ . (16)

Hence any such series is unconditionally convergent.

Proof. By continuity of ‖·‖r on Cb/Cr, we only need to show (16) for every finite
I ⊂ N. We will use induction on #I. Let j ∈ I be such that supi∈I ‖gi‖∞ = ‖gj‖∞.
Then by the induction hypothesis,∥∥∥∥∥∑

j 6=i∈I

gi ◦ Pi

∥∥∥∥∥
r

≤ ‖gj‖∞ .

Fix ε > 0 and take ξ ∈ Cr such that∥∥∥∥∥∑
i 6=j

gi ◦ Pi − ξ

∥∥∥∥∥
∞

≤ ‖gj‖∞ + ε . (17)
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So both
∑

i 6=j gi ◦Pi−ξ and gj ◦Pj are (almost) bounded by ‖gj‖∞, but their sum may
be substantially larger on some region. It turns out that this region is small enough to
be corrected for by a Cr-function. More precisely, we can find φ ∈ Cr(Rm) such that∥∥∥∥∥∑

i∈I

gi ◦ Pi − ξ − φ

∥∥∥∥∥
∞

≤ ‖gj‖∞ + ε .

Some analysis shows that

φ =

(∑
i 6=j

gi ◦ Pi − ξ

)
|gj ◦ Pj|
‖gj‖∞

does the job. The fact that φ ∈ Cr follows from Lemma 2.2, using Pi 6= Pj and
closedness of Cr. We conclude that

∥∥∑
i∈I gi ◦ Pi

∥∥
r
≤ ‖gj‖∞ .

To attain ‖gj‖∞, we choose w ∈ ranPj with |gj(w)| = ‖gj‖∞, and set V := kerPj.
With the help of Lemma 2.5, we find(∑

i∈I

gi ◦ Pi − ξ

)V,w

= gj(w) µ-a.e., (18)

because V ⊆ kerPi iff i = j, and V * kerP for all levees g ◦ P ∈ Cr(Rm). From (18)
we obtain the equality ‖

∑
gi ◦ Pi‖r = ‖gj‖∞. Thus we have finished our inductive

step, and the lemma follows.

We can now prove the theorem that relates the spaces Cr(Rm) to the commutative
resolvent algebra.

Proof of Theorem 4.2. Using induction on r ≤ m, we will prove the following claim:

Cr(Rm) is a C*-subalgebra of CR(Rm). (19)

If r = 0 this follows by applying the Stone–Weierstrass theorem, or by recalling that
SR ⊆ CR. Suppose now that (19) is true for a fixed r < m. Then Cb/Cr is a C*-
algebra, and it swiftly follows that Cr+1 is a *-algebra. The main problem is showing
that Cr+1 is a closed subset of Cb.

Let (f j)j∈N ⊂ Cr+1 converge uniformly to f . Write [f j]r =
∑

i[g
j
i ◦P

j
i ]r with gji and

P j
i as in Definition 4.1. Simply taking the limit of each term gji ◦ P

j
i is obstructed by

the j-dependence of P j
i , but this obstruction can be circumvented. We can reshuffle

the terms and add zeroes to obtain g̃ji and Pi such that (for all j ∈ N)∑
i∈N

[gji ◦ P
j
i ] =

∑
i∈N

[g̃ji ◦ Pi] .

Lemma 4.3 shows us that (f j) is Cauchy if and only if (g̃ji ) is uniformly Cauchy:

sup
i∈N

∥∥g̃ji − g̃ki ∥∥∞ =

∥∥∥∥∥∑
i∈N

[(g̃ji − g̃ki ) ◦ Pi]

∥∥∥∥∥
r

=
∥∥f j − fk∥∥

r
→ 0 .

Thus we may define gi := lim g̃ji ∈ C0(ranPi). It follows that g̃ji → gi uniformly in i.

16



Again using Lemma 4.3, convergence of the series
∑

[g̃ji ◦ Pi] implies
∥∥g̃ji∥∥∞ → 0

(for all j). Therefore ‖gi‖∞ → 0, which in turn implies convergence of
∑

[gi ◦ Pi].
Now closedness of Cr+1 follows from the following calculation. Using Lemma 4.3 once
more, we have ∥∥∥∥∥[f ]−

∑
i

[gi ◦ Pi]

∥∥∥∥∥
r

= lim
j

∥∥∥∥∥∑
i

[(g̃ji − gi) ◦ Pi]

∥∥∥∥∥
r

= lim
j

sup
i

∥∥g̃ji − gi∥∥∞ = 0 .

Let f ∈ Cr+1 be arbitrary, written as

[f ] =
∑

[gi ◦ Pi] ∈ Cr+1/Cr ,

with the usual conventions. Then all gi ◦ Pi ∈ CR, and thereby also the partial sums
fk :=

∑k
i=1 gi ◦ Pi ∈ CR. Since

∥∥fk − f∥∥
r
→ 0, we can find ξk ∈ Cr ⊆ CR such that∥∥fk − ξk − f∥∥∞ → 0. Hence, f ∈ CR.

Thus we have proved that Cr+1(Rm) is a C*-subalgebra of CR. By induction it
follows that this holds for all r < m, from which the second statement of Theorem 4.2
follows. We also find Cm(Rm) ⊆ CR(Rm).

The converse inclusion follows if hλx ∈ Cm(Rm) for all λ 6= 0, x ∈ Rm. Define P
as the projection onto the span of x. Then kerP is m-dimensional when x = 0 and is
(m−1)-dimensional otherwise. Since g(Py) := hλx(y) defines a function g ∈ C0(ranP ),
we finally obtain hλx = g ◦ P ∈ Cm(Rm).

We have now obtained a concrete description of CR(Rm) in terms of sums of
functions g ◦ P . Another possible description restricts to one-dimensional projections
P , but allows to compose with another C0-function. Namely, it turns out that the span
of functions of the form g ◦

∑
gj ◦ pxj (with g ∈ C0(R) and a finite sum of real-valued

levees gj ◦ pxj) is dense in CR(Rm). An elaborate proof will be given elsewhere, along
with envisioned applications for machine learning.

5 Gelfand Spectrum

We implicitly encountered characters of the commutative resolvent algebra in Lemma
2.5. Let us now define them precisely. For V ⊆ Rm linear, w ∈ V ⊥ and f ∈ CR(Rm),
we have defined fV,w : S(V ) → C in (5). Let χ(V + w)(f) be the unique z ∈ C
such that fV,w = z almost everywhere.2 A quick calculation shows that χ(V + w) is
multiplicative and nonzero, hence χ(V + w) ∈ ∆(CR(Rm)), where ∆(CR(Rm)) is the
Gelfand spectrum of the commutative resolvent algebra, more briefly denoted by ∆,
carrying the weak*-topology (i.e. the Gelfand topology). In practice the characters
χ(V + w) are calculated on levees, where they become

χ(V + w)(g ◦ P ) =

{
g(Pw), if V ⊆ kerP,

0, otherwise.

2The character χ(V + w) can be thought of as the ‘mean value’ on V + w.
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What does it mean if a net (χ(Vα + wα))α weak*-converges to χ(V + w)? In that
case we have

χ(Vα + wα)(g ◦ PV ⊥)→ χ(V + w)(g ◦ PV ⊥) = g(w) ,

for any g ∈ C0(V ⊥). It follows that eventually (for all α bigger than a fixed α0) we
have Vα ⊆ V = kerPV ⊥ . Also, by choosing a sequence of g’s with support closing
in upon w, it follows that PV ⊥wα → w. Inspired by these results, we will prove (in
Theorem 5.6) that ∆ is homeomorphic to the following space.

Definition 5.1. We define the set

Ω :=
{
V + w

∣∣ V ⊆ Rm linear, w ∈ V ⊥
}
,

and say that a net (Vα + wα)α in Ω is absorbed in V + w ∈ Ω if PV ⊥wα → w and
eventually Vα ⊆ V .

As a set, Ω is the affine Grassmanian Graff(Rm), but we will endow Ω with a
different topology. By the previous discussion, if χ(Vα + wα) → χ(V + w), then
Vα + wα is absorbed in V + w. Since the converse is false, (as all nets in Ω are
absorbed in Rm + 0,) we will define a notion of convergence that is slightly stronger
than the notion of absorption.

Definition 5.2. A net (Vα + wα)α in Ω converges to V + w ∈ Ω iff it is absorbed
in V + w and none of its subnets is absorbed in any Ṽ + w̃ ( V + w.

To see that our notion of convergence induces a topology, we prove the following
lemma. It also gives useful insight into the structure of the topology of Ω.

Lemma 5.3. The notion of convergence in Definition 5.2 induces a topology, in which
the following statements hold. For every V + w ∈ Ω, the set

Br(V + w) := {V ′ + w′ ⊆ V + w′′ | ‖w′′ − w‖ < r}

is open, of which the closure equals

Br(V + w) := {V ′ + w′ ⊆ V + w′′ | ‖w′′ − w‖ ≤ r} . (20)

The set
{
Br(V + w) \

⋃k
i=1Bri(Vi + wi)

∣∣∣ k ∈ N, r, ri > 0, Vi + wi ( V + w
}

is a

neighborhood basis of V + w.

Proof. If τΩ is the set of subsets U ⊆ Ω such that every converging net outside of U
has a limit outside of U , then τΩ is easily seen to be a topology. We will now show the
last three claims of the lemma hold with respect to τΩ. It subsequently follows that
convergence with respect to τΩ is the same as convergence in the sense of Definition
5.2.

If Vα + wα → V ′ + w′ ⊆ V + w′′ with ‖w′′ − w‖ < r, then we will eventually have
Vα +wα ⊆ V +PV ⊥wα with ‖PV ⊥wα − w‖ < r, showing that Br(V +w) is open (that
is, an element of τΩ).

To show that the set Br(V + w) as defined in (20) is closed, we choose a net
(Vα + wα) ⊆ Br(V + w) converging to some V ′ + w′. Take the unique w′′α ∈ V ⊥ such
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that Vα +wα ⊆ V +w′′α and ‖w′′α − w‖ ≤ r. We will try to find a subnet of (Vα +wα)
that is absorbed in an affine space lying in V ′ +w′. Defining Ṽ := V ′ ∩ V, we already
find that eventually Vα ⊂ Ṽ . It can be proved (first for ‖PṼ ⊥wα‖ = 1, then in general,)
that there exists a constant C such that

‖PṼ ⊥wα‖ ≤ C max(‖PV ′⊥wα‖ , ‖PV ⊥wα‖) . (21)

To estimate the right-hand-side of (21), first observe that PV ⊥wα = w′′α, which is
bounded by r + ‖w‖. Secondly, observe that PV ′⊥wα → w′, so that (PV ′⊥wα) is
eventually bounded. Now (21) implies that (PṼ ⊥wα) has a bounded subnet, and
therefore a convergent subnet, denoted by (PṼ ⊥wβ) ⊆ (PṼ ⊥wα). This net converges to
some w̃ ∈ V ′+w′. Hence (Vβ +wβ) is absorbed in Ṽ + w̃, and so we must have Ṽ = V ′

and hence V ′ ⊆ V . Because ‖PV ⊥w′ − w‖ ≤ r, we find that V ′ + w′ ∈ Br(V + w).
Therefore Br(V + w) is closed, and is the closure of Br(V + w).

Suppose that V + w ∈ U ∈ τΩ. Define A := {V ′ + w′ ( V + w} and the partially
ordered set I := {α ⊆ A | #α <∞} with inclusion. We can now prove that there is
an α ∈ I such that

B 1
1+#α

(V + w) \
⋃

V ′+w′∈α

B1(V ′ + w′) ⊆ U , (22)

which implies our final claim. Indeed, if there was no such α, then we would canonically
find a net (Vα + wα)α∈I outside of U such that every Vα + wα is in the left-hand-side
of (22). It would then easily follow that Vα +wα → V +w, giving a contradiction.

We have a topological embedding Rm ↪→ Ω by sending w 7→ {0} + w, as a result
of Definition 5.1. This turns out to determine a compactification.

Theorem 5.4. The space Ω is a compactification of Rm.

Proof. Compactness follows from Definition 5.2. Indeed, to any net (Vα +wα) we can
assign a V + w ∈ Ω such that some subnet (Vβ + wβ) ⊆ (Vα + wα) is absorbed in
V + w. Either Vβ + wβ → V + w or a subsubnet (Vγ + wγ) ⊆ (Vβ + wβ) is absorbed
in a smaller dimensional affine space. The thus resulting chain of subnets has to stop
somewhere, because dimV <∞, and gives us a convergent subnet of (Vα + wα).

To show that Rm is dense in Ω, let V + w be arbitrary, and suppose that every
V ′ + w′ with dimV ′ < dimV lies in Rm, i.e. the closure of Rm in Ω. Then we can
construct a sequence in Rm, converging to V + w, as follows. We choose U ⊂ V with
dimU = dimV − 1, some u ∈ V ∩ U⊥, and a sequence (ti) ⊂ R without convergent
subsequence. Then U + tiu → V + w. Applying induction to the dimension of V , it
follows that Rm = Ω.

The topology on Ω indeed matches the (weak*-)topology on ∆:

Lemma 5.5. The function χ : Ω → ∆ is an embedding (i.e. a continuous open
injection).

Proof. We begin with injectivity. Let χ(V +w) = χ(V ′+w′) for some V +w, V ′+w′ ∈
Ω. Take a projection P onto V ⊥ and take a g ∈ C0(V ⊥) with g(w) = 1, and g(v) < 1
for all v 6= w. Now

χ(V ′ + w′)(g ◦ P ) = χ(V + w)(g ◦ P ) = 1 ,
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so V ′ ⊆ V and g(Pw′) = 1. By symmetry we obtain V ′ = V , and therefore g(w′) = 1.
It follows that V + w = V ′ + w′.

We are left to check that the maps χ and χ−1 :χ(Ω)→ Ω preserve convergence of
nets.

Suppose χ(Vα + wα) → χ(V + w). As already discussed, Vα + wα is absorbed in
V + w. Let (Vβ + wβ) be a subnet that is absorbed in Ṽ + w̃ ( V + w. Take a levee
f = g ◦ PṼ ⊥ , where g(w̃) = 1, so

lim
β
χ(Vβ + wβ)(f) = lim

β
g(PṼ ⊥wβ) = 1 6= 0 = χ(V + w)(f).

This contradicts χ(Vα + wα)→ χ(V + w). We conclude that Vα + wα → V + w.
Suppose conversely that Vα + wα → V + w. It is sufficient to prove that

χ(Vα + wα)(g ◦ P )→ χ(V + w)(g ◦ P ) ,

for an arbitrary levee g ◦ P ∈ CR. If V ⊆ kerP , then this follows from a simple
computation. If V * kerP , then it remains to show that χ(Vα +wα)(g ◦P ) converges
to zero. In the notation of Lemma 5.3, we eventually have

Vα + wα ∈ B1(V + w) \BR(kerP ) (23)

for arbitrarily large R. Since (23) implies either Vα * kerP or ‖Pwα‖ > R, we find
that χ(Vα + wα)(g ◦ P )→ 0, so we are done.

Theorem 5.6. The Gelfand spectrum of the commutative resolvent algebra CR(Rm)
is homeomorphic to Ω, i.e. ∆(CR(Rm)) ∼= Ω via the map χ.

Proof. This relies on Lemma 5.5. Continuity of χ implies that its pullback,

χ∗ : C(∆)→ C(Ω), f 7→ f ◦ χ ,

is a *-homomorphism. As injectivity can be straightforwardly checked, we are left to
show surjectivity of χ∗. If g ∈ C(Ω), then g ◦ χ−1 ∈ C(χ(Ω)) by Lemma 5.5. Since
χ(Ω) is a compact subset of the compact Hausdorff space ∆, we may use Urysohn’s
lemma to extend g ◦ χ−1 to ∆. We obtain a function h ∈ C(∆) such that h ◦ χ = g,
completing the proof.
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